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Abstract: Cr-rich electroplating sludge (CRES) is a complicated solid waste with high contents of
chromium and iron. It can be used as a main feed of the FINEX ironmaking process, which requires
gas-based reduction before smelting reduction to produce molten iron with the proper addition
of iron ore powder. In this study, the CO–H2 gas-based reduction behavior of CRES mixed with
iron ore powder was evaluated between 700 ◦C and 850 ◦C, with a focus on the variations of key
components containing Fe, Cr, and S with reduction temperature and time. It was found that the iron
oxides in CRES had stepwise conversions to metallic iron as the reduction reaction proceeded. The
iron metallization degree of the mixture of CRES and iron ore powder increased obviously below
750 ◦C and then grew minorly with the further increase of temperature. Moreover, this index varied
similarly with an extension of reduction time up to 80 min. After reduction at 750 ◦C for 60 min with
the volume concentration of H2 of 30% and flow rate of 160 mL/min, the iron metallization degree
reached 79.08%. The rate in the process was limited by a chemical reaction with an activation energy
of 41.32 kJ/mol. Along with the stepwise reduction of iron oxides to metallic iron, the chromium
hydroxide and sulfates in CRES were reduced to Cr2O3 and sulfites and sulfides, respectively.

Keywords: hazardous solid waste; electroplating sludge; gas-based reduction; chromium; iron

1. Introduction

Electroplating sludge is a hazardous waste generated in the electroplating industry
with complex compositions [1,2]. Its improper disposal in landfills may cause serious
problems, such as contamination of soil and groundwater, which will affect the health of
animals and plants via chemical cycles and food [3]. After chromium in the sludge migrates
to the environment, it may oxidize into highly toxic hexavalent chromium [4]. Moreover,
as the waste usually has more abundant multiple valuable metals, such as chromium and
iron, than natural minerals, its direct disposal in landfills will waste these resources [5].
Hence, it is urgent to seek suitable methods for processing of electroplating sludge.

Currently, the main methods for recycling electroplating sludge include functional
materials preparation [6,7], hydrometallurgical processing [8,9], and pyrometallurgical
processing [10–12]. In the area of preparation of functional materials, electroplating sludge
has been used to prepare catalysts with high conversion percentage (8.6%) and high selec-
tivity (73.3%) for formaldehyde production [6] and battery materials with high reversible
coulomb efficiency (>99%) [7]. Electroplating sludge was also used for the preparation
of flocculants [13], adsorbents [14], and pigments [15]. In the area of hydrometallurgy,
valuable metals from the sludge are separated using various approaches, including ex-
traction [8,9], adsorption [16], selective chlorination roasting and water immersion [17],
and bioleaching [18,19]. Although the recoveries of valuable metals are generally above
90%, many hydrometallurgical processes suffer from long processing time and difficult
treatment of wastewater.
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Compared with the reports on the preparation of functional materials and hydromet-
allurgical processing, there were few reports on the pyrometallurgical processing of electro-
plating sludge. A previous study showed that after a two-stage carbothermic reduction
process at 1200 ◦C, various valuable metals in the sludge were successfully recovered [10].
In specific, 90.77% of Pb, 95.14% of Sn, and 99.92% of Zn were recovered in the reduction
flue gas and 96.40% of Cu and 85.00% of Ni were enriched in the resulting anode copper
plate, which could be used for producing electrolytic copper. At higher temperatures, such
as 1500 ◦C, electroplating sludge could be melted together with copper slag and waste
cathode carbon to extract valuable metals. It was demonstrated that 75.56% of Cr, 98.41% of
Ni, and 99.25% of Cu were recovered without the formation of highly toxic slag because the
concentrations of Cr, Cu, F, and Ni in the leachate of slag were only 0.57 mg/L, 4.45 mg/L,
1.52 mg/L, and 1.85 mg/L, respectively [11]. Most recently, Cr-rich electroplating sludge
(CRES) was employed for producing Fe–Cr–Si alloy at 1550 ◦C with recovery percentages
of 98.9% for Cr and 98.7% for Fe by silicothermic reduction [12]. The sludge was also used
for the production of molten matte, achieving recovery percentages of over 90% for both Cu
and Ni, despite only about 10% for Fe [20,21]. In addition, efficient extraction of valuable
metals from the sludge could be achieved through chlorination and volatilization below
1000 ◦C. Specifically, more than 93% of Cu and Ni were extracted, despite only 31% of
Cr [22,23].

