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Abstract: Due to their outstanding mechanical properties and biocompatibility, additively manufac-
tured titanium porous structures are extensively utilized in the domain of medical metal implants.
Implants frequently undergo cyclic loading, underscoring the significance of predicting their fatigue
performance. Nevertheless, a fatigue life model tailored to additively manufactured titanium porous
structures is currently absent. This study employs multiple linear regression, artificial neural net-
works, support vector machines, and random forests machine learning models to assess the impact
of structural and mechanical factors on fatigue life. Four standard maximum likelihood models were
trained, and their predictions were compared with fatigue experiments to validate the efficacy of the
machine learning models. The findings suggest that the fatigue life is governed by both the fatigue
stress and the overall yield stress of the porous structures. Furthermore, it is recommended that the
optimal combination of hyperparameters involves setting the first hidden layer of the artificial neural
network model to three or four neurons, establishing the gamma value of the support vector machine
model at 0.0001 with C set to 30, and configuring the n_estimators of the random forest model to
three with max_depth set to seven.

Keywords: machine learning; porous structure; titanium; additive manufacturing; fatigue

1. Introduction

Due to its high strength and low modulus, titanium is widely used in the field of
medical metal implants; however, “stress shielding” causes premature implant failure [1,2].
Additive manufacturing (AM) creates porous structures with a modulus compatible with
bones and enhanced tissue growth capability [3,4]. However, additively manufactured
porous structures differ from traditionally manufactured counterparts on defects, mi-
crostructures, and geometry structures [5,6], which bring difficulty on property evaluation.
Fortunately, the rise of machine learning (ML) in recent years has enabled the prediction of
fatigue performance.

In previous studies, in order to optimize tissue regeneration, it is imperative to un-
derstand the fatigue behavior of porous implants placed in the body for long periods
of time [7]. Based on different loading methods (tension—tension, tension—compression,
compression—compression), the fatigue life of porous structures has been determined by
Lietaert et al. [8]. According to Wycisk et al. [9], the surface roughness of porous additively
fabricated structures has the greatest effect on fatigue life because they have a greater
surface-to-volume ratio than blocks. It has been reported by Hrabe et al. [10] that the
fatigue strength of electron beam melting (EBM) Ti-6Al-4V porous structures is significantly
reduced by stress concentrations near rough surfaces. The strain rate sensitivity of porous
structures is reduced by high roughness and a lower relative density [11]. In the same stress
amplitude, Lindemann et al. [12-14] found that fatigue life decreased with increasing stress
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ratios. According to Hooreweder et al. [15], chemical corrosion could smooth the surface of
the strut, reducing the stress concentration near unit nodes and fatigue crack initiation. In
previous studies, the multiple factors influencing AM porous implants’ fatigue performance
and the fatigue damage mechanism were not clearly understood, which makes predicting
the fatigue life of porous implants difficult.

In the present day, a growing field of ML has shown great potential in determin-
ing materials’ mechanical and fatigue parameters [16-18]. The most popular ML models
among them are multiple linear regression (MLR), artificial neural networks (ANNSs),
support vector machines (SVMs), and random forests (RFs). A rising number of studies
have successfully used the ML models to forecast the fatigue life of components made
using AM [19-24]. In 2020, Zhan et al. [22] predicted the fatigue life of 300M-AerMet100
in additive manufacturing through a combination of experimental methods, numerical
simulations, and an artificial neural network model. In 2021, Zhan et al. [20] established a
data-driven analysis platform grounded on continuous damage mechanics, employing arti-
ficial neural networks, support vector machines, and random forest models for predicting
the fatigue life of additively manufactured SS316L components. In 2021, Zhan et al. [21]
employed random forest and artificial neural network models to forecast the fatigue life of
additively manufactured Ti6Al4V, S5316L, and AlSi10Mg. In 2021, Bao et al. [24] employed
support vector machine and artificial neural network models to investigate the fatigue life
concerning defect location, size, and morphology in additively manufactured Ti-6Al-4V
alloy. In 2023, Shi et al. [23] introduced a methodology to address the issue of data sparsity
in the fatigue model and applied it to forecast the fatigue life of additively manufactured
AlSi10Mg alloy. In comparison to conventional statistical approaches, they have higher
computing accuracy and efficiency for nonlinear regression analysis and small sample
prediction [25,26].

