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Abstract: The fatigue crack growth behavior of 304L austenitic stainless steel (SS) in a 325 ◦C high-
temperature and high-pressure water environment were investigated by a corrosion fatigue test
system, by electron back scatter diffraction (EBSD), and by a transmission electron microscope
(TEM). The experimental results indicated that the crack growth rate (CGR) of 304L SS increases with
increasing the stress intensity factor, stress level, and fatigue frequency (f). Compared to dissolved
hydrogen (DH) in a high-temperature water environment, dissolved oxygen (DO) significantly
enhances the CGR by about an order of magnitude higher. The crack tip of 304L SS after the corrosion
fatigue test under higher stress levels is sharper, with more secondary cracks on the fracture surface,
while the crack tip under lower stress levels is blunter with relatively fewer secondary cracks. The
oxidation behavior at the crack tip was analyzed under different loading and water chemistry
conditions, and a related effect on the crack tip and CGR was clarified.

Keywords: corrosion fatigue; 304L stainless steel; high-temperature water; crack growth rate; crack tip

1. Introduction

Austenite stainless steels (SSs) have been widely used in pressurized water reactor
(PWR) nuclear power plants due to their outstanding corrosion resistance, stability, and
mechanical properties [1–4]. Austenite stainless steels such as 304L and 316L SSs are often
used as the primary coolant pipe in PWR servicing in high-temperature and high-pressure
water environments and at a complex stress state [5–7]. It often suffers constant tensile
stress during stable operation and cyclic fatigue stress during startup, shutdown, and
the instability condition of nuclear power plants. Consequently, corrosion fatigue and
stress corrosion cracking (SCC) often occur during the operation process of primary main
pipeline [8–11].

According to previous studies [12–14], the effect of loading on corrosion fatigue and
SCC has been frequently conducted. Lu et al. [12] studied the effect of stress loading
types on the crack growth behavior of 316L SS. They found that the crack growth rate
(CGR) and fracture morphology underwent significant changes under different loading
types. When using constantly changing dynamic stress loading, the cracking mode would
shift from transgranular fractures to intergranular fractures. Zhao et al. [13] found that
corrosion products on the surface of the specimen penetrated into the matrix through
the movement of slip bands during the corrosion fatigue test of X80 pipeline steel in a
sodium chloride solution which, under periodic tensile and compressive stress, damaged
the structural integrity of the metal subsurface layer and led to fatigue cracks initiation.
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Srinivasan et al. [14] also found that the fatigue life decreased with increasing the tensile
stress duration, and the fracture mode transitioned from transgranular to transgranular-
intergranular mixed mode if fatigue stress was sustained during the tensile process for a
period of time of 316LN SS at 500 ◦C during the fatigue test.

Water chemistry is another important factor of corrosion fatigue property. Fanjiang
Meng et al. [15] found that the CGR of SCC decreases with increasing dissolved hydrogen
(DH) in the range of 5–50 cm3 (STP) H2/kg H2O. Du et al. [16] found that boric acid/lithium
hydroxide or Cl- significantly enhanced the CGR of 316LN SS in oxygenated water. The
crack was initiated often at the grain boundaries and deformation bands of cold worded
316L in oxygenated high-temperature water [17]. Cui et al. [18] suggested that DH in
high-temperature water enhanced the oxidation of ferrite phase in 308L SS cladding, and it
has an obvious contribution to SCC. The detailed results have shown that austenite has a
lower oxidation resistance than ferrite when compared to a non-DH environment, while
the oxidation resistance of both phases decreased when in a charged DH environment. H
significantly accelerates the ferrite oxidation due to it acting as the diffusion path for H. The
water chemistry has an obviously complex effect on crack propagation in 309L, 308L and
316L SSs [11,19,20]. In a word, both fatigue loading and water chemistry have significant
effects on cracking behavior.

However, the specific factor effects of stress level, frequency, and stress intensity
factor on the corrosion fatigue of 304L SS in high-temperature water were still not clear,
especially under the actual service status of pipelines when subjected to a complex stress
state, although several similar studies were conducted [16,21,22]. On the one hand, the
effect of water chemistry on corrosion fatigue and SCC was not appropriate quantification
under a complex service state [23–25]. On the other hand, the effect of the factors mentioned
above on the oxidation behavior of the crack tip was not explained in detail, although it
has an obvious interaction with the crack growth process.