Considering the high contents of chromium (>30%) and iron (>4%) in CRES, it has the
potential to be used for producing chromium-containing molten iron to replace high-carbon
ferrochrome alloy for manufacturing stainless steel [24]. The traditional blast furnace (BF)
ironmaking process is not suitable for this purpose as the sludge has an extremely high
moisture content, up to 60 wt% [25], and a small particle size, which pose a great difficulty
in its agglomeration before BF smelting.

Among non-BF ironmaking processes, the FINEX process can use powdered raw
materials directly for ironmaking via gas-based reduction followed by smelting [26,27]. It
uses a multi-stage fluidized bed to complete the preliminary reduction process between
400 ◦C and 800 ◦C using the gas containing 22.2 vol% H2, 2.3 vol% H2O, 65.3 vol% CO, and
10.2 vol% CO2. By modifying the composition of CRES via adding iron ore powder for
reduction at a comparable temperature to that of the FINEX process, chromium-containing
molten iron is expected to be obtained after smelting. Obviously, the reduction performance
of the mixture of CRES and iron ore powder is crucial. From this perspective, the CO–H2
gas-based reduction behavior of CRES mixed with iron ore powder was explored for the
first time in this study, with an emphasis on the effects of reduction temperature and time.

2. Experimental Section
2.1. Raw Materials

The main raw materials in this study included CRES, iron ore power, and a few
additives. The CRES sample was obtained from a Cr(VI)-containing wastewater purification
plant using sodium pyrosulfite (Na2S2O5), sodium hydroxide (NaOH), and other additives.
The chemical composition of CRES after drying is shown in Table 1. The sludge contained
two primary heavy metals, namely Cr and Fe, accounting for over 98% of heavy metals.
Note that it had low contents of gangue oxides (CaO, MgO, Al2O3, and SiO2). For successful
slagging after gas-based reduction, it was necessary to increase their contents properly,
which could be easily achieved by controlling the composition of the mixture of raw
materials for reduction.

The particle size distribution of CRES is shown in Table 2. It can be seen that the
sludge was mainly concentrated in the particle size range 0.5–1 mm, within the required
range 0.2–1 mm in the FINEX process [26].

The phase composition of CRES is shown in Figure 1. According to its X-ray diffraction
(XRD) pattern, CRES had a very low crystallinity, as described in the literature [28]. The
main crystalline phases of CRES were found to be CrO(OH) and Cr(OH)3·3H2O. According
to the previous study [29], it also contained minor amounts of Cr2O3, Fe(OH)2, Fe(OH)3,
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CaSO3, and CaSO4. The microstructure of CRES was characterized by scanning electron
microscopy (SEM), as shown in Figure 1. It was clear that CRES consisted of particles with
different sizes. Note that a large number of small particles accumulated on the surfaces of
large particles.

Table 1. Chemical composition of CRES (wt%).

Component Cr Fe Ca S Cu Zn Pb Ni

Content 36.85 4.64 2.32 2.03 0.24 0.24 0.22 0.03

Component Mg Al Si P Cl Na K LOI *

Content 0.31 0.17 0.22 0.08 0.01 0.03 0.01 25.48
* LOI—loss on ignition.

Table 2. Particle size distribution of CRES (wt%).

Particle Size (mm) <0.075 0.075–0.15 0.15–0.5 0.5–1 1–3 >3

Proportion 9.22 14.06 15.48 34.27 15.95 11.05
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Figure 1. (a) XRD pattern and (b) SEM image of CRES.

The iron ore powder was taken from the sintering plant of Baoshan Iron & Steel Co.,
Ltd. in Shanghai, China. The as-received iron ore powder was screened manually to ensure
a particle size close to that of CRES before determination of chemical composition and
particle size distribution, as summarized in Tables 3 and 4, respectively. It had the iron
content (TFe) of 59.59 wt% and FeO content of only 2.82 wt%. Its particle size was mainly
distributed in the range 0.15–0.5 mm, which was a little smaller than that of CRES, meeting
the size requirement of the FINEX process [26].

Table 3. Chemical composition of iron ore powder (wt%).