In the field of materials science, both machine learning and additive manufacturing
are emerging directions, especially with the recent development of using machine learning
models to predict the performance of additive manufacturing components. While we
aim to focus on the materials themselves, particularly on key issues such as fatigue-life
prediction, the limited research time and inadequate preparation of relevant datasets make
it necessary to initially discuss the accuracy of different machine learning models. This
work also provides an important foundation and perspective for future related research. In
contrast to previous research findings, this study marks a breakthrough as it pioneers the
utilization of a data-driven machine learning model to explore the fatigue life of additively
manufactured porous structures. Initially, the study predicted the fatigue life through the
application of four ML models: MLR, ANN, SVM, and RE. This prediction is based on a
limited amount of experimental data that specifically emphasizes yield stress and fatigue
stress. Then, the prediction data and models were analyzed to validate their applicability
by identifying any errors or discrepancies. Finally, parametric studies were conducted
to explore the impact of key parameters in the ML models on prediction performance.
Additionally, the study recommends the optimal hyperparameters for each ML model type.

2. Methodology
2.1. Experimental Data

In this work, we have employed experimental data from compression fatigue tests of
porous Ti2448 (Ti-24Nb-4Zr-85n) rhombic dodecahedron structures fabricated by electron
beam powder bed fusion (Figures 6-8 in Ref. [1]). Details on the materials and tests are also
available in Ref. [1].

2.2. Machine Learning Models
2.2.1. Multiple Linear Regression (MLR)

If the function curve is a straight line, then it is known as a linear regression. If the
linear regression curve has more than one independent variable, then it is known as MLR.
For modeling linear relationships between independent and dependent variables, MLR



Metals 2024, 14, 320

3o0f21

is an important predictive analytics method. By fitting an optimal linear function, we
can describe the relationship between multiple independent variables and the dependent
variable. The diagram of the MLR regression structure is shown in Figure 1.
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Figure 1. The diagram of the multiple linear regression model.
For sample i with n features, its regression result can be written as an equation:
Ui = wo + w1Xj1 + WaXip + . .. + WnXin )

where w is collectively referred to as the parameters of the model, wy is called the intercept,
and w; to wy are called the regression coefficients.

In this work, the brief steps of MLR model training are shown below:

(1) In multiple linear regression, our loss function is defined as follows:
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where y; is the true label corresponding to sample i and #; is the predicted label correspond-
ing to sample i. This loss function represents the squared result of the L2 paradigm for
vector y — 1, which is essentially the Euclidean distance, i.e., it is the sum of the squares of
the corresponding subtracted squares for each point on the two vectors, and then squared.
(2) Considering that the goal of multiple linear regression is to have as small of a
difference between the predicted and true values as possible, the solution objective can be

rephrased as follows:
ming [y — Xwl|, 2 (©)

2.2.2. Artificial Neural Networks (ANN)

The ANN model is a simulation of the human brain’s neural network, which estab-
lishes the relationship between inputs and outputs based on how many neurons com-
municate and transfer information among samples. It is widely used to predict S-N
relationships [27] and to map complex nonlinear relationships [28]. This is mainly because
many activation functions (such as the linear, sigmoid, and hyperbolic tangent) can be used
to train the ANN model [29]. The diagram of the ANN regression structure is shown in
Figure 2.