In this study, the corrosion fatigue behavior of 304L SS in a 325 ◦C high-temperature
water environment was investigated, and the effects of fatigue stress level, frequency, and
water chemistry on CGR were analyzed. Corresponding CGR equations under different
service environments were obtained to quantify the failure mode. The interaction between
the service environment and oxidation behavior at the crack tip was discussed, and the crack
initiation mechanism in high-temperature water was revealed, based on the test results.

2. Materials and Methods
2.1. Material

The material used in this study was forged 304L SS with a solution treatment at 1050 ◦C
for two hours. The chemical composition and microstructure are shown in Table 1 and
Figure 1, respectively.
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Table 1. Chemical composition of 304L SS (wt.%).

Element C Si Mn P S Cr Ni Mo Fe

304L 0.014 0.41 0.72 0.016 0.0035 18.61 8.41 0.25 Balance

2.2. Specimen Design

The specimen used for corrosion fatigue testing cut initially by wire-electrode cutting
according to the drawing of specimen shown in Figure 2. The size of the specimen was 0.5T
CT (compact type).
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W: Width) and rod-shaped specimen used for crack initiation process (Down).

2.3. Crack Growth Rate Test

Before the CGR test, it is necessary to pre-fabricate fatigue cracks on the CT specimen
for pre-cracks, which is carried out in air at room temperature. For 0.5T CT specimens,
a constant K value of 15 MPa

√
m can generally be used, and alternating loading with a

loading ratio of R = 0.1 and a frequency of f = 2 Hz can be used to obtain fatigue pre-cracks.
All specimens were subjected to the CGR tests by the corrosion fatigue crack test

systems with a DCPD (direct current potential drop) device. The test parameters and high-
temperature water chemistry were shown in Table 2. After the CGR test, the specimens were
pulled out with a tensile machine. The fracture observation was conducted by scanning
electron microscopy (SEM).
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Table 2. Test parameters and high-temperature water chemistry.

Stress Rate Frequency Dissolved
Oxygen

Dissolved
Hydrogen pH Conductivity Temperature Pressure

R = 0.3 0.1, 0.01 2 ppm 1.58 ppm 6.6 0.15 µS/cm 325 ◦C 10.5 MPa

2.4. TEM and EDS Test

The transmission electron microscopy (TEM, FEI Company, Hillsboro, OR, USA;
TECNAI G2 F20) specimen was prepared using a focused ion beam (FIB) at the crack tip.
The TEM observation and energy dispersive spectrometer (EDS) was performed in a Tecnai
F20 microscope, operated at 200 kV.

2.5. EBSD Observation

The electron backscatter diffraction technique (EBSD) observation was conducted on
the cross section of crack tip for the fatigue crack initiation test specimens. The specimens
used for the EBSD test were sanded and followed by electropolishing with direct voltage
30 V for 45 s in an electrolyte solution consisting of 20% perchloric acid and 80% ethanol.
After that, the specimens were observed by EBSD.

3. Results and Discussion
3.1. Crack Growth Rate
3.1.1. Effect of K and f on CGR

Figure 3 shows the crack growth curve of 304L SS in a 325 ◦C high-temperature water
environment with dissolved oxygen (DO) about 2 ppm under different loading conditions.
After about 750 h, the crack length had grown to 13 mm (including the pre-crack). One can
see that the crack length was slow, increasing at the beginning with K = 18 MPa

√
m, while

it sharply increased when the K increased to 30 MPa
√

m. After that, it also can be seen the
crack length has a positive correlation with K until it rapidly increases again. As for the f, it
shown that the CGR decreased with the decrease in f at the same K. The crack length even
stopped growth when the K was below 30 MPa

√
m at the 0.001 Hz condition. Figure 4

shows the crack growth curve of 304L SS in a 325 ◦C high-temperature water environment
with DH = 1.58 ppm under different loading conditions. After about 720 h test, the crack
length was about 12.8 mm, which then rapidly grew to 13 mm. The effect trend of the K
and f on the crack length was similar for the DO environment.
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Figure 3. Crack growth curve for 304L SS in DO = 2 ppm high-temperature water environment.
(Blue: frequency; Orange: K).
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Figures 5 and 6 show the effect of K and f on CGR (mm/s) for 304L SS in a DO and
DH high-temperature water environment, respectively. One can see that the CGR increased
with increasing the K and f of 304L SS in a DO high-temperature water environment. It
is worth noting that when the f increases from 0.001 HZ to 0.01 HZ, the increasing range
of CGR is much less than it from 0.01 to 0.1. This means that the CGR of the specimen
will sharply decrease as the f decreases, which indicates that the CGR is slow when the
loading conditions tended towards constant stress. Moreover, comparing Figures 5 and 6,
the CGR in the DO environment was obviously faster than it was in the DH water environ-
ment, especially at a low f condition. This can be attributed to the DH suppressing water
decomposition and reducing material oxidation, which further reduces CGR. However, the
effect of water chemistry was not obvious when the fatigue f increased to 0.1. This can be
attributed to the mechanical factors dominating under the high f fatigue test process [26,27].
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3.1.2. Analysis of CGR Equation