Component TFe FeO Ca Mg Al Si Cr Cu

Content 59.59 2.82 0.29 0.16 0.91 1.92 0.058 0.042

Component Zn Pb K Na S P LOI

Content 0.034 0.008 0.022 0.019 0.063 0.051 5.72

Table 4. Particle size distribution of iron ore powder (wt%).

Particle Size (mm) <0.15 0.15–0.5 0.5–1 1–3 >3

Proportion 10.52 43.20 24.27 15.89 6.12
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The XRD and SEM image of iron ore powder are shown in Figure 2. The iron ore
powder was mainly constituted by hematite, with small amounts of goethite, magnetite,
and silica, in agreement with its chemical composition analysis in Table 3. Like CRES, the
iron ore powder was constituted by particles with variable sizes. Many fine particles were
found to adhere to the surfaces of large ones.
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Figure 2. (a) XRD pattern and (b) SEM image of iron ore powder.

Except CRES and iron ore powder, a flux constituted by 43 wt% CaO, 36 wt% SiO2,
8 wt% MgO, and 13 wt% Al2O3 was prepared by adding chemical reagents. It was used
because the feed composition should be close to the requirement of the FINEX process to
guarantee subsequent smelting performance although the present study only focused on
the gas-based reduction stage.

2.2. Experimental Procedure

After the sample was prepared by mixing CRES, iron ore powder, and flux, its gas-
based reduction experiments were conducted in a horizontal tube furnace (OTF-1200X,
Hefei Kejing Materials Technology Co., Ltd., Hefei, China). The tube furnace was equipped
with a quartz tube (outer diameter: 50 mm and wall thickness: 3 mm) and a set of electronic
gas mass flowmeter with an accuracy of 1 mL/min, as shown in Figure 3. When the tube
furnace was heated to the given reduction temperature at a ramp rate of 10 ◦C/min in
N2, in each test, 10 g of the sample—containing 3.270 g of dried CRES, 5.811 g of iron
ore powder, 0.492 g of CaO, 0.266 g of SiO2, 0.083 g of MgO, and 0.078 g of Al2O3—was
loaded into the furnace. After the gas was switched to a mixed reducing gas containing
both H2 and CO with the concentration required by the FINEX process [26], the reduction
process was started. After its completion, the reduction products were cooled in N2 for
determination of properties.
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2.3. Characterizations

For analysis of the reduction process, the variations of standard Gibbs free energy
changes of possible reactions of the components of CRES with temperature and the Cr–Fe
binary phase diagram were calculated using the software FactSage 8.0 (Thermfact/CRCT,
Montreal, Canada and GTT-Technologies, Aachen, Germany). The thermodynamic analysis
of the decomposition reaction of chromium hydroxide was carried out using HSC Chemistry
9 with relevant thermodynamic data. The methods for determination of chemical com-
positions of CRES and the reduction products included chemical titration, nephelometry
(for Cl), and inductively coupled plasma spectroscopy (ICP-AES, AVIO 500, PerkinElmer,
Waltham, MA, USA, and ICP-AAS, Pinaade 900T, PerkinElmer, Waltham, MA, USA). The
total iron content and metallic iron content in the reduction products were determined by
the potassium dichromate titration method according to the Chinese National Standard
Test Methods GB/T 6730.5-2022 [30] and GB/T 38812.2-2020 [31]. The iron metallization
degree was calculated using the equation as follows:

ηFe =
TFe
MFe

× 100% (1)

where ηFe is the iron metallization degree, %; TFe is the total iron content, wt%; and
MFe is the metallic iron content, wt%. The phase compositions, chemical valences, and
microstructures of the reduction products were determined by XRD (D8 ADVANCE,
Brooke Corporation, Werther, Germany), XPS (Nexsa, Thermo Fisher Scientific, Brno,
Czech Republic), and SEM (MIRA LMS, TESCAN, Brno, Czech Republic), respectively.

2.4. Kinetic Calculations

The reduction fractions of the samples were calculated using the following equation:

X =
ηFe

ηFe,max
(2)

where X is the reduction fraction, dimensionless, and ηFe,max is the maximum iron metal-
lization degree obtained in this study, %. Ignoring the reduction reactions other than FeO in
the iron ore, the reaction equilibrium constant k (mol/s) of chemical reaction model could
be determined by

k =
r0ρB

btcA MB

[
1 − (1 − X)

1
3
]
=

r0ρB
btcA MB

· δ

60
(3)

where r0 is radius of iron ore particles, which is about 2.5 × 10−4 m; ρB is the density of iron
ore particles, which is 3.947 × 103 kg/m3; b is the stoichiometric number, dimensionless; t
is the time, s; cA is the concentration of reducing gas, which is 22,400 mol/m3; MB is the
mass of iron ore particles corresponding to 1 mol of reactant, which is 0.094 kg; and δ is the
slope of the fitted line, dimensionless.