In general, a typical ANN contains an input layer, a hidden layer, and an output layer,
and each layer contains many neurons. During the training process of an ANN, neurons in
the current layer receive signals from neurons in the previous layer and then output the
signals to neurons in the next layer. The training process of a single neuron is shown below:

vi = fi(}_wiix; — t;) 4)

where y; represents the output, x; is the input, w;; is the weight, and f; is the activation
function. When the sum ) wj;x; is larger than a limit, the output is activated by the
activation function. Furthermore, the values of weight and limit could be revised for the
sake of minimizing the output errors.
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Figure 2. The diagram of the artificial neural networks model.

In this work, the commonly used back propagation algorithm and gradient descent
optimization algorithm are used to train the ANN and the brief steps are shown below:

(1) Initialize all the weights and thresholds in the ANN.

(2) Import the training data into the ANN through data partitioning as a way to obtain
the output data.

(3) Calculate the global error of the output data.

(4) Adjust the weights and thresholds.

(5) When the global error is greater than the limit value, the above steps will be
repeated. And, when the global error is less than the limit value, the training ends.

2.2.3. Support Vector Regression (SVR)

Support vector machines (SVMs) are affiliated with supervised learning, and they
have a strong mathematical foundation and theoretical support. The purpose of SVMs is to
find a hyperplane that separates the data in the training set and maximizes the distance
from the class domain boundary along the direction perpendicular to the hyperplane, so
SVM is also known as the maximum edge algorithm. The SVM algorithm is a supervised
ML algorithm derived from the SVM statistical learning theory [30]. SVM has a higher
computational accuracy and efficiency for small sample prediction and nonlinear regression
analysis than traditional statistical methods [31]. SVM is a supervised learning algorithm
primarily used for classification tasks, while SVR is an improvement upon SVM to make it
suitable for regression problems. The diagram of the SVM regression structure is shown in
Figure 3.
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Figure 3. The diagram of the support vector regression model.
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The prediction equation for SVR is shown below:

flx)=w"(x)+b 6)

where @(x) represents a nonlinear function that maps the input space to the feature space,
while w and b, respectively, refer to the weight coefficient and the bias of each feature.

In this work, the brief steps of SVR model training are shown below:

(1) To evaluate the coefficients, it is formulated as a constrained optimization
problem [32]:

i=1
min{; | w? || +Cp Z(éﬁéj)} (6)

yi— f(xi) <e+ g
f(xi) —yi>e+gf )
& >0 >0i=12,-,n

where C, is a penalty parameter, §; and ¢; are relaxation factors, and ¢ is the error tolerance.
(2) Subsequently, an employed Lagrangian function is used to convert the above
formula into a dual-optimization problem [33]:

1i=1j=1 i=1 i=1
max{2 ; Y (a; — al’-‘)(aj - a;‘)go(xi)fp(xj) +e ;(ai +a7) = Y yi(a; — a;*)} (8)

n

i=1
e =0 ©)
i, af € [0,Cp

where K(x;,x;) = @(x;)@(x;) represents the kernel function, and «; and &} are the La-
grangian multipliers.

(3) By solving the above dual-optimization problem, the above formula is expressed
as follows:

flx) = Z(Dﬁi*"‘f)'K(xrxi)+b (10)

(4) Due to the exceptional nonlinear characteristics exhibited in the high-dimensional
space of radial basis kernel functions (RBF), the following RBF is employed:

K(xi,xj) = exp{ —ky || xi = xj |} (11
where k), is the kernel parameter.

2.2.4. Random Forests (RFs)

As a statistical learning model, RF extracts multiple sample sets from training samples
using self-service resampling techniques, and then constructs decision-tree models using
the extracted sample sets. Upon aggregating these decision-tree models, a majority voting
or averaging process determines the final result. As a supervised ML algorithm, RF can
effectively combine integrated learning and nonlinear statistical methods [34], making
the model highly accurate and less prone to overfitting problems. The diagram of the RF
regression structure is shown in Figure 4.

