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Abstract: Temperature has a great influence on the mechanical properties of ductile cast iron or
nodular cast iron. A thermomechanical treatment was carried out at various elevated temperatures
of 450 ◦C, 750 ◦C and 850 ◦C using a universal testing machine with a tub furnace. Specimens were
held at these temperatures for 20 min to ensure a homogeneous temperature distribution along
the entire length of the specimen, before a tensile load was applied. Specimens were deformed to
various levels of uniform strain (0%, 25%, 50%, 75%, and 100%). These degrees of deformation were
measured with a dial gauge attached to a movable cross plate. Three strain rates were used for each
specimen and temperature: 1.8 × 10−4 s−1, 9 × 10−4 s−1 and 4.5 × 10−3 s−1. A simple analytical
model was extracted based on the CT tensile test geometry and yield stress and a 0.2% offset strain to
measure the fracture toughness (JIC). To validate the analytical model, an extended finite element
method (XFEM) was implemented for specimens tested at different temperatures, with a strain rate
of 1.8 × 10−4 s−1. The model was then extended to include the tested specimens at other strain rates.
The results show that increasing strain rates and temperature, especially at 850 ◦C, increased the
ductility of the cast iron and thus its formability. The largest percentage strains were 1 and 1.5 at a
temperature of 750 ◦C and a strain rate of 1.8 × 10−4 s−1 and 9 × 10−4 s−1, respectively, and reached
their maximum value of 1.7 and 2.2% at 850 ◦C and a strain rate of 9 × 10−4 s−1 and 4.5 × 10−3 s−1,
respectively. In addition, the simple and fast analytical model is useful in selecting materials for
determining the fracture toughness (JIC) at various elevated temperatures and different strain rates.

Keywords: ductile cast iron; XFEM; J-integral; fracture toughness; elongation

1. Introduction

Ductile cast iron differs from grey cast iron in that it has spherical graphite inclusions,
which give it a certain ductility and a much higher resistance to impact and fatigue. Ductile
cast iron with spherical graphite has good performance and durability at high temperatures,
it has good mechanical properties, it is easy to cast and it is inexpensive. These properties
have made its field of application widespread [1]. There are many competitive applications
for ductile cast iron compared to steel [2]. Cast iron is structurally significantly different
from steel. This difference is related to the formation and content of carbon or graphite
particles. Furthermore, the properties of cast iron depend on and react to the shape of
these graphite particles. Ductile cast iron is characterized by a spheroidal graphite shape,
which influences both the deformation behavior and the solidification process [3]. Another
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advantage of this cast iron is that its structure can be created without any heat treatment
by simply controlling the alloying elements. Fatigue fractures, the manufacturing cost
and mechanical strength are the most important factors compared to steel [4–8]. Amiri
Kasvayee [9] studied the deformation behavior of ductile cast iron in a tensile test using
digital image correlation and measured the tensile strength in situ. He described the failure
sequence in ductile cast iron as follows: crack formation inside the graphite particles
(nodules), followed by decohesion between graphite and the cast iron matrix, formation
and growth of voids around the graphite nodule, and finally the connection of micro-cracks
that develop into macro-cracks. The graphite nodules act like stress concentration zones in
the cast iron matrix, which reduces the overall strength of the ductile cast iron. In another
study by Dong et al. [10], other sequences of deformation of ductile cast iron were reported
for in situ tensile strength. Ductile cast iron was used in lorry engine exhaust manifolds
where creep and creep fatigue properties were severe [11]. The creep damage was caused
by voids around the graphite nodule in the matrix of ductile cast iron [12,13], which act as a
stress concentration zone, as reported in [9]. On the other hand, Torre et al. [14] studied the
mechanical properties as a function of section size, holding temperature and holding time.
These factors were the most important parameters of the thermomechanical treatment,
and they concluded that the mechanical properties showed different trends depending on
the holding temperature and holding time. In addition, the influence of silicon content
on mechanical properties was studied by Angella et al. [15]. The degradation of lumpy
graphite [16] was more evident with a high silicon content, which reduced the tensile
strength. It was concluded that the silicon content promoted oxidation resistance at high
temperatures and microstructure durability [17]. Recently, Bendikiene et al. [18] studied the
effects of the bainitisation temperature on the toughness, hardness and fatigue resistance of
ductile cast iron. They concluded that the hardness decreases with increasing temperature,
while the fracture mechanics vary from cleavage ductile to transgranular to ductile dimples
at high temperatures.

