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Abstract: The huge consumption of iron ores in China has attracted much attention to utilizing low
grade complex iron resources, such as high-aluminum hematite-limonite ore, which is a refractory
resource and difficult to upgrade by traditional physical concentration processes due to the superfine
size and close dissemination of iron minerals with gangue minerals. An innovative technology for a
high temperature reduction-magnetic separation process was studied to upgrade a high-aluminum
iron ore assaying 41.92% Fetotal, 13.74% Al2O3 and 13.96% SiO2. The optimized results show that the
final metal iron powder, assaying 90.46% Fetotal, was manufactured at an overall iron recovery of
90.25% under conditions as follows: balling the high aluminum iron ore with 15% coal blended and
at 0.3 basicity, reducing the dried pellets at 1350 ˝C for 25 min with a total C/Fe mass ratio of 1.0,
grinding the reduced pellets up to 95%, passing at 0.074 mm and magnetically separating the ground
product in a Davis Tube at a 0.10-T magnetic field intensity. The metal iron powder can be used
as the burden for an electric arc furnace (EAF). Meanwhile, the nonmagnetic tailing is suitable to
produce ceramic, which mainly consists of anorthite and corundum. An efficient way has been found
to utilize high-aluminum iron resources.

Keywords: high-aluminum hematite-limonite ore; aluminum-iron separation; high temperature
reduction; wet magnetic separation

1. Introduction

The growth of the Chinese iron steel industry has been pushed forward by its rapid economic
development in recent years, and 1126 million tons of iron ore have been consumed in 2014, where
933 million tons were imported according to the data from Worldsteel Association [1]. However, iron
resources are limited, and the reserves of high-grade iron ores are declining, so it is of great importance
to optimize the mining rate of iron resources [2] and to utilize low-grade refractory iron resources,
such as high-aluminum limonite ores.

High-aluminum limonite ore is a typical refractory resource; it is difficult to upgrade by traditional
processes due to the superfine size and close dissemination of iron minerals with gangue minerals [3,4].
Some high-aluminum iron ores were directly blended in a sintering mixture at a low ratio, but the
sintering process and the properties of the product sinter were adversely affected, which was reviewed
by Lu et al. [5]. Meanwhile, high-aluminum ore affects the viscosity and desulfurizing capacity
of blast furnace slag [6]. Many upgrading approaches have been published for high-aluminum
limonite ore, including physical and chemical processes [4]. Recent research was focused on gravity
concentration and magnetic separation [7], flotation [8,9], sodium roasting and the magnetic separation
process [3,10–15]. However, iron and aluminum cannot be separated completely by physical processes,
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so iron recovery is low by the flotation process (around 70%), and as high as beyond 10% of sodium
additive is needed by the sodium roasting process, which brings the risk of the degradation of refractory
materials in furnaces [16,17] and higher costs.

The coal-based direct reduction-magnetic separation process is an efficient way to recover iron
from low-grade complex iron ores [18] and secondary resources containing ferrous material, such as
copper slag [19]. However, a low reduction rate is a problem of the reduction process, which is
always operated under 1100–1200 ˝C for more than 60 min. Elevating the reduction temperature is an
effective means to promote the reduction rate of iron minerals. Therefore, a novel technology of high
temperature reduction-wet magnetic separation of high-aluminum limonite is studied in this paper.

2. Materials and Methods

2.1. Raw Materials

The chemical compositions of high-aluminum hematite-limonite ore used in this study are
tabulated in Table 1. The total iron grade of the ore sample is 41.92%, and high alumina and silica
contents were observed, assaying 13.74% Al2O3 and 13.96% SiO2, respectively. Combining with
the X-ray diffraction (XRD) results shown in Figure 1, iron minerals mainly consist of hematite and
goethite, and the aluminum mineral is kaolinite. Figures 2 and 3 illustrate representative SEM-EDS
and optical micrographs of ore samples, which indicate that hematite is closely included with kaolinite,
leading to significant difficulties in the separation of iron and aluminum.

Table 1. Chemical compositions of high-aluminum hematite-limonite ore (wt. %).

Chemical Compositions (wt. %)

Fetotal FeO Al2O3 SiO2 CaO MgO Mn K2O Na2O P S Pb Zn LOI
41.92 0.17 13.74 13.96 0.13 0.88 1.24 0.42 0.03 0.13 0.01 0.64 0.21 7.20

Note: LOI, loss on ignition.
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Figure 1. XRD pattern of high‐aluminum hematite‐limonite ore. 
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Figure 2. Representative SEM-BSE micrographs of high-aluminum hematite-limonite ore. (BSE, Back
Scattered Electron Imaging; H, hematite; K, kaolinite).
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Figure 3. Granular hematite (H) filled in the particles of kaolinite (K) under reflected light.