The bootstrap aggregating algorithm, often referred to as bagging, is widely
utilized for training the RF regression model [35]. In this work, the training set is
T, = {(X1, Y1), (X2,Y2), ..., (Xy,Ys) }, in which X represents the input variables, and Y is the
output value. When the training is over, the functional relation f = (X, T;;) can be obtained.
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Therefore, we could get m outputs Y = f(X, T}), Y)“ = f(X, T2),..., Y3 = f(X, TI"). Af-
ter that, the predicted value Y7’ is obtained as shown below:

YP’E—leP”—lm X, " 12
—azi —;Z%f(,n) (12)
i=1 i=
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Output
Figure 4. The diagram of the random forests model.

The brief steps of RF model training in this work are shown below:

(1) The fatigue data are collected for use in this study.

(2) The RF regression algorithm selects a suitable split at each node by considering a sub-
set of input variables that are randomly sampled from the available adjustment parameters.

(3) Once the RF model is trained using the collected data, it can be applied to predict
fatigue life for new inputs. The trained model utilizes the selected input variables and their
corresponding split values to make accurate predictions.

2.3. Model Evaluation

In this work, we utilize two metrics to effectively evaluate the prediction performance.
These metrics are R-squared (R?) and Mean-Squared Error (MSE), and their mathematical
expressions are provided below:

-,
Z (]/z _yi>
R% = - (13)
= —\2
% (yi _]/i)
1 i=1 )
MSE = ” Y (vi—9) (14)

where 7; is the predicted fatigue life, and y; is the corresponding experimental fatigue life.

R-squared and MSE are two commonly used metrics for model evaluation in ML.
R-squared is a standardized metric that assesses the model’s ability to explain sample
variability, while MSE is a metric that assesses the size of the average error between the
model’s predictions and the true value. Both metrics play an important role in assessing
model performance and adjusting model parameters. In practice, R-squared and MSE
are often used together, with R-squared reflecting the model’s fit to the data and MSE
reflecting the model’s predictive accuracy. First, we need to evaluate the performance of
the model based on the R-squared, and then judge the predictive effectiveness of the model
in combination with the MSE. If the R-squared is very low, it means that the model cannot
explain most of the data variation at this time, even if the MSE is very small, it does not
mean that the model is good at prediction.
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2.4. Overall Strategy

Figure 5 depicts the flowchart illustrating the machine learning process for predicting
fatigue life by considering the synergistic effect of yield stress and fatigue stress. The raw
data used in this study were obtained from the article [1]. Prior to applying any machine
learning techniques to the collected fatigue test data, data preprocessing is necessary. Based
on the analysis of density, porosity, yield stress, and fatigue stress, it has been observed
that yield stress and fatigue stress have a significant impact on fatigue life. Hence, four
machine learning models were developed to investigate the combined effects of yield stress
and fatigue stress on fatigue life. Additionally, to assess the influence of hyperparameters
in each machine learning model on prediction accuracy, a discussion on hyperparameters
was conducted using R? and MSE as evaluation metrics. Based on this analysis, suitable
hyperparameter values were recommended for each machine learning model.

Predictability of different machine learning approaches on the fatigue life of
additive-manufactured porous titanium structure
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Figure 5. Machine learning process flowchart of predicting fatigue life with the synergic effect of
yield stress and fatigue stress.

3. Results
3.1. Data Analysis

The impact of density, porosity, yield stress, and fatigue stress on the fatigue life of
the samples is analyzed through data visualization in Figures 6-8. Figure 6 shows the
overall 34 sets of experimental data with the fatigue life of the porous samples against
the yield stress and the fatigue stress. Figure 7a—e displays the scattered distribution of
data points for each variable in the raw data, with the fatigue-life data exhibiting uniform
dispersion. Additionally, Figure 7f-g presents the pairwise variations between the variable
data, showcasing noticeable correlations between fatigue life and yield stress, as well as
fatigue stress, respectively. The correlation coefficients provided in Figure 8 further confirm
these relationships, particularly highlighting the significant influence of fatigue stress on
fatigue life. To emphasize the importance of data quality on the predictive performance
of the ML model, Figure 6 visualizes the raw data distributions of yield stress and fatigue
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stress in relation to fatigue life. Notably, yield stress demonstrates a positive correlation