Figure 7 shows the CGR (mm/cycle) equation curves for 304L SS under different
conditions, fitted by crack experiment results. It can be seen that the CGR increased
with increasing the K under the same f and water environment, while it decreased with
increasing the f. It should be noted that the unit of CGR is mm/cycle in this part, and
different to Section 3.1.1. Comparing the results of the different test environments, the CGR
in the DH high-temperature water was slower than in the DO environment, as mentioned
above. Figure 8 shows the effect of f on the CGR, obtained by fitting the above experimental
results. The detailed analysis is as follows.
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In the DO environment, the corrosion fatigue crack growth test starts from the condi-
tion of K = 18 MPa

√
m and f = 0.1 Hz. During the test, the fatigue f was kept constant and

K continuously increased and the CGR curves at K = 20–35 MPa
√

m was obtained. The
results indicated that the larger the value of K, the faster the CGR under the condition of
constant f. After that, the CGR at different K values was obtained by change frequency
under the conditions of f = 0.01 and 0.001 Hz.

Figure 7 shows the fitting relationship of CGR and ∆K under the 325 ◦C high-
temperature water environment. The exponent of equation represents the dependence of
CGR on ∆K. According to the fitting results, the exponent value decreased with decreasing
the f. They change from 1.52 to 1.12 corresponding the f from 0.01 to 0.001 in the DO
environment, similar to the change from 2.2 to 1.6 in the DH environment. Comparing
the fitting formulas in the DH and DO environments, the exponent increased from 1.12
to 1.6 under f = 0.001 HZ, similar to the increase from 1.52 to 2.2 under f = 0.001 HZ. It
indicated that the water environment can affect the correlation between the crack growth
and mechanical loading. Through repeated experiments of increasing and decreasing K, it
is shown that the CGR obtained under the same conditions have small differences and the
experiment has good repeatability.
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Figure 8 shows the relationship between fatigue frequency f and CGR of 304L SS in
the 325 ◦C high-temperature water environment. The American Society of Mechanical
Engineers (ASME) standard results tested in Ar environment are also shown [4,28–30].
The effect of DO and DH on CGR are also reflected in the figure as the K value is set to
35 MPa

√
m. It can be seen that the CGR continuously decreased with increasing the f. The

CGR in the DO environment is significantly higher than that in the DH environment at the
same test condition. The effect of the high-temperature water environment on the CGR
increased with decreasing the f. The test results were similar for multiple specimens at
same test condition, which indicates that the results of this study are stable and reliable.

These results were attributed to the fact that the lower the f, the longer the time for one
fatigue cycle. So, the more obvious the effect of the high-temperature water environment
on the crack tip. The effect of high-temperature water chemistry on CGR is attributed to
the fact that DO can accelerate the oxidation at the crack tip. The oxide film formed at
the crack tip is generally more brittle, leading to accelerated crack propagation. On the
contrary, it will continuously inhibit the decomposition of the high-temperature water
and reduce the free oxygen in the solution when DH is present in the environment. The
oxidation process at the crack tip would slow down, and thus decrease crack growth. At
the same time, the higher f leads to the shorter the single cycle period, so the weaker the
effect of stress and environment on the specimen, resulting in a slower CGR. Compared
to the ASME standard, the material performance of fatigue used in this study meets the
standard. The CGR of 304L SS under the condition of K = 35 MPa

√
m is not higher than that

in the standard tested in argon environment with K = 30 MPa
√

m. The material can only
be used after the related properties meet the design requirements of ASME standard. In
this study, the high-temperature water environment was more demanding than the argon
gas environment, and the K value was also higher than the standard. It can be inferred that
the corrosion fatigue performance of 304L SS is qualified under the design conditions of
the ASME standard.

Based on the above data analysis, the trend of CGR shows a synergistic acceleration
effect under the coupling effect of K and f under the high-temperature water environment.
This further promotes crack growth and accelerates material failure under complex stress
conditions. After synergistic acceleration, the CGR of the 304L SS increases by about an
order of magnitude. Similarly, the effect of DO = 2 ppm environment has also increases the
CGR about one order of magnitude than the DH = 1.58 ppm environment.