CaCO3 of analytical grade was used to adjust the binary basicity of blends.
The soft coal was used as a reductant agent, with fixed carbon of 52.12% on an air dry basis

(FCad), volatile matter of 30.41% on a dry ash free (Vdaf) basis, ash of 4.49% on an air dry basis (Aad),
0.58% of S and a melting temperature of 1376 ˝C. Coal ash possesses high silica, calcium oxide and
sulfur content, as listed in Table 2. Soft coal as a reductant is 100% passing at 5 mm, and some soft coal
used for blending in the pellet feed was milled to 100% passing at 0.074 mm.

Table 2. Chemical compositions of coal ash (wt. %).

Chemical Compositions (wt. %)

Fetotal Fe2O3 SiO2 Al2O3 CaO MgO K2O Na2O P S
11.80 16.70 27.62 8.02 24.94 1.34 0.16 1.34 0.01 12.92
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2.2. Experimental Procedures

The experimental flow sheet includes procedures as follows: mixing the ore with CaCO3 and
soft coal, pelletizing of the mixture, high temperature reduction roasting of dried pellets, grinding the
reduced pellets and low intensity magnetic separation of the ground product to manufacture metal
iron powder.

Mixtures were prepared by mixing the ore, CaCO3 and soft coal fines. The mass of CaCO3

was determined by binary basicity, and the soft coal mass blended in pellets was calculated by the
coal-bearing mass ratio multiplied by the mass of the iron ore sample. Then, green balls were made by
balling the mixtures in a disc pelletizer of 0.8 m in diameter and a 0.2 m rim depth, rotating at 38 rpm
and being inclined at 47˝ to the horizontal. The screened green balls of 8–16 mm were loaded into the
drying oven to dry at 105 ˝C for 2 h until the weight was unchanged.

The dried pellets were put into the corundum crucible and covered by some soft coal, where the
mass of soft coal was determined by the C/Fe mass ratio. The crucible was covered by a graphite cover
and put into the muffle furnace (model: KSY-12-18, The Great Wall Furnace, Changsha, China), while
the reducing temperature was elevated to the target value. When the reduction time was ended, the
hot crucible was taken out and covered by pulverized coal to cool down quickly in the air to prevent
the reduced pellets from being re-oxidized.

The magnetic separation was performed in the Davis Tube (model: XCGS-73, Changsha Research
Institute of Mining and Metallurgy Co., Changsha, China) after 20 g of reduced pellets were ground in
the cone ball mill (model: RK/ZQMØ160ˆ60, Wuhan Rock Crush & Grand Equipment Manufacture
Co., Wuhan, China). The metal iron powder was obtained after magnetic separation. The grinding
fineness of reduced pellets was about 95% passing at 0.074 mm, and the magnetic field intensity
was 0.10 T.

The chemical compositions of the ore and metal iron powder were measured by X-ray fluorescence
spectroscopy (XRF, PANalytical Axios mAX, PANalytical B.V., Almelo, The Netherlands). The
crystalline phase composition of the material was determined using an X-ray diffractometer (XRD,
D/Max-2500, Rigaku Co., Tokyo, Japan). Proximate analysis of coal and the determination of the
fusibility of coal ash were conducted by the Chinese standards GB/T212-2008 and GB/T219-2008,
respectively. Microstructures of reduced pellets were observed by scanning electron microscope (SEM,
FEI Quanta-200, FEI Company, GG Eindhoven, The Netherlands), and the compositional analyses
were carried out using an energy dispersion system (EDAX-TSL, Ametek Inc., Paoli, CO, USA) within
the SEM.