with fatigue life, while fatigue stress exhibits a negative correlation with fatigue life.
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Figure 6. The 34 sets of experimental data with the fatigue life of the porous samples against (a) the
yield stress and (b) the fatigue stress.
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against fatigue life, respectively.
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Figure 8. Heatmaps of density, porosity, yield stress, fatigue stress, and fatigue life.

3.2. Fatigue-Life Prediction

This study employs four ML models, namely MLR, ANN, SVR, and RF, to predict the
fatigue life of AM titanium porous components. The training set constitutes 80% of the
total data, while the remaining 20% is allocated for testing purposes.

For the MLR model, a comparison of the predicted fatigue life data and the experi-
mental fatigue life is shown in Figure 9a—c. These circles indicate the comparison of the
predicted values with the experimental values, which are ideally equal, i.e., they correspond
to the black line in the figure. Thus, an initial visual indicator of model performance is the
proximity of these circles to this ideal black line. We can find that each circle is scattered
around the desired black line in the training set, test set, and all the data, indicating a
better prediction performance of the MLR model. Figure 9d illustrates the 95% confidence
intervals, demonstrating that all the data points are also dispersed within the upper and
lower dashed lines. This observation provides supporting evidence for the notion that the
MLR model exhibits superior predictive performance.
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Figure 9. Comparison of MLR predictive fatigue life and experimental fatigue life: (a) training set,
(b) test set, (c) all data, and (d) 95% confidence interval.

Figures 10-12 present a comparison between the predicted fatigue life data and the
corresponding experimental fatigue life for the ANN, SVR and RF models, respectively.
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As observed in Figures 10d, 11d and 12d, the prediction performance of each model
corresponds to a 95% confidence interval, indicating their suitability for predicting fatigue
life. However, upon closer inspection of Figures 10-12, it becomes apparent that the SVR
model exhibits superior predictive performance among the three models, as evidenced by
the close proximity of the circles to the ideal black line.
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Figure 12. Comparison of RF predictive fatigue life and experimental fatigue life: (a) training set,
(b) test set, (c) all data, and (d) 95% confidence interval.

The analysis of the results and the comparison between the predicted and experimental
data for AM titanium porous components indicate that the proposed method is highly
effective in predicting fatigue life.

3.3. Performance of the Models

This study assesses the prediction performance of MLR, ANN, SVR and RF models
for AM titanium porous components. It is noteworthy that all four models demonstrate
strong predictive capabilities in both the training and test sets, as well as across all data.
Furthermore, the predictive power of each model falls within a 95% confidence interval.

4. Discussion
4.1. Effects of MLR Parameters on Predicted Results and Prediction Accuracy

In this subsection, we discuss in detail the impact of the different training sets and
test sets on the predicted fatigue life of AM titanium porous components. This is mainly
reflected in the use of unused random seeds when dividing the data.

Machine learning models are sensitive to the quality and characteristics of the data
they are trained on. The performance and generalization ability of MLR models heavily rely
on the data that is used for training. Table 1 presents the various training sets utilized for
the MLR models in this study. To facilitate a fair comparison of predicted fatigue life, other
hyperparameters were kept constant during the training process. Figure 13 presents an
analysis of the fatigue-life prediction by four MLR models, revealing consistent predictive
trends across all models. Importantly, training the MLR model using different training sets
has minimal impact on the predictive trend of the model.

In addition, Figure 14 displays the performance evaluation (R-squared and MSE)
for the MLR model on a training and test dataset. The R-square of the MLR model
gradually increases on the training set and decreases on the test set as random states
increase (Figure 14a,b), while the R-squared and MSE of the MLR model on all data show a
constant trend with the increase in random states (Figure 14c).
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Table 1. Different MLR models for fatigue-life prediction of AM titanium porous components.