Kobayshi and Yamada [19] used three-point bend specimens to measure the frac-
ture toughness of ductile cast iron. They used an approximation between 15% scent and
initiation fracture toughness to obtain the average fracture toughness JIC (mid) equal to
51.4 kJ/m2 and they concluded that this was the more reasonable method and also con-
cluded that the dynamic fracture toughness was lower than the static fracture toughness.
In a recent study by Artola et al. [20], a special mold pattern was used to obtain a desired
standard wedge design and measure the tensile, impact and fracture toughness. Fracture
toughness was determined using a three-point bending test based on the previous shape
pattern. Variation in the mechanical performance and fracture toughness by maintenance
temperature for ductile cast iron was found. On the other hand, alloying elements [21] such
as copper and copper–nickel can reduce the fracture toughness of ductile cast iron [22]. Susil
K. Putatunda [23,24] investigated the effect of four temperature steps and a two-step baini-
tisation process on fracture toughness. It was found that the fracture toughness depends
only on the ferrite and graphite content of the ductile cast iron and leads to a significant
improvement in mechanical properties and fracture toughness. Many papers [25–28] have
investigated the effects of heat treatment on the mechanical properties of ductile cast iron.
As mentioned earlier, there are many studies investigating the effects of temperature and
heat treatment on the mechanical properties and fracture toughness of ductile cast iron, but
understanding the effects of the thermomechanical treatment technique on the mechanical
properties and fracture toughness needs further investigation.

The fracture toughness of nodular cast iron using a local approach: Researchers
employed a finite element method (FEM) and a cohesive zone model to simulate crack
propagation and predict fracture toughness. The model accurately predicts fracture be-
havior under various loading conditions and considers microstructure effects [29]. In one
of the two cast irons studied, graphite nodules acted as voids, and the damage evolu-
tion related to void growth. In the second cast iron, void nucleation was also considered.
The modified Gurson’s potential modeled the mechanical behavior, and the tearing test
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results could be predicted [30]. In another study [31], they investigated the behavior of
cast iron GGG400SiMo under specific conditions involving quasi-static loading at room
temperature and high-strain-rate dynamic loading at high temperatures (up to 600 ◦C)
The material’s damage behavior was analyzed, and the project aimed to understand its
response to varying loading conditions. Additionally, the paper discussed the mechanical
properties of cast irons at elevated temperatures, emphasizing the importance of consider-
ing creep as a deformation mechanism for high-temperature applications. Creep became a
concern above approximately 425 ◦C [32]. Basurto-Hurtado et al. [33] proposed a novel
methodology for generating geometric models that represent the microstructure of ductile
cast iron (DCI). The approach involves using image processing algorithms to extract the
contours of graphite nodules and employing Bezier curves to smooth the geometric models.
Circularity analysis was performed to assess the induced error during discretization, and
the impact of design parameters on stress behavior within the DCI microstructure was
also investigated using finite element analysis. Notably, increasing the Bezier curve degree
decreased circularity and led to higher maximum stresses in the DCI.

Therefore, the present study has three main objectives: The first objective is to measure
the tensile strength, elastic modulus and percentage elongation of ductile cast iron at
four different temperatures, the second objective is to study the effect of strain rate on
ductility and percentage elongation and the last objective is to develop a simple analytical
model to calculate the fracture toughness JIC at high deformation temperatures to provide
suggestions for material selection.

The work is structured as follows: In the first section, the specifications for ductile
cast iron were outlined, then the thermomechanical treatment technique was explained; in
the second section, the extended finite element method and the nonlinear J-integral finite
element method were derived; in the third part, the results and the relationship between
the obtained data were correlated; and in the last section the main conclusions were drawn.