2.3. Thermodynamic Analysis of Reduction Process

Equations (1)–(18) show the possible reactions during the reduction process of high-aluminum
hematite-limonite ore, and FactSage7.0 (Thermfact/CRCT, Montreal, QC, Canada; GTT-Technologies,
Herzogenrath, Germany) is applied to calculate the Gibbs energy changes of all of the reactions; the
results are depicted in Figures 4 and 5. In Figure 4, the line of Equation (1) is intersected by the lines of
Equation (3) and Equation (4) at T1 and T2. Because of the Boudouard reaction (Equation (1)), the CO
concentration is higher than that of Equations (2)–(4) at a temperature over T2, so the metallic iron
begins to appear (Equation (4)) where the CO concentration is over 58%. During T1 to T2, Fe3O4 is
reduced to FeO (Equation (3)), and the CO concentration is between 42% and 58%. The region of
T1 < T < T2 is the stable zone of the FeO phase. When the temperature is lower than T1, the CO
concentration is still higher than that of Equation (2), so Fe2O3 is reduced to Fe3O4 (Equation (2)).
Consequently, the regions of T < T1, T1 < T < T2 and T > T2 are the equilibrium stable fields of Fe3O4,
FeO and Fe, respectively. Theoretically, the reduction of iron oxide by solid carbon follows the steps
as Fe2O3ÑFe3O4ÑFeOÑFe beyond T2; transformations Fe2O3ÑFe3O4 and FeÑFeOÑFe3O4 will
occur when the reduction temperature is lower than T1; while Fe2O3ÑFe3O4ÑFeO and FeÑFeO
are the steps between T1 and T2 [20]. It is demonstrated that iron oxide is reduced by stepwise
deoxidation, and wüstite (FeO) is an intermediate product. Because of the presences of SiO2 and Al2O3,
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wüstite can easily chemically combine with them to form fayalite (Fe2SiO4; refer to Equation (6)) and
hercynite (FeAl2O4; refer to Equation (7)). Meanwhile, mullite (Al6Si2O13) may occur by the reaction
between SiO2 and Al2O3 (Equation (8)) and then is degraded by FeO to form fayalite and hercynite
(Equations (9) and (10)), both of which are unable to be reduced by CO thermodynamically [19,21].
Thus, solid carbon is used as the reductant, where fayalite and hercynite can be reduced beyond
805 and 830 ˝C, respectively. Moreover, alkaline-earth oxide can improve the reduction of fayalite and
hercynite by reacting with SiO2 and Al2O3 chemically to form larnite (Ca2SiO4) and calcium aluminate
(CaAl2O4), respectively.

C ` CO2 “ 2CO (1)

3Fe2O3 ` CO “ 2Fe3O4 ` CO2 T ą 570 ˝C (2)

Fe3O4 ` CO “ 3FeO ` CO2 T ą 570 ˝C (3)

FeO ` CO “ Fe ` CO2 T ą 570 ˝C (4)

1{4Fe3O4 ` CO “ 3{4Fe ` CO2 T ă 570 ˝C (5)

2FeO ` SiO2 “ Fe2SiO4 (6)

FeO ` Al2O3 “ FeAl2O4 (7)

3Al2O3 ` 2SiO2 “ Al6Si2O13 (8)

4FeO ` Al6Si2O13 “ 2Fe2SiO4 ` 3Al2O3 (9)

3FeO ` Al6Si2O13 “ 3FeAl2O4 ` 2SiO2 (10)

Fe2SiO4 ` 2CO “ 2Fe ` SiO2 ` 2CO2 (11)

FeAl2O4 ` CO “ Fe ` Al2O3 ` CO2 (12)

Fe2SiO4 ` 2C “ 2Fe ` SiO2 ` 2CO (13)

FeAl2O4 ` C “ Fe ` Al2O3 ` CO (14)

Fe2SiO4 ` 2CaO ` 2CO “ 2Fe `Ca2SiO4 ` 2CO2 (15)

FeAl2O4 ` CaO ` CO “ Fe ` CaAl2O4 ` CO2 (16)

Fe2SiO4 ` 2CaO ` 2C “ 2Fe `Ca2SiO4 ` 2CO (17)

FeAl2O4 ` CaO ` C “ Fe ` CaAl2O4 ` CO (18)
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3. Results and Discussion

3.1. Dosage of Reductant

The effect of reductant dosage on the reduction and separation processes is shown in Figure 6.
It shows that the optimum metallization degree, iron grade and recovery were achieved at 1.0 of the
carbon to iron (C/Fe) mass ratio, where the iron grade is 90.58%. However, only part of the iron was
reduced to metallic iron; both the metallization degree and iron recovery were lower than 60%.
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The coal-bearing process is an efficient means to enhance the reduction of complex iron ore
because the process can be self-sufficient chemically to complete the task of metallization if the
required heat is supplied [22,23]. Based on thermodynamic analysis, different coal-bearing mass ratios
were investigated to reveal the effects of coal-bearing ratio on the reduction and separation process,
where the coal-bearing mass ratio was defined as the division of the masses between the bearing coal
and iron ore. Results in Figure 7 show that the metallization degree of reduced pellets is elevated
dramatically by coal-bearing mass ratio increases from 0%–15%, and iron recovery is over 90% when
the ratio is 15%. However, the iron grade of metal iron powder after magnetic separation is on a
downward trend when the ratio is beyond 15% because of the high impurity contents in coal ash.
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Figure 7. Effect of coal-bearing mass ratio on the reduction and separation indexes (reducing at 1300 ˝C
for 20 min with a total C/Fe mass ratio of 1.0).

