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Abstract: The presence of heavy metals in aqueous solutions above certain limits represents a
serious threat to the environment due to their toxicity and non-degradability. Thus, the removal
of these metals from contaminated waters has received increasing attention during recent decades.
This paper describes the removal of Cu(II) from aqueous solutions by emulsion liquid membranes,
through a carrier-facilitated counter-transport mechanism, using benzoylacetone as the carrier and
HCl as the stripping agent (protons as counter-ions). To optimize the Cu(II) removal process,
the effect of the following operating parameters on the on the stability of the emulsion liquid
membrane and on the Cu(II) removal efficiency was studied: feed pH, HCl concentration in the
permeate phase, carrier and emulsifier concentration in the membrane phase, feed phase/emulsion
phase and permeate phase/membrane phase volume ratios, emulsification time and speed in the
primary emulsion preparation and stirring speed in the whole feed phase/emulsion phase system.
Typical membrane transport parameters, such as flux and permeability, were also determined.
Optimal Cu(II) removal conditions were: 5.5 feed pH, 10 kg/m3 benzoylacetone concentration
in the membrane phase, 18.250 kg/m3 HCl concentration in the permeate phase, 50 kg/m3 Span
80 concentration in the membrane phase, 200 rpm stirring rate, 5 min emulsification time, 2700 rpm
emulsification rate, 2:1 feed:emulsion volume ratio and 1:1 permeate:membrane volume ratio. In these
optimal conditions, 80.3% of Cu(II) was removed in 15 min with an apparent initial flux and
permeability of 0.3384 kg·m−3·min−1 and 0.3208 min−1, respectively.
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1. Introduction

Illnesses related to water pollution are considered among the major causes of death in the world,
and it is estimated that over two million people die each year for this reason [1]. The contamination of
industrial and natural waters by organic and heavy metal pollutants is recognized as one of the greatest
environmental problems nowadays. Heavy metals are not biodegradable in natural conditions, so
they tend to accumulate in living organisms, causing various diseases and disorders [2]; furthermore,
their presence in wastewater inhibits the biodegradation of organic pollutants, which might be present
in the wastewater [3]. According to the World Health Organization, the metals of most immediate
concern are chromium, copper, zinc, iron, mercury and lead [4].
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Copper(II) is introduced in large quantities into the aqueous environment in the wastewater
of many industries, including mining, metallurgy, plating, steelworks, paper and pulp, fertilizer,
petroleum refining, wood preservatives, and circuits printing [5,6].

Although copper(II) is a micronutrient element, it is considered a hazardous pollutant when it
cannot be maintained at an appropriate physiological concentration, and several disorders have been
described as a consequence of copper accumulation in animals and humans. Acute copper poisoning
causes gastroenteritis, diarrhea, anorexia, dehydration, and shock, while chronic copper poisoning
contributes to Alzheimer’s, Memkes and Wilson’s diseases [7]. For these reasons, copper(II) has been
classified as one of the priority pollutants by the US Environmental Protection Agency [8].

Several approaches have been studied and developed for the effective removal/recovery of copper
ions including chemical precipitation [9], cementation [10], adsorption [6,11–13], biosorption [14–16],
ion exchange [17], chelation [18], electro-driven processes [19–21] and pressure-driven membrane
processes [22,23]. Liquid membranes have also been used for the removal of copper from aqueous
solution [24–26].

Liquid membranes have demonstrated considerable potential as effective tools for the removal
of a wide variety of compounds from aqueous solutions [27]. Liquid membrane systems involve
two miscible liquids (feed and product phases) separated by a third immiscible liquid (membrane
phase). Three kinds of liquid membranes are usually considered: bulk, supported and emulsion liquid
membranes [27]. Emulsion liquid membranes are obtained by forming an emulsion between the
membrane and the product phases and dispersing this emulsion in the feed phase. The membrane
phase separates the encapsulated internal droplets of the product phase from the external feed phase
(Figure 1). The possibility of regenerating the membrane to permit its reuse [28,29] makes this
technique as interesting as the adsorption processes which use recently developed easily recyclable
adsorbents [30,31]
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Figure 1. Schematic representation of an emulsion liquid membrane process. 
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Figure 1. Schematic representation of an emulsion liquid membrane process.