2. Material Characterization

Ductile cast iron, the chemical composition of which is given in Table 1 [34], was
obtained from the Egyptian Iron and Steel Company in Helwan, Egypt. The mechanical
properties of the tested material were determined by tensile tests at a room temperature of
25 ◦C and a transverse head speed of 1 mm/min. The tensile strength was measured at
806 MPa, the yield strength at 611 MPa and the percentage elongation was 0.59% according
to ASTM E8 [35].

Table 1. Chemical composition of the tested cast iron (wt%) adapted from Ref. [34].

Element C% Si% Mn% P% S%
Balanced Fe

Contents (mg) 3.0–3.6 2.0–2.5 0.6 0.04 max 0.04

3. Experimental Work

The cast iron tensile specimens were circular dog bone specimens of 6 mm dimeter
with end threads (see Figure 1). The parameters for the thermomechanical treatment
(T.M.T.) were the exposure temperature and the degree of deformation. Therefore, during
the test, the tensile specimen was heated to the required temperature (450 ◦C, 750 ◦C and
850 ◦C) in the tube furnace of the universal testing machine and held at this temperature
for 20 min to ensure a homogeneous temperature distribution over the entire length of the
specimen before the tensile load was applied. The specimens were deformed to various
uniform degrees of strain (0%, 25%, 50%, 75% and 100%). These degrees of deformation
were measured using a dial gauge attached to the moving cross plate. The tests were
carried out according to ASTM E8 [35]. The test was performed at three different strain
rates: 1.8 × 10−4 s−1, 9 × 10−4 s−1 and 4.5 × 10−3 s−1, these strain rates corresponding to
crosshead speeds of 1, 5 and 25 mm/min respectively.
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Simple Fracture Toughness Model

The fracture toughness of cast iron is remarkable and important to evaluate, so con-
cepts of elastic–plastic fracture mechanics were applied. The fracture toughness of cast
iron is still questionable and needs to be studied. The standards specify many fracture
toughness tests such as the Compact Tension Test (CT), Centre Crack and Single Edge
Notch Bending [36]. The present model used CT specimens with a thickness of 25 mm
according to the ASTM standard [37–39]. This thickness satisfies the following equation:

B, a ≥ 2.5
(

KQ

σys

)2
(1)

The model relates the simple tension test data, both yield stress σy, the corresponding
0.2% offset strain ϵ0.2 and critical crack opening displacement (δCr), at which failure occurs
according to the following equation [40]:

δCr = ιϵ0.2 (2)

The (ι) value had been studied in many works [40,41], and Hahn and Rosenfield [42,43]
suggested this value was the specimen thickness B. Therefore, it was selected to be equal
25 mm as the CT specimen. After critical crack opening, displacement (δCr) is calculated
then substituted into the following equation to calculate the surface release energy GIC [44,45]:

GIc = JIc =
∫

σunδcr (3)

At crack initiation for a ductile fracture with a small plastic zone ahead of the crack
tip, initiation GIc can be considered equal JIc [36].

4. Finite Element Modeling

Finite element modeling was performed to obtain the J-integral energy based on elastic–
plastic fracture mechanics. Two independent finite element methods were considered
to obtain satisfactory results for the fracture toughness of ductile cast iron at a room
temperature of 25 ◦C. One of them is the nonlinear J-integral method based on a near crack,
which is a fictitious closed crack that can open during the analysis; the second method is the
linear extended finite element method based on an enhancement function and considering
mesh-free rules. For both models, the area CT, shown in Figure 2, was used [46]. The
sample CT had the dimensions shown in Figure 2a and a thickness of 25 mm. The domain
FE consisted of 40,375 elements with a node size of 0.57 for region A, while the rest of the
sample had a size of 5 mm to reduce computation time. The convergence of the model
was previously investigated [47] and they found that the mesh size had less influence
for small sample dimensions. A linear brick with eight nodes, reduced integration and
hourglass control (C3D8R), with a hex shape and of a linear 3D stress element type (see
Figure 2b), was studied. The material properties of the ductile cast iron used are listed in
Table 2 and were determined by a simple tensile test. The linear XFEM used the maximum
principal stress (Maxps) theory for failure, which was the yield stress σy, MPa, while the
damage assessment was the maximum displacement at failure. This was chosen so that
the displacement was the same at 0.2% offset strain. The XFEM was used for all other
thermomechanical temperatures due to its simplicity and did not require mesh refinement.
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Table 2. Average mechanical properties of ductile cast iron at different temperature for 1.8 × 10−4 s−1

strain rate.