MLR Hyperparameters
Model 1 random_states = 39
Model 2 random_states = 50
Model 3 random_states = 74
Model 4 random_states = 110
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Figure 13. MLR visualization with different random states: (a) 39, (b) 50, (c) 74, and (d) 110.
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In the investigation of hyperparameters for the MLR model used in predicting fatigue
life of AM titanium porous components, it was observed that variations in random states
have minimal impact on the predictive performance of the MLR model. Below are the four
MLR models considered in this study:

Model 1: N = 5.3320656 + 0.05698810y — 0.244166250¢ (15)
Model 2 : N = 5.3049312 + 0.05974260y — 0.24884330 (16)
Model 3 : N = 5.3965109 + 0.05414170y — 0.23812410c% (17)
Model 4 : N = 5.4335601 + 0.05661450y — 0.25414250 (18)

where N is the fatigue life (number of cycles to failure), oy is the yield stress, and ot is the
fatigue stress.

4.2. Effects of ANN Parameters on Predicted Results and Prediction Accuracy

In general, there is no universally applicable rule for determining the optimal number
of hidden layers and neurons in ANN models. Therefore, in this subsection, we discuss in
detail the impact of the number of neurons in the first hidden layer on the predicted fatigue
life of AM titanium porous components.

Undoubtedly, the number of neurons in the first hidden layer plays a crucial role in
determining the predictive performance of an ANN model. Table 2 presents the number
of neurons in the first hidden layer for the ANN models used in this study. To ensure an
accurate comparison of fatigue lives predicted by different models, other hyperparameters
are kept constant during the training process. As depicted in Figure 15, each of the four
ANN models exhibits a consistent predictive trend for fatigue life. However, it is evident
from Figure 15c,d that increasing the number of neurons in the first hidden layer gradually
causes the ANN model to become locally overfitted and decrease its generalization ability.
Conversely, as shown in Figure 15a,b, when the number of neurons in the first hidden layer
is three or four, the prediction surface of the ANN model remains smooth without any
signs of local overfitting.

Furthermore, the performance of the ANN model (measured by R-squared and MSE)
on the training, test, and overall datasets is illustrated in Figure 16. As depicted in
Figure 16a,b, it can be observed that increasing the number of neurons in the first hid-
den layer of the ANN model leads to a gradual increase in the R-squared value on the
training set. However, the R-squared on the test set initially increases and then decreases,
indicating a decrease in the generalization ability of the ANN model, which aligns with the
observations from Figure 15. Figure 16¢c demonstrates that as the number of neurons in the
first hidden layer increases, the R-squared on all data gradually improves while the MSE
steadily decreases.

According to our assessment of the hyperparameters of the ANN model, three or four
neurons in the first hidden layer of the ANN model are most suitable for the fatigue-life
prediction of AM titanium porous components. An ANN model with a smaller MSE or
a larger R-squared does not necessarily indicate more predictive ability. In addition to
R-squared and MSE, the predictive trend of an ANN model should also be taken into
account when evaluating its predictive ability. The purpose of this is to prevent local
overfitting during ANN model training and maximize generalization ability.

Table 2. Different ANN models for fatigue-life prediction of AM titanium porous components.

ANN Hyperparameters
Model 1 The first hidden layer has 3 neurons
Model 2 The first hidden layer has 4 neurons
Model 3 The first hidden layer has 5 neurons

Model 4 The first hidden layer has 6 neurons
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4.3. Effects of SVR Parameters on Predicted Results and Prediction Accuracy

The performance and complexity of an SVR model are primarily determined by the
parameters gamma and C. Hence, in this section, we provide a comprehensive analysis of
how gamma and C influence the predicted fatigue life of AM titanium porous components.