3. Results and Discussion
3.1. Thermodynamic Calculations

The possible reactions of the main components of CRES and the variations of cor-
responding standard Gibbs free energy changes with temperature during the reduction
process are shown in Table 5 and Figure 4. In view of the variations of standard Gibbs
free energy changes with temperature, it was found that CrO(OH) and Cr(OH)3·3H2O
will decompose easily to Cr2O3 upon heating, which, however, cannot be reduced by CO
or H2 below 1100 ◦C. As expected, the iron oxides are transformed to wüstite and then
metallic iron, depending on the reduction temperature. For sulfates and sulfites, they can
be reduced to sulfides at proper temperatures.
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Table 5. Standard Gibbs free energy changes of possible reduction reactions of the main components
of CRES.

No. Reaction Equation Standard Gibbs Free Energy Change

(4) 3Fe2O3 + CO = 2Fe3O4 + CO2 ∆rGΘ
m = −0.050T(◦C)− 52.806

(5) 3Fe2O3 + H2 = 2Fe3O4 + H2O ∆rGΘ
m = −0.084T(◦C)− 23.088

(6) Fe3O4 + CO = 3FeO + CO2 ∆rGΘ
m = −0.032T(◦C) + 17.470

(7) Fe3O4 + H2 = 3FeO + H2O ∆rGΘ
m = −0.067T(◦C) + 46.973

(8) FeO + CO = Fe + CO2 ∆rGΘ
m = 0.023T(◦C)− 12.667

(9) FeO + H2 = Fe + H2O ∆rGΘ
m = −0.012T(◦C) + 16.967

(10) 2CrO(OH) = Cr2O3 + H2O(g) ∆rGΘ
m = −0.043T(◦C) + 18.530

(11) Cr(OH)3·3H2O = Cr(OH)3 + 3H2O(g) ∆rGΘ
m = −0.104T(◦C) + 25.367

(12) 2Cr(OH)3 = Cr2O3 + 3H2O(g) ∆rGΘ
m = −0.160T(◦C)− 8.827

(13) Cr2O3 + 3CO = 2Cr + 3CO2 ∆rGΘ
m = 0.008T(◦C) + 275.165

(14) Cr2O3 + 3H2 = 2Cr + 3H2O ∆rGΘ
m = −0.095T(◦C) + 364.334

(15) CaSO4 + CO = CaSO3 + CO2 ∆rGΘ
m = −0.006T(◦C)− 23.760

(16) CaSO4 + H2 = CaSO3 + H2O ∆rGΘ
m = −0.040T(◦C) + 4.608

(17) CaSO3 + 3CO = CaS + 3CO2 ∆rGΘ
m = 0.004T(◦C)− 151.807

(18) CaSO3 + 3H2 = CaS + 3H2O ∆rGΘ
m = −0.099T(◦C)− 62.618
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To determine the proper addition of iron ore powder for the reduction of CRES, the
Cr–Fe binary phase diagram was calculated, as shown in Figure 5. Considering the initial
decrease and then increase of the melting point of ferrochromium alloy with increasing
proportion of chromium, to ensure a low melting point and relatively high chromium
content of the reduction product, the proper mass ratio of Fe/(Fe + Cr) for reduction was
found to be 0.25. Correspondingly, the mass ratio of CRES to iron ore powder was 0.56.