Fayalite and hercynite are detected in the reduced pellets of blends without coal-bearing,
as illustrated in Figure 8, leading to a lower metallization degree and iron recovery. Due to the
low melting temperature of fayalite, the liquid phase formed easily in the reduction temperature
range, and micromelting appearance was observed in the reduced pellets. Distributions of iron grains
in Figure 9 demonstrate that metallic iron grains exist at the outer layer of reduced pellets without
coal-bearing, and the inner layer is filled with fayalite and hercynite. In contrast, dominant iron
minerals are reduced to metallic iron at both the inner and outer layer by blending 15% coal fines in
the pellet feed, and minor iron minerals combine with Al2O3 to form a trace of hercynite. Mullite is
the main gangue mineral, which inhibits the grain growth of metal iron to a certain extent, so that
there are still some metallic iron grains with fine particle size less than 20 µm, resulting in the low iron
grade of the metal iron powder after magnetic separation.
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3.2. Optimization of Reduction Parameters

The iron grade of metal iron powder was raised from 81.83%–91.05% by increasing the reduction
temperature from 1250–1400 ˝C, as demonstrated in Figure 10. The reduction temperature is an
important factor that affects the reaction kinetics; a higher reduction temperature can promote the
migration and growth rate of metal iron grains during the reduction process. By considering economic
efficiency, the reduction temperature was suggested to be 1350 ˝C for further research.
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Figure 10. Effect of the reduction temperature on the reduction and separation indexes (reducing for
20 min with a total C/Fe mass ratio of 1.0, 15% coal blended in pellets).

Figure 11 presents the effect of reduction duration on the indexes of the reduction and separation
processes, which shows that the metallization degree and iron recovery were enhanced by prolonging
the reduction duration from 20–25 min. Further extension of the reduction time had a slightly negative
impact on the indexes. Therefore, reducing at 1350 ˝C for 25 min was recommended, where the metal
iron powder was manufactured with 85.00% of iron grade at a recovery of 92.05%, respectively.
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Figure 11. Effect of reduction duration on the reduction and separation indexes (reducing at 1350 ˝C
with a total C/Fe mass ratio of 1.0, 15% coal blended in pellets).

3.3. Effect of Binary Basicity

The effects of binary basicity (ratio of CaO/SiO2) on the reduction and separation process are
shown in Figure 12. The metallization degree of reduced pellets increases slightly and then keeps
steady when basicity is elevated from 0.02 (natural basicity) to 0.5; the beneficiation of iron concentrate
is improved, where the iron grade keeps increasing from 85.00%–92.64% while the recovery of iron is
over 90%. XRD of the reduced pellets with 0.3 basicity in Figure 13 proves that most iron minerals
are reduced to metallic iron; impurities, such as alumina and silica, react with calcium oxide to form
anorthite (CaAl2Si2O8); and the rest of the alumina exists as corundum. Metallic iron grains migrated
and agglomerated together to generate coarser particles (refer to Figure 14), contributing to higher
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iron grade and recovery in magnetic separation because of the higher liberation degree of the metal
iron grains in grinding.
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In summary, the optimum conditions were recommended as follows: preparing the green balls
by blending 15% coal and CaCO3 at 0.3 basicity with iron ore, reducing the dried pellets at 1350 ˝C
for 20 min with a total C/Fe mass ratio of 1.0 and magnetic separating of the ground reduced pellets
with a size up to 95% passing at 0.074 mm and at a 0.10-T magnetic field intensity. Table 3 presents the
chemical compositions of final products. The metal iron powder assaying 90.46% Fetotal was achieved
at an overall iron recovery of 90.25%. The final product can be applied as the burden for an electric
arc furnace, and the nonmagnetic tailings can be used to produce ceramic and glass [24,25]; the green
utilization of high-aluminum iron resources is probably achieved.

Table 3. Chemical compositions of final products (wt. %).

Sample Fetotal Al2O3 SiO2 CaO MgO MnO K2O Na2O P S

Metal iron powder 90.46 4.57 3.57 0.48 0.23 0.42 0.09 0.04 0.025 0.007
Nonmagnetic tailings 9.97 34.64 37.99 8.63 1.71 2.81 1.64 0.27 0.040 0.101

4. Conclusions

(1) A high-aluminum hematite-limonite ore, assaying 41.92% Fetotal, 13.74% Al2O3 and 13.96% SiO2,
was used as the raw material to manufacture metal iron powder, where iron minerals mainly
occur in hematite and goethite and aluminum minerals exist in kaolinite. Hematite is closely
disseminated with kaolinite, leading to harder separation between iron and alumina.

(2) Good quality metal iron powder assaying 90.46% Fetotal was produced at an overall iron recovery
of 90.25% under the following conditions: balling the mixture of iron ore with 15% coal and
CaCO3 fines at 0.3 basicity, reducing the dried pellets at 1350 ˝C for 25 min and with a total C/Fe
mass ratio of 1.0, grinding the reduced pellets up to 95% passing at 0.074 mm and magnetic
separation in a Davis Tube at 0.10 T of magnetic field intensity.

(3) The process provides a potential way to utilize high-aluminum iron ore, where the good quality
metal iron powder can be used as the burden for EAF and nonmagnetic tailings can be applied in
ceramic and glass industries.
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