Properties Temp. 25 ◦C 450 ◦C 750 ◦C 850 ◦C

Young modulus E, GPa 169.3 183.7 95.5 90.67

Ultimate strength σu, MPa 806 710 244.82 87.4

Yield stress σy, MPa 611 450 156 21.27

Fracture strain % εf 0.59 0.65 1 0.95

Yield strain 0.2% ε 0.36 0.25 0.15 0.05

Stiffness stress K 1412 1445 575 575

Strain hardening coefficient n 0.08 0.123 0.13 0.36

5. Results and Discussion
5.1. Effect of Temperature

Figures 3a, 4a and 5a show the relationship between stress and strain for the tensile test
on ductile cast iron at a strain rate of 1.8× 10−4 s−1, 9× 10−4 s−1 and 4.5× 10−3 s−1, respec-
tively. It can be clearly seen that as the temperature increases, the strength and modulus
of elasticity decrease while the ductility increases, which is represented by the percentage
of elongation at the break or the percentage strain. Temperature plays a significant role in
altering material behavior. While the strength and modulus decrease, ductility improves,
as reflected in the elongation at break or the percentage strain. Assuming that increasing
the strain rates improve the deformation behavior of cast iron and increase ductility, the
average percentage strain for 850 ◦C reached 2.2% at a strain rate of 4.5 × 10−3 s−1, as
shown in Tables 3 and 4. When cast iron is heated to higher temperatures in the range
of 673–773 K, the phenomenon of embrittlement occurs [48,49]. The embrittlement is
caused by the segregation of elements P, S, etc., at the grain boundary of the cast iron. The
strain hardening coefficient and material stiffness was measured on the log–log scale of
Figures 3b, 4b and 5b for the 1.8 × 10−4 s−1, 9 × 10−4 s−1 and 4.5 × 10−3 s−1 strain rate,
respectively.
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Table 3. Average mechanical properties of ductile cast iron variation at different temperatures for
9 × 10−4 s−1 strain rate.

Properties Temp. 25 ◦C 450 ◦C 750 ◦C 850 ◦C

Young modulus E, GPa 34.6 29.35 24.43 17.42

Ultimate strength σu, MPa 737.6 565 130 92

Yield stress σy, MPa 474.1 442 46 61.36

Fracture strain % εf 0.55 0.91 1.5 1.7

Yield strain 0.2% ε 0.25 0.32 0.035 0.073

Stiffness stress K 1479 912 154 107

Strain hardening coefficient n 0.11 0.08 0.11 0.1

Table 4. Average mechanical properties of ductile cast iron variation at different temperatures for
4.5 × 10−3 s−1 strain rate.

