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Abstract: We present and compare three elastoplastic models currently used for 
deformation of metallic glasses, namely, a von Mises model, a modified von Mises model 
with hydrostatic stress effect included, and a Drucker-Prager model. The constitutive models 
are formulated in conjunction with the free volume theory for plastic deformation and are 
implemented numerically with finite element method. We show through a series of case 
studies that by considering explicitly the volume dilatation during plastic deformation, the 
Drucker-Prager model can produce the two salient features widely observed in experiments, 
namely, the strength differential effect and deviation of the shear band inclination angle 
under tension and compression, whereas the von Mises and modified von Mises models are 
unable to. We also explore shear band formation using the three constitutive models. Based 
on the study, we discuss the free volume theory and its possible limitations in the constitutive 
models for metallic glasses. 
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1. Introduction 

Metallic glass, also called amorphous alloy, is a relatively new material characterized by the random, 
disordered atomic arrangement which is different from the ordered crystalline structure of metals and 
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alloys. The first metallic glass, an Au-Si eutectic alloy, was synthesized by Duwez and his coworkers in 
1960 through rapid cooling the liquid to prevent crystallization [1]. In the past two decades, more 
metallic glass alloys with high glass-forming-ability compositions have been made with extremely 
lower cooling rates [2], allowing for production of the materials with large scale in three dimensions. 
The development of the so-called bulk metallic glasses (BMGs) have not only opened up new avenues 
for many practical applications [3] but also attracted interests in fundamental study of  
amorphous materials [4]. 

Extensive experimental works have been done to study the mechanical properties of BMGs. For 
example, tensile loading showed that BMGs can have 2% or more elastic strain limit and therefore 
higher yield strength than the conventional crystalline materials [5]. Moreover, BMGs are found to have 
very high toughness [6] and hardness by indentation test [6,7], which would be favorable for many 
demanding applications. However, unlike the deformation of crystalline metals, BMGs show almost no 
work hardening after yielding and, consequently, appear to have little ductility under unconfined 
loading, which poses a serious limitation.  

As known [8], deformation of metallic glasses has two distinct modes: homogeneous deformation at 
high temperature (>0.7Tg), and inhomogeneous deformation at low temperature (<0.7Tg), where Tg is the 
glass transition temperature. In the inhomogeneous mode, the plastic strain is highly localized into thin 
bands called shear bands (SBs), which is the main reason for the brittleness. On the continuum level, the 
constitutive behaviors of metallic glasses at low temperature are rather simple: a nearly linear elastic 
regime is interrupted by either fracture, when the samples are subject to unconfined deformation 
loading, such as tension; or limited plastic flow, when the samples are subject to confined deformation 
loading, such as compression. The simplicity in the mechanical behaviors makes it difficult to formulate 
physically sound constitutive relations for metallic glasses from the experimental inputs alone. The 
additional information needed includes detailed structural and micromechanical properties of any 
potential defects that promote yielding and plastic deformation. However, due to the lack of the 
long-range translational symmetry, there is no Bragg diffraction in metallic glasses, which is a main 
source to detect structural defects in deformation. As a result, the atomic scale mechanism of the plastic 
deformation of BMGs still remains open. Nevertheless, several atomic-scale models were proposed to 
explain the underlying microscopic deformation mechanism of metallic glasses [8–10]. These models 
usually introduce special kinds of “flow defects” as the characteristic parameter of the structure, such as 
Spaepen’s free volume [8] and Argon’s shear transformation zone [9]. The physics of these models is 
described by Eyring’s transition state theory in which the energy barrier that atoms need to overcome 
when going from one defect state to another is biased by the applied stress state [11]. Recent atomistic 
simulations using molecular dynamics method have provided direct evidence of deformation-induced 
volume dilatation, or free volumes [12]. The extensive atomistic modeling performed in several binary 
model metallic glasses under various loading modes shows that volume dilatation is an intrinsic property 
accompanying not only the plastic but also elastic deformation [13–16]. The volume dilatation changes 
gradually in a nonlinear fashion before yielding, and increases rapidly around the yield point before 
reaching a critical value of about 1.2%–2% of the volume of the undeformed samples [11]. Moreover, 
accompanying this volume change is more disorder in the atomic configuration and dramatic elastic 
shear modulus softening. 
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The development of constitutive models for continuum modeling of the deformation behaviors has 
followed a path intimately connected to the free volume model. From Spaepen’s free volume model, 
Steif et al. developed an operational viscoelastic model that links the multiaxial stress to the plastic 
strain through the J2 invariant of the stress deviator [17]. Huang et al. extended this approach into an 
elastoplastic model in three dimensions by using the effective von Mises stress [18]. Gao implemented a 
numerical approach to solve the elastoplastic model based largely on Huang’s approach by finite 
element method with the same von Mises generalization [19]. As is already known, the von Mises 
criterion has been wildly used in crystalline metals, but its application in metallic glasses has been 
questioned based on an enormous number of experimental observations [20–22]. There are two salient 
features more commonly found in metallic glasses than in their crystalline counterparts. One is the 
strength differential (SD) effect and the second the deviation of shear band inclination angles (SBIA) in 
uniaxial tension and compression. These results suggest that hydrostatic stress (or volume strain) and/or 
normal stress should affect the deformation of metallic glasses, which are quite different from the  
von Mises criterion where volumetric effect, or hydrostatic stress and normal stress, does not play a 
major role. Taking into consideration the normal stress effect on shear during uniaxial deformation, 
Anand invoked the Coulomb-Mohr criterion, along with the volume dilation effect, in formulating a 
constitutive model for metallic glasses [23].  