To determine the proper temperature range and reducing gas composition for the
reduction of CRES, the gas-phase equilibrium diagram concerning the reduction of iron
oxides using CO and H2 was calculated, as shown in Figure 6. When the temperature
increased, the reduction potential required for CO and H2 to reduce FeO showed an
opposite changing trend. By referring to the reduction conditions of the FINEX fluidized
bed, the temperature range for this study was selected to be 700–850 ◦C [27]. Within this
temperature range, the average reduction potential required for CO reduction was lower
than that for H2 reduction. By considering this finding and preliminary experimental
results, the reducing gas composed of mainly CO and auxiliary H2 with the volume ratio
of 7/3 (i.e., 30 vol% H2) was chosen for the subsequent reduction. This ratio was close to
the technical parameters of the FINEX process.
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3.2. Effects of Temperature and Time on the Gas-Based Reduction Behavior

The effects of reduction temperature and time on the iron metallization degree of
the reduction product were investigated and the results are shown in Figure 7. It was
evident that the reduction temperature significantly affected the reduction process when
the temperature increased from 700 ◦C to 750 ◦C. With further increase of temperature to
850 ◦C, there were only minor growths of iron metallization degree. It was also found that
the effect of the reduction temperature depended on the reduction progress. In the first
10 min, the iron metallization degrees remained very low after reduction at all temperatures
and there was no evident influence of reduction temperature. It indicated pretty limited
reduction in the examined temperature range. When the time increased from 10 min to
40 min, the iron metallization degree increased significantly. By further increasing the time
to over 60 min, the iron metallization degree increased slightly. Considering the required
metallization degree with energy conservation, the suitable temperature was chosen to
be 750 ◦C. After reduction at this temperature for 60 min, the iron metallization degree
reached 79.08%, within the standard range 70–85% in the FINEX process [27].

To further explore the reduction process, the experimental results were fitted with
different kinetic models, namely diffusion-controlled model (plot of 1 − 3(1 − X)2/3 + 2(1
− X) vs. time), chemical reaction-controlled model (plot of 1 − (1 − X)1/3 vs. time), and
mixed diffusion-chemical-reaction-controlled model (plot of a[1 − 3(1 − X)2/3 + 2(1 − X)] +
b[1 − (1 − X)1/3] vs. time where a and b are non-negative constants). As shown in Figure 7,
the chemical reaction-controlled model had the best fitting results for the experimental data.
In other words, the rate was limited by chemical reaction during the reduction process
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in the temperature range. In the first 10 min, the main product of the reduction reaction
was wüstite, so the experimental data at 10 min and 20 min were smaller than those on the
fitted curve. After calculation using the well-known Arrhenius equation, the activation
energy for the reduction process was found to be 41.32 kJ/mol, as shown in Figure 8.
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When the temperature was 750 ◦C and the time was 60 min, the weight loss of the
sample was 23.6 wt%. The chemical composition of the product is shown in Table 6.
After comparison with the compositions of raw materials, it was found that the chromium
content increased significantly to 15.26 wt%, which would be favorable to the production
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of chromium-containing molten iron by subsequent smelting. Unlike chromium, the iron
content decreased minorly, mainly attributed to the addition of iron ore powder and flux
for reduction. In addition, there were no evident losses of S, Zn, and Pb.

Table 6. Chemical composition of the reduction product (wt%).

Component Cr Fe Ca Si Al Mg S Zn Pb

Content 15.26 45.84 5.52 2.93 1.24 0.84 0.879 0.123 0.101

In order to clarify the phase transformation in the reduction process of CRES and iron
ore powder, the XRD patterns of the reduction products obtained at different temperatures
for variable time are shown in Figures 9 and 10. It was observed that the peak intensity
of metallic iron and Cr2O3 increased clearly when the reduction temperature increased
from 700 ◦C to 750 ◦C. The significant decrease of the diffraction peaks between 18.201◦