Properties Temp. 25 ◦C 450 ◦C 750 ◦C 850 ◦C

Young modulus E, GPa 29.34 15.97 13.18 0.903

Ultimate strength σu, MPa 523 377 63.06 73.14

Yield stress σy, MPa 283 207 113 63

Fracture strain εf 0.59 0.49 0.69 2.2

Yield strain 0.2% ε 0.21 0.16 0.054 0.16

Stiffness stress K 2951 1258 199 114

Strain hardening coefficient n 0.23 0.18 0.069 0.079

It can be observed that the strain hardening coefficient increases with increasing
temperature. For deformations with lower strain rates, the strain hardening coefficient
is a measure of the hardening of the material with strain. Therefore, with increasing
temperature, good ductility is achieved when the strain is better distributed over regions
where local accumulation of strain is reduced [50]. At higher strain rates, the strain
hardening coefficient shows different tendencies, as the rapid strain rate leads to a sudden
or dynamic elongation of the grain and the bonds between the atoms, which reduces both
the strength and the strain hardening coefficient. Rapid strain rates cause the dynamic
elongation of grains and weaken atomic bonds, resulting in a decreased strength and strain
hardening coefficient. Understanding these effects is crucial for designing materials that
perform well under varying loading conditions [51]. The true stress and true strain curves,
shown in the previous figures, were corrected using a second-order polynomial [50], as
the scatter in the measurement may increase and affect the obtaining of good mechanical
data. The stiffness stress and yield stress decreased with increasing temperature for all
strain rates tested. The larger average percentage strain was 1 and 1.5 at a deformation
temperature of 750 ◦C for a strain rate of 1.8 × 10−4 s−1 and 9 × 10−4 s−1, and 1.7 and 2.2
at a deformation temperature of 850 ◦C for a strain rate of 9 × 10−4 s−1 and 4.5 × 10−3 s−1,
respectively (see Tables 2 and 4). As mentioned earlier, it can be seen that the strain rate
has a great influence on the flow behavior of ductile cast iron. The relationship between
the strain rate and the deformation temperature was analyzed and is shown in Figure 6
according to the recommendations in [52] as follows:

σ

σo
= exp(−BT) (4)

where (σ) is the tensile strength at T K absolute temperature, (σ o) is the tensile strength
at 0 0K absolute, chosen as 1733 according to [53], and B is a factor depending on the
material properties and strain rate. Factor B is measured using the linear regression of



Metals 2024, 14, 352 8 of 14

the data in Figure 6. This curve is useful for measuring any tensile strength in the range
(298 K < T > 1123 K).
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Using a scanning electron microscope (SEM) (manufacturer, city, and country), a micro
examination of the fracture surfaces was carried out and is shown in Figure 7. In the
brittle fracture shown in Figure 7a, the fracture surface was rough, and the damage could
propagate through voids originating from graphite nodules as nuclei. This is due to the
fact that the interfacial detachment was weak and therefore the surface had many graphite
nodules [49]. After the linear void sequence coalesced, oval shear dimples formed and
the fracture surface became smoother and flatter (Figure 7b). The number of dimples and
their sizes increased with the test temperature (see Figure 7c,d). The increase in dimple size
and number with the rising test temperature in a ductile fracture resulted from enhanced
plasticity, energy dissipation, microstructural changes, and specific material behaviors.
These dimples serve as visual evidence of the material’s response to stress and deformation
during fracture [54,55].
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5.2. Effect of Strain Rate

Figure 8 shows the relationship between true strain and the strain rate through the
tensile test: it is clear it was nearly constant through the whole test data. The strain rate is
given by the following equation [56]:

.
ε =

V
l f

(5)

where V is the cross head speed, and l f is the instantaneous length, which changed through
the whole test. This length is difficult to be experimentally measured; therefore, it can be
calculated using the following equation:

l f = lo exp(εT) (6)
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The strain rate for most temperatures took the same trend; this is because the increase
in length is related to the same decrease in the cross-sectional area as the volume constant.
The relation between the strain rate and tensile strength is the power law relation and
related to the following equation [57]:

σ = α
.
ε

m (7)

where α is a constant stress unit (MPa) and m is a material constant; these two constants
can be calculated using a linear regression of the log–log scale for the average stress and
strain rate curves, as shown in Figure 9. It can be observed that α decreased with increasing
temperature (72.5, −174.6 and −248 MPa for 25 ◦C, 450 ◦C and 750 ◦C, respectively). The
same trend was maintained for the constant m, which decreased with temperature (−0.13,
−0.19 and −0.41 for 25 ◦C, 450 ◦C and 750 ◦C, respectively). Looking at the two curves in
Figure 9, it was seen that the sensitivity of the strength-to-strain rate was higher than the
sensitivity of the axial strain.
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5.3. Fracture Toughness