To achieve better performance of the SVR model, optimal gamma and C values can
be selected by training and evaluating on different combinations of parameter values.
In this study, the hyperparameters of the SVR model are presented in Table 3, and all
other hyperparameters are kept constant during the SVR model training process to ensure
the fair comparison of the fatigue-life prediction between different models. As shown in
Figure 17, each SVR model exhibits a consistent trend in predicting fatigue life. However,
as illustrated in Figure 17a—c, increasing C gradually and setting gamma to 0.001 leads
to local overfitting of the SVR model and decreases its generalization ability. Similarly,
Figure 17¢c,d demonstrates that with the gradual increase in gamma and C equal to 30, the
SVR model becomes more and more locally overfit, decreasing its generalization abilities.
Additionally, Figure 18 shows the performance evaluation of the SVR model (R-squared
and MSE) on the training, test, and total datasets. As shown in Figure 18a,b, increasing C
and setting gamma to 0.001 leads to a gradual increase in R-squared on the training set,
while the R-squared on the test set decreases gradually. From Figure 18a,b, on the training
set, the R-square of the SVR model gradually increases with gamma, and on the test set,
the R-square first decreases and then increases. From Figure 18c, as gamma and C increase,
the R-squared of the SVR model shows an increasing—decreasing—increasing trend. On the
other hand, the MSE shows a decreasing—increasing—decreasing trend.

Based on the study of hyperparameters, the SVR model with gamma equal to 0.0001
and C equal to 30 is determined to be the most suitable for predicting the fatigue life of
AM titanium porous components. It is important to note that there is no direct correlation
between a smaller MSE and a higher R-squared and the predictive performance of the SVR
model. Therefore, it is crucial to consider the predictive trend of the SVR model when
evaluating its predictive ability, not just the R-squared and MSE values.

Table 3. Different SVR models for fatigue-life prediction of AM titanium porous components.

SVR Hyperparameters
Model 1 gamma = 0.001 and C = 10
Model 2 gamma = 0.001 and C = 50
Model 3 gamma = 0.001 and C = 416
Model 4 gamma = 0.0001 and C = 30
Model 5 gamma = 0.005 and C = 30
Model 6 gamma = 0.01 and C =30

4.4. Effects of RF Parameters on Predicted Results and Prediction Accuracy

In general, the parameters n_estimators and max_depth are typically used in RF
models to control model complexity and performance. Therefore, in this subsection, we
discuss in detail the impact of the n_estimators and max_depth.

To determine the best values, these parameters must usually be tuned and exper-
imented with according to the dataset, the difficulty of the problem, and the available
computational resources. In this work, the hyperparameters of the RF model are set as
shown in Table 4. The other hyperparameters are maintained as constant during the
training process of the RF model in order to better compare the predicted fatigue life of
different models. Figure 19 shows a visualization of the fatigue life predicted by the six
RF models, observing a consistent trend in the predictions for each model. However, from
Figure 19a—c, by gradually increasing max_depth and n_estimators equal to three, the
RF model’s local overfitting is reduced and its generalization ability is enhanced. From
Figure 19d-f, the RF model’s generalization capability increases as the max_depth equals
to five and n_estimators are gradually increased.
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Table 4. Different RF models for fatigue-life prediction of AM titanium porous components.

RF Hyperparameters
Model 1 n_estimators = 3 and max_depth =3
Model 2 n_estimators = 3 and max_depth =5
Model 3 n_estimators = 3 and max_depth =7
Model 4 n_estimators = 5 and max_depth =5
Model 5 n_estimators = 7 and max_depth =5
Model 6 n_estimators = 9 and max_depth =5

(a) RF with the n_estimators=3 and max_depth=3 (b) RF with the n_estimators=3 and max_depth=>5
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Figure 19. RF visualization with different n_estimators and max_depth: (a) 3 and 3, (b) 3 and 5,
(c)3and 7,(d) 5and 5, (e) 7 and 5, and (f) 9 and 5.