3.2. Effect of Fatigue Loading on Crack Tip Characteristic
3.2.1. Overall Morphology of the Crack Tip

The crack growth paths in the DO and DH high-temperature water environments
are shown in Figure 9, respectively. In both environments, the crack growth shows a
transgranular cracking type. Secondary cracks were observed along the crack growth path
around the crack tip. The initiation of the secondary crack reduces stress concentration
at the tip of the main crack, thereby reducing the strain at the crack tip and delaying the
growth rate of the main crack to some extent.

The corrosion fatigue tests were conducted on the rod-shaped specimen in order to
investigate the characteristics of crack initiation process and crack tip of 304L SS under same
high-temperature water environment. Figure 10 shows the EBSD image of the crack tip
for 304L SS. One can see that the crack tip in Figure 10a is in the early stage with relatively
narrow cracks, while the cracks in Figure 10b,c are in the late stage with relatively wide
cracks. It also can be seen from the figure that there are some areas with a lower calibration
rate (white edge areas) around the crack tip that have undergone plastic deformation
during the crack growth, induced by an increase in residual stress or strain and a decrease
in calibration rate. It can be seen that there was some crack initiation near or along the
persistent slip bands (PSBs), and the PSBs or significant plastic deformation around the
crack tip. The cracks in Figure 10d were formed in the area of PSBs, one crack shows a
typical extension along the direction of PSBs. The crack tip in Figure 10e is characterized
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by significant plastic deformation. Figure 10f shows the cross-sectional morphology of the
middle part of the crack with abundant PSBs and plastic deformation on both sides of the
crack. In one word, PSBs is an important mode of fatigue crack initiation [31].
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Figure 10. EBSD images and cross-sectional morphology of crack tip after corrosion fatigue tests for
304L SS.

3.2.2. Fracture Morphology of the Crack Tip

The fracture morphologies of the crack tip after CGR test of the 304L SS specimens
in the high-temperature water environment under two loading conditions is shown in
Figures 11 and 12. The fracture surface under both stress conditions exhibits typical in-
tergranular cracking characteristics with a “river pattern” cleavage fracture morphology.
Secondary cracks were observed in the morphology under both loading conditions, espe-
cially in the high tensile stress condition. In Figure 11A,B zones show typical secondary
cracking morphologies. In Figure 12, the secondary cracks can be seen everywhere, as the
locally enlarged areas were shown in the A, B, and C zones. This indicates that the specimen
is more prone to initiated secondary cracks under high tensile stress conditions. The fatigue
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stress can cause local stress concentration in the crack tip with the higher loading, resulting
in a more serious concentration, thereby promoting the initiation of secondary cracks.
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3.2.3. Oxidation Behavior at the Crack Tip

TEM specimens were prepared by FIB at the crack tip of the 304L SS specimens
after the corrosion fatigue test in the high-temperature water environment. The crack tip
morphology observation and element composition was analyzed by EDS, as shown in
Figures 13 and 14. Both the element distribution along the crack tip and growth path is
similar, and only a small amount of oxide was observed at the crack tip and along the
growth path. The content line scan of elements at the crack tip revealed an enrichment of
oxygen in the oxide layer near the crack tip and a decrease in Fe and Cr content; meanwhile,
the Ni content did not change significantly. Furthermore, it can be deduced that the oxide
structure was divided into different layers, with the outer layer being Fe oxide, such as
Fe2O3 or Fe3O4, and the inner layer being Cr oxide such as Cr2O3 [32–35].
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Comparing the crack tip morphology and chemistry composition under two loading
conditions in high-temperature water shows significant differences. Firstly, the crack tip
is blunt under low tensile stress, while it is sharp under higher tensile stress. Secondly,
Cr enrichment is observed on the crack surface under higher tensile stress, indicating the
formation of Cr oxide such as Cr2O3. Fe enrichment is observed further away from the
crack surface, indicating the formation of Fe oxide such as Fe2O3 or Fe3O4, as indicated in
Figure 14. It can be inferred that a dual-layer oxide film, consisting of an outer iron-rich
layer and an inner chromium-rich layer is formed [36,37]. Only a small amount of oxide is
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observed on the edge of crack test at low tensile stress, which may be due to the dissolution
of oxide for a long time. Moreover, the oxidation kinetics on the inter oxide layer can
induce the Cr enrichment in the high-temperature water environment, as indicated in
Figures 13 and 14 [33].
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It can be concluded that the CGR significantly increases and the crack tip becomes
sharper under high tensile cyclic stress in the high-temperature water environment, while
the CGR is slower when the tensile stress is low, and the crack tip stays in the high-
temperature water environment for a longer time, resulting in the dissolution or drop
of the oxide film into the water. This is consistent with the results of CGR expansion
mentioned earlier.