The constitutive models mentioned above are all capable of producing inhomogeneous deformation 
or shear localization [17–19]. However, except for Anand’s Coulomb-Mohr theory [23], they are unable 
to produce the deviations in the shear band inclination angles and the strength difference even in 
qualitative fashion. As we show in the following, the von Mises type of theories always gives the 
inclination of shear band angle at 45° and negligible strength difference. The Coulomb-Mohr type of 
constitutive relations, on the other hand, faces conceptual questions of how to define the shear planes in 
a homogeneously deformed system and how to incorporate volume dilatations in a less ad hoc fashion. 
As shown recently by both experiment and molecular dynamics simulations [12], volume dilatation is an 
integral part of the mechanical deformation in metallic glasses. However, how to incorporate this into a 
constitutive model that is able to reproduce some of the key experimental observations remains to  
be resolved.  

In this paper, we conduct a comparative study on three types of elastoplastic models for metallic 
glasses, namely the von Mises model (J2), the von Mises model modified by hydrostatic stress effect 
(J2P), and the Drucker-Prager (DP) model. As in the previous studies [18,19], we will incorporate the 
free volume model into the constitutive formulations for plastic deformation. Constitutive equations are 
established first and some of the salient features, i.e., SD effect and SBIA will be explained theoretically. 
We then implement the constitutive models in the finite element method to simulate the deformation 
process under plane strain condition. From these models, we simulate shear banding as the main 
inhomogeneous deformation phenomenon and examine in detail the evolution of mechanical properties 
and free volume behaviors. Our emphasis here is focused on SD effect and the SBIA, which could 
provide us with a critical testing ground for these models. We hope that this comparative study could 
shed light on not only the inner working mechanisms of the different constitutive models but also the 
physics of the deformation process, that may lead us to a more reliable and better model which can 
capture the real materials’ mechanical responses. 
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3.3. Samples and Loading 

Two types of samples and different loading will be used in this work. The first is a simple shear of one 
CPE4 [33] element. The sample is subject to plane strain restriction. The basic material behaviors of the 
three models could be obtained from this simulation. Then plane strain tension and compression will be 
conducted on a rectangular sample with the height-to-width-ratio of three shown in Figure 2. The sample 
contains 8,517 CPE4 elements. All the material properties and parameters are described in section 3.2. 
More details on simulation can be found in [31,36]. 

Figure 2. A rectangular sample under plane strain tension and compression:  
(a) finite element mesh and (b) the contour of the initial randomly distributed free  
volume configuration. 

 

4. Results and Discussions 

4.1. Shear-Induced Dilatation 

As mentioned above, the reason of shear banding is believed to be a result of the volume dilatation, 
which has been elaborated in detail in the free volume theory [8]. Recent MD simulation of MG samples 
in simple shear also demonstrated this connection [12]. The first step of our simulation is therefore to 
model a simple shear in one CPE4 element using the three theoretical models. For the DP model, the 
coefficient a is taken to be 0.045. The results for simple shear are shown in Figure 3. 