The fracture toughness, predicted with linear XFEM, was validated with the prediction
with the nonlinear J-integral finite element model for ductile cast iron tested at room
temperature (25 ◦C), with a strain rate of 1.8× 10−4 s−1 (see Figure 10). The value of fracture
toughness (surface release energy JIC), determined with XFEM, was 55 kJ/m2 and the value
determined with the J-integral FEM was 54.5 kJ/m2. These two values were compared
with an experimental value of fracture toughness proposed by Kobayashi and Yamada [19]
for ductile cast iron with nearly the same properties, which was measured to be 51.4 kJ/m2.
Table 5 shows the predicted fracture toughness (JIC) using the presented model based on
the fracture strain Equations (2) and (3). The model provided very closed-form values
obtained using linear XFEM. The percentage error increased with increasing temperature
and reached 27% at a temperature of 850 ◦C, which was due to the complicated deformation
inside a furnace that can lead to misestimation of the fracture strain, e.g., due to slippage
of the machine, errors in fixing, etc. It was observed that the values of fracture toughness
JIC for ductile cast iron decreased with temperature. This was due to softening and, in
addition, ductile fracture leads to the formation of voids in the graphite grains, coalescence
and growth. The higher the temperature, the greater the microplastic deformation of
the cast iron matrix, the greater the spacing between the graphite grains and the greater
the length of the crack tips, which are called graphite nodules, resulting in a decrease in
fracture toughness [49]. The model can be extended to other strain rates. Table 5 shows
the predicted JIC values for the 9 × 10−4 s−1, and 4.5 × 10−3 s−1 strain rates, respectively.
The fracture toughness decreased with increasing strain rate, although the elongation at
the break increased. This is due to the fact that as the strain rate increased, a sudden load
was applied to the cast iron matrix, so the bond energy dissipated rapidly and the fracture
toughness decreased, while fracture toughness decreased with rising strain rate due to
reduced plasticity; elongation at break increased because of localized deformation patterns.
These contrasting effects highlight the intricate interplay between material behavior and
loading conditions [58]. Although the fracture toughness increases with increasing strain
rate at 750 ◦C and 850 ◦C, this can be attributed to the fact that, at a high temperature, the
combination of graphite spheroidization [59], ductile behavior [60], reduced brittleness [59],
and increased defect mobility [60] contributes to the improved fracture toughness of cast
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iron at higher temperatures. In addition, the flow behaviors of cast iron became more
viscoelasticity, therefore behaving with a different trend.
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Table 5. Fracture toughness for higher strain rate, based on Equation (2).

Temperature Strain Rate 9 × 10−4 s−1 4.5 × 10−3 s−1

25 ◦C 29.63 14.85

450 ◦C 35.36 8.28

750 ◦C 0.24 1.52

850 ◦C 1.15 2.52

6. Conclusions

The thermomechanical treatment technique controls the deformation properties of
ductile cast iron. It allows the ductile cast iron to stretch up to a maximum of 2.2%. This can
open new horizons for the use of cast iron in the hot forming industry to shape crankshafts,
gearbox housings, connecting rods, etc. The strain rate was evaluated for its potential to
be a reasonable improvement over hot forming ductile cast iron; as a result, ductility was
increased and failure modes changed to ductile fracture. By increasing the temperature,
good ductility was achieved. The strain was better distributed in areas where the local
strain decreased. In addition, as the temperature increased, both the stiffness stress and the
yield stress decreased. The effect of temperature on tensile strength was determined using
linear regression in the absolute temperature range (298 ◦K < T > 1123 ◦K). The linear XFEM
and the nonlinear J-integral FEM were good tools for calculating the fracture toughness,
with acceptable accuracy. A simple analytical approach to predict the fracture toughness
JIC) was extracted using only the fracture strain in the simple tensile test and the standard
test thickness CT of 25 mm. This simple model can be useful for the rapid selection of
ductile cast iron to determine its fracture toughness at an elevated temperature from the
tensile test data sheet. The data obtained with this simple model were extended to include
higher-strain-rate tests.
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