Furthermore, Figure 20 displays the performance evaluation (R?> and MSE) of the
RF model on the training set, test set, and overall data. As illustrated in Figure 20a,b,
when n_estimators is set to three and max_depth is gradually increased, the R-squared of
the RF model gradually increases on both the training set and the test set. Additionally,
Figure 20a,b indicates that when max_depth is set to 5 and n_estimators is gradually
increased, the R-squared on the training set gradually increases while the R-squared on
the test set gradually decreases. Moreover, Figure 20c shows that as both max_depth and
n_estimators increase, the R-squared of the RF model on the overall data exhibits a gradual
increase, while the MSE decreases.

Based on the study of the hyperparameters of the RF model for the fatigue-life predic-
tion of AM titanium porous components, it is found that the RF model with n_estimators
equal to three and max_depth equal to seven is the most suitable for fatigue-life prediction.
It is worth noting that neither a smaller MSE nor a larger R-squared indicates the predictive
ability of the RF model. Evaluating the predictive ability of an RF model should not only
look at the R-squared and MSE, but also be combined with the predictive trend of the
model. This is to avoid the occurrence of local overfitting during RF model training and to
maximize the generalization ability of the model.
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4.5. Remarks

Indeed, the rapid development of big data and artificial intelligence has ushered
in the fourth paradigm of materials science research. Machine learning plays a crucial
role in enhancing researchers’ reliance on intuition and reducing the need for extensive
trial and error. This leads to cost savings in experiments and allows for a thorough
exploration of potential connections within experimental data, ultimately shaping a data-
driven research model.

As illustrated in Figure 15, we propose that the first hidden layer of the artificial neural
network model should consist of three or four neurons for predicting the fatigue life of
the additively manufactured titanium porous component. This recommendation stems
from the observed smoothness of the predicted surface, which indicates an absence of
fitting anomalies. The discourse on hyperparameters in the other three models serves as
a strategic approach to address the overfitting issue, not only within the artificial neural
network but also across the broader scope of our research.

In this work, the ML-based method was used to predict the fatigue life of AM titanium.
However, it is important to acknowledge that other factors such as microstructure and
various process parameters [36—40] can also potentially influence the fatigue life. To further
enhance the accuracy and robustness of the prediction model, it is recommended that
future research considers incorporating as many influencing variables as possible. By
including additional factors into the analysis, a more comprehensive understanding of the
relationship between these variables and fatigue life can be achieved, leading to improved
predictions and insights in the field of AM titanium fatigue life assessment.

The integration of machine learning models with physical knowledge is also crucial.
By incorporating physical knowledge into machine learning models through algorithm
learning, sample output, and data observation, we can not only address the “black box”
issue in machine learning models but also enhance the transparency, interpretability, and
prediction accuracy of these models.
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Finally, due to the limitation of data availability, the present work relies on experimen-
tal data. Further validation, possibly through cross-validation or external datasets, will be
performed in future studies.

5. Conclusions

In this work, four machine learning models were used, MLR, ANN, SVR, and RF, to
predict the fatigue life of AM titanium porous components. Key findings are summarized
as follows:

1.  The MLR model’s predictions of fatigue life for AM titanium porous components are
not significantly affected by variations in the training sets used.

2. To achieve accurate predictions of fatigue life for AM titanium porous components
using the ANN model, it is recommended to create the first hidden layer with three
or four neurons.

3. For the SVR model, gamma equal to 0.0001 and C equal to 30 are recommended for
the fatigue-life prediction of AM titanium porous components.

4. For accurate predictions of fatigue life in AM titanium porous components using the
RF model, it is suggested to set the n_estimators equal to three and the max_depth
equal to seven.

The primary conclusions can also serve as a valuable reference for future researchers
aiming to predict the fatigue life of porous titanium alloy components manufactured
through additive manufacturing techniques.
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