From Figure 3a,b we find that all three models give a similar trend in the shear stress strain 
relationship and free volume evolution. The material first deforms linear elasticity until the yield point, 
which is the maximum allowable stress state by the criteria. The material shows little plasticity 
approaching the yield point but an obvious strain softening right after the yielding. This softening is 
caused by the increase of the free volume as shown in Figure 3b. The free volume increases slightly at 
the elastic region. However, when it gets close to the yield point, it will gain an abrupt raise, which, as 
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discussed by Spaepen [8], Steif [32], Huang [19], and Gao [19], softens the material through decreasing 
viscosity. Among the three models, the DP model gives a higher steady state shear stress noted from 
Figure 3a than the other two models, which results from the explicit hydrostatic stress dependence.  

Figure 3. The results from a simple shear by the three constitutive models: (a) the shear 
stress strain curve, (b) the free volume, and (c) the mean stress vs. the shear strain. 

  

 

The hydrostatic stresses for these three models are plotted in Figure 3c. Here we note that during the 
simple shear, the boundary conditions only allow strain in the shear, or xy-direction. In other words, the 
volume is preserved because the trace of strain tensor is zero. However, if the volume would tend to 
change, the material will feel an internal hydrostatic stress imposed from the boundary conditions. 
Basically, the volume contraction will make the material under tensile hydrostatic stress, while the 
expansion will result in compressive hydrostatic stress. Following our convention, the sign of the former 
is positive and the latter negative. Figure 3c shows that in the elastic region, these three models predict 
little volume change. This is consistent with Hooke’s law used in dealing with this regime. The 
difference, however, emerges around the yielding point. The deformation in J2 model continues with no 
volume change. The J2P model gives a compressive hydrostatic stress, as the pressure in Equations 8 and 
9 are external, has the opposite sign to that of the internal pressure. The hydrostatic stress shows a similar 
trend to the free volume, which can be explained by Equation 10. According to the discussion given 
above, the surge of the hydrostatic stress indicates that the material is ready to expand without the 
boundary condition restriction. This response is the same as that predicted from the volume dilatation 
suggested by the free volume model [8,9] and the observation from the MD simulations [12]. On the 
other hand, the DP model gives an internal conjugate hydrostatic stress with a negative sign for  
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which leads to buckling in the samples with the aspect ratio larger than unity. Reducing the aspect ratio 
will help to prevent the buckling instability from happening.  

Figure 5. Shear band formation in the plane strain tension (a–c) and compression (e–f) using 
the J2 model. Strain contours for tension are shown at (a) time t = 3.5361 × 104, the initiation 
of shear localization, (b) t = 3.5385 × 104, the yielding point, and (c) t = 3.6406 × 104, at the 
end of the shear localization. Strain contours for compression are shown at  
(e) t = 3.4623 × 104, the initiation of shear localization, (f) t = 34676 × 104, the yielding point, 
and (g) t = 3.8493 × 104, the end of the shear localization. The corresponding spatial 
distributions of the free volume at the yield point are plotted in (d) for tension and  
(h) for compression. 

 

The angles between the shear plane and the loading axis are all at or very close to 45°, same as the 
maximum resolved shear stress direction predicted by the von Mises criterion. The corresponding free 
volume spatial distributions at the yield point are also plotted in Figure 5d for tension and Figure 5h for 
compression. We can see that the regions with higher free volume, or more “flow defects,” coincide with 
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band inclination angle. Here we will compare the von Mises model with J2P as well as the DP models on 
this point. For the sake of consistency, we use exactly the same initial free volume configuration in the 
samples for the simulations by assigning each element with the free volume of 

 (28) 

where NOEL is the number to label the element, which is randomly assigned when the sample is freely 
meshed [33]. This method can give an approximate randomly distributed free volume with mean value 
of 0.05 and variance of 0.0001. Moreover, the configuration is kept the same when we deform the  
same sample.  