and 19.981◦ indicated that most of CrO(OH) and Cr(OH)3·3H2O had decomposed to
Cr2O3 [32,33]. According to the thermodynamic calculation results, the residual diffraction
peaks should not belong to CrO(OH) or Cr(OH)3·3H2O. With continuous increase of
temperature to 850 ◦C, there were no evident changes, agreeing with the changing trend of
iron metallization degree in Figure 7. Considering the influence of reduction time when the
temperature was maintained at 750 ◦C, it was demonstrated that some iron oxides were
converted to magnetite and wüstite in the first 10 min. No metallic iron was found, except
a bit of Cr2O3. The findings were consistent with the low iron metallization degree of the
product in the initial reduction stage. When the reduction time was extended to 20 min,
magnetite disappeared. Instead, metallic iron and more Cr2O3 were formed. With further
extension of the time, the diffraction peaks of metallic iron became stronger, indicating
better reduction performance in the later reduction stage. The decomposition reactions of
CrO(OH) and Cr(OH)3·3H2O mainly occurred within 40 min, which corresponded to the
variation of crystallinity degree of the product.
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In the reduction process, the chemical valences of chromium and sulfur should be
taken into consideration. Figure 11 shows the XPS spectra of the chromium and sulfur of
the products obtained by reduction at different temperatures. The peak at 576.4–576.5 eV
(Cr2p3/2) and 585.5–585.9 eV (Cr2P1/2) in Figure 11a was related to Cr2O3. It was con-
firmed that CrO(OH) and Cr(OH)3·3H2O decomposed to Cr2O3 during the reduction
process, reducing the binding energy of the Cr–O bond, which was beneficial for subse-
quent smelting. When the temperature increased from 750 ◦C to 800 ◦C, the binding energy
of the Cr–O bond increased by 0.1 eV, indicating higher activity of Cr2O3 with increasing
temperature. According to the XPS spectra of sulfur, as shown in Figure 11b, it was deduced
that the sulfates in CRES were converted to sulfites or sulfides after reduction. When the
temperature increased from 700 ◦C to 750 ◦C, the peak intensity of the S2p3/2 orbital
related to sulfites (166.6–167.0 eV) increased significantly, while that related to sulfides
(161.2–161.7 eV) decreased. It revealed that when the temperature changed from 700 ◦C
to 750 ◦C, there existed a greater effect of temperature on the generation of sulfites than
sulfides. When the temperature increased from 750 ◦C to 850 ◦C, there was no significant
change in the peak intensity of the S2P3/2 orbital related to sulfates, sulfites, and sulfides,
showing little effect of reduction temperature on the generation of sulfites and sulfides
within the temperature range. The binding energy of S2p3/2 related to sulfides increased
with temperature, indicating better stability of sulfides at higher temperatures.

The microstructures of the products obtained by reduction at different temperatures are
shown in Figures 12–15. The pores inside small product particles (<0.5 mm) corresponding
to iron ore particles were well-developed and evenly distributed because small particles
provided good kinetic conditions for the diffusion of gas reactants. Due to the low iron
content (4.64 wt%) of CRES, no pores were observed in the reduced sample. For medium
iron ore particles (0.5–1 mm), there existed numerous cracks because of the excessive stress
due to limited gas diffusion. For large particles (>1 mm), there were larger pores with lower
uniformity. As expected, when the particle size further increased, the internal stress of the
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particles increased. During the reduction process, most areas inside the iron ore particles
underwent severe damage, producing larger pores. By comparing the microstructures at
different temperatures, it was obvious that increasing temperature facilitated the generation
of pores and cracks, which further promoted gas–solid reactions during the reduction
process. The above changing trend of the microstructure agreed with those of the iron
metallization degree and phase composition of the reduction product.
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4. Conclusions

The CO–H2 gas-based reduction behavior of CRES mixed with iron ore powder was
investigated in the temperature range from 700 ◦C to 850 ◦C. It was demonstrated that the
reduction temperature significantly affected the reduction process. The iron metallization
degree increased rapidly with the increase of temperature from 700 ◦C to 750 ◦C and
then grew slowly with the further increase of temperature to 850 ◦C. This index increased
significantly with the extension of the reduction time to 60 min, after which it changed
slightly. It could reach 79.08% after reduction at 750 ◦C for 60 min with the volume
concentration of H2 of 30% and flow rate of 160 mL/min. In the process, the reduction rate
was limited by chemical reaction between 700 ◦C and 850 ◦C with an activation energy of
41.32 kJ/mol. The phase transformation analysis proved that the iron oxides in the CRES
underwent stepwise reduction to magnetite, and then wüstite, and finally metallic iron,
depending on both reduction temperature and time. The chromium hydroxide in CRES
was converted to Cr2O3 after reduction, in agreement with the thermodynamic analysis.
Increasing the reduction temperature could enhance the activity of Cr2O3. The sulfates in
CRES were reduced to sulfites and sulfides. When the temperature increased from 700 ◦C
to 750 ◦C, there existed a greater effect of temperature on the generation of sulfites than
sulfides. When the temperature increased further to 850 ◦C, there was no evident effect of
temperature on the formation of sulfites and sulfides. The rapid reduction of CRES mixed
with iron ore powder was also attributed to the development of pores and cracks whose
quantity increased with increasing temperature.
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