3.3. Mechanism of Crack Growth at Crack Tip

The process of crack tip growth in a corrosion fatigue test in the high-temperature
water environment is referenced in Figure 9 in published paper, and can be divided into
four steps [13]. Firstly, the specimen surface or crack tip is subjected to fatigue tensile stress,
forming a slip band and fresh matrix metal exposed at the beginning of the corrosion fatigue
test. Secondly, the fresh metal is often active and easily oxidized by high-temperature water
to form metal oxides such as Fe2O3, Fe3O4, Cr2O3. Thirdly, when the tensile stress is
unloaded and compressive stress is applied, the previously extruded metal was penetrated
into the matrix metal with the movement of the slip band. So, the metal oxides were
brought into the subsurface of the specimen. Fourthly, more oxidation products were
brought into the subsurface with the continuing of fatigue stress cycles of the material
during the fatigue cyclic stress. This process leads to the continuous increase of oxides
in the matrix metal around the crack tip, and the crack continues to initiate or propagate
forward with the loading of fatigue stress.

Comparing different loading conditions, it can be observed that crack growth is slower
when the f is low, as shown above. This can be attributed to there being fewer cycles
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applied, resulting in less opportunity for oxide products to penetrate into the material
matrix. Although more oxides are formed at low f, the CGR at crack tip is slower. Similarly,
the CGR is very slow in SCC experiments under constant stress due to almost no oxide
penetrating into the matrix metal without reciprocating movement as cyclic stress. The
stress level and stress intensity factor K also have a significant impact on the CGR, as it
becomes faster and the crack tip is sharper with more secondary cracks on the fracture
surface under high stress levels. On the contrary, the CGR is slower and the crack tip is
blunter under low stress levels.

High-temperature water chemistry also has a significant effect on crack growth. DO
significantly increases the CGR of the specimen, while a DH environment can reduce the
CGR [12,38]. This is because DH can inhibit the decomposition of high-temperature water
and reduce metal oxidation, as mentioned above. By analyzing the combined effects of
stress and environment, it can be concluded that the formation of oxide at the crack tip and
its interaction with the base metal in a high-temperature water environment determines the
CGR [16,39]. Consequently, the more oxides are formed, the more cycles at higher stress
levels, leading to the faster the CGR.

Moreover, the slip bands formed on the specimen surface and crack tip during tensile
loading would be longer and more fresh metal would be exposed under constant stress
and cyclic stress. Therefore, the more fresh metal that is exposed under the combined
action of tensile stress and cyclic stress, the more oxides or corrosion products are formed,
resulting in more oxides penetrating into the matrix and causing more damage to the
specimen. This ultimately leads to faster crack initiation and propagation. Consequently,
the crack growth was obviously accelerated under the combined action of constant stress
and periodic cyclic stress.

4. Conclusions

In this study, the fatigue crack growth behavior of 304L SS in a 325 ◦C, high-temperature
water environment was investigated. Based on the experimental results, the main conclu-
sions are as follows.

(1) In a 325 ◦C high-temperature water environment, the CGR of 304L SS increased with
increasing the stress intensity factor K, stress level, and fatigue frequency. Compared
to DH in a high-temperature water environment, DO significantly increases the CGR
about an order of magnitude higher.

(2) Under high tensile cyclic stress levels, the crack tip of 304L SS in a high-temperature
water environment is sharper, with more secondary cracks on the fracture surface,
while the crack tip under low tensile cyclic stress levels is blunter with relatively fewer
secondary cracks.

(3) A dual-layer oxide film consisting of an outer iron-rich layer and an inner chromium-
rich layer is formed in the crack growth path under high tensile cyclic stress levels.
However, only a small amount of oxide is observed on the crack surface due to the
dissolution of water over a long period of time under lower tensile cyclic stress.

(4) The fatigue crack growth behavior of 304L SS in a high-temperature water environ-
ment depends on the interaction between oxidation at the PSB and the base metal.
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stainless steel SS
electron back scatter diffraction EBSD
transmission electron microscope TEM
crack growth rate CGR
dissolved hydrogen DH
dissolved oxygen DO
pressurized water reactor PWR
stress corrosion cracking SCC
Compact type CT
Direct current potential drop DCPD
Scanning electron microscopy SEM
focused ion beam FIB
energy dispersive spectrometer EDS
persistent slip bands PSBs
The American Society of Mechanical Engineers ASME
frequency f
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