Figure 6 shows the contours of the strain for plane strain tension by (a) J2 model, (b) J2P model, (c) 
DP model with a = 0.045 and plane strain compression, (d) J2 model, (e) J2P model, (f) DP model with a 
different a = 0.087. All the contours are plotted at the time when the processes of shear banding are 
completed, that is, right after the yielding.  

Figure 6. Shear band formation under plane strain tension by (a) J2 model, (b) J2P model,  
(c) DP model (a = 0.045), and under plane strain compression by (d) J2 model, (e) J2P model, 
(f) DP model(a = 0.087). 

 

4
, 0.05 sin(NOEL)*10f iv �= +
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Firstly, we compare the shear band angles on these SB contours. Because we have multiple “bands” 
on each configuration, the quantitative measurements will contain certain fluctuations. For clarity, we 
first visualize the major shear bands by drawing the parallel lines along each band to indicate the 
orientations of shear bands and then make a direct measurement of the angles. The quantitative analysis 
will be considered later on. No matter for tension or for compression, the J2 and J2P models show nothing 
but 45°, whereas the DP model gives obvious changes. For tension, the DP model shifts the shear band 
up and gives an angle greater than 45°, while for compression the shear band is shifted lower and the 
angle is less than 45°. These angle deviations given by the DP model capture the trend qualitatively as 
found by extensive experimental measurements [41]. 

The reason we used a larger coefficient a (0.087) for compression than for tension is that compression 
was found not as sensitive to the coefficient a as in tension. The shear band angle change for 
compression by the DP model with a = 0.045 is too small for visualization in this round of comparisons. 
However, we show that it does give SB angle change, although it is small. [31] 

Although the J2P model cannot predict the shear band angle change, it does have some effect on the 
shear bands. From Figure 6b,e, J2P model seems to generate more shear bands than J2 model in tension 
and less in compression. If we calculate the ratios of the maximum and minimum strain, the strain in 
shear bands from the J2P model is much less localized than those from J2 and DP model, which means 
that including pressure effect via Equations 8 and 9 gives the material a tendency to deform more 
uniformly, or increase the shear band density. As discussed above, in J2P model the tensile pressure will 
make the free volume production easier, resulting in more shear bands as shown in Figure 6b, whereas 
the compressive pressure will diminish the shear bands more effectively, as shown in Figure 6e. We also 
noticed that this effect is less pronounced in compression than in tension, which is consistent with the 
discussion in section 2.3. 

5. Conclusions 

Based on the free volume theory, three elastoplastic models with different yield criteria have been 
examined and compared in describing deformation of bulk metallic glasses. The conclusions are 
summarized here: 

1. Shear banding as the inhomogeneous deformation mode of metallic glass was first simulated by 
the J2 model for both plane strain tension and compression. The results show the detailed dynamic 
process of formation of shear bands. Starting from the randomly distributed initial free volume 
configuration, severe strain localization in the form of shear bands was observed when the 
material yields, which is accompanied with abrupt increases of free volume. 

2. Shear band angles and SD effect are two commonly observed phenomena. The shear band angles 
were first compared among the three models. The DP model gives a larger than 45° shear band 
angle in tension and a smaller than 45° in compression, all in agreement with experimental 
findings, while J2 and J2P models predicted the same 45° in both tension and compression. The 
results show that the shear band inclination angle change is related to the hydrostatic stress during 
the localized deformation of metallic glasses.  

3. While the J2 does not predict SD effect at all, the J2P and DP models do. The SD effect described 
by DP model was also found to show increasing dependence of coefficient a. The most 
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reasonable SD (24%) corresponds to the coefficient a of the value 0.17, which agrees well with 
the experimental result.  

Despite the success of the DP model as compared with the J2 and J2P models, there might be 
limitations imposed by various parts of the constitutive models. One is the free volume model on which 
all these constitutive models are based. Although some key features can be captured including shear 
localization, shear band inclination angle, and tension-compression strength differential effect, we are 
still not able to see serrated flow. This is due partly to the rapid increase of free volumes. Another 
potential limitation is from the transition state theory where only the activation barrier is considered. As 
a result, after generalization into continuum simulation, the integration method is only performed at the 
single Gaussian point. It is difficult for this kind of local plasticity model to fulfill the strain 
compatibility requirements especially when the strain is highly localized. These issues, along with 
several numerical optimization methods, are currently being addressed by the authors. 
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