In order to maximize the removal process, facilitated transport mechanisms have been
described [32]. Carrier-mediated transport combines chemical reactions with diffusion processes:
the carrier reacts with the target chemical species to form a complex, which diffuses through the
membrane to finally release the target species in the product phase. The process is usually accompanied
by the transport of other chemical species from the product to the feed phase. This coupled
carrier-facilitated counter-transport mechanism is interesting because it offers the possibility of
transporting a component against its own concentration gradient [33].

This paper studies the removal of Cu(II) from aqueous solutions by emulsion liquid membranes
through a carrier-facilitated counter-transport mechanism using benzoylacetone (HBA) as the carrier
and protons (HCl) as counter-ions. In order to optimize the Cu(II) removal process, the effect of
the different operating parameters (feed pH, HCl concentration in the permeate phase, carrier and
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emulsifier concentration in the membrane phase, feed phase/emulsion phase (Vf/Vemul) and permeate
phase/membrane phase (Vp/Vm) volume ratios, emulsification time (temul) and rate (remul) in the
primary emulsion preparation and stirring rate (rstir) in the whole feed phase/emulsion phase system)
on the stability of the emulsion liquid membrane, the Cu(II) removal efficiency and the value of typical
membrane transport parameters, such as flux and permeability, is analyzed.

2. Materials and Methods

2.1. Materials

Analytical grade chemicals and distilled water were used throughout this study. Benzoylacetone
(99%), kerosene and Span 80 were obtained from Sigma Aldrich (Madrid, Spain); copper(II) chloride
(98.5%) and HCl (37%) were supplied by Panreac (Barcelona, Spain).

2.2. Procedure

The aqueous external feed phase comprised a solution of Cu(II) 0.025 M in acetate buffer,
while the organic membrane phase was prepared by dissolving the carrier (benzoylacetone) and
the surfactant (Span 80) in the solvent kerosene. The internal phase consisted of aqueous solutions of
hydrochloric acid.

To prepare stable water in oil emulsions (w/o), the internal aqueous phase was added drop
wise to the organic phase under stirring and the mixture was emulsified at a high stirring rate, using
an OMNI MIXER homogeniser (Omni International, Kennesaw, GA, USA), to obtain a stable milky
white emulsion. This emulsion was slowly poured on the external Cu(II) aqueous phase in a glass
cell, equipped with a variable-rate propeller, and stirred to disperse the w/o emulsion in the external
aqueous phase.

To study the breakdown of the emulsion, pure water was use as external phase and the pH was
measured at intervals using a Crison micro pH 2000 pH-meter (Crison, Barcelona, Spain).

In the studies of Cu(II) removal, the external feed phase was periodically sampled and the samples
were allowed to settle for 3 min to separate the (w/o) emulsion phase from the external aqueous phase.
The Cu(II) content in the aqueous feed phase was analyzed by atomic absorption spectrometry, using a
ContrAA 700 (Analytik Jena) instrument (Edinburgh Instruments, Livingston, UK) at a wavelength
of 324.8 nm. All the experiments were performed at room temperature and in duplicate. The results
obtained showed a maximum deviation of 3%. No Cu(II) removal from the feed phase was observed
in the transport experiments without carrier present in the membrane phase.

Different experimental conditions analyzed to study emulsion breakage and Cu(II) removal are
shown in Table 1.

Table 1. Values of the different parameters studied.

Parameter Values Parameter Values

Feed pH 4.0; 4.5; 5.0; 5.5 * [HCl] (kg/m3) 1.825; 3.650; 18.250 *; 36.500
[HBA] (kg/m3) 1; 5; 10 *; 20 [Span 80] (kg/m3) 5; 10; 50 *; 100

rstir (rpm) 50; 100; 200 *; 300 Vf/Vemul 1; 2 *; 4; 8
Vp/Vm 0.75; 1.00 *; 1.25; 1.50 temul (min) 2.5; 5.0 *; 10.0

remul (rpm) 1800; 2700 *; 3600

* typical values used in the experiments.
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2.3. Methods

Emulsion breakage is determined from the ratio between the volume of internal product phase
leaked into the external feed phase by splitting (Vleak) and the initial volume of the internal phase
(Vp) [34].

BR(%) =
Vleak
Vp
× 100 (1)

The volume Vleak is calculated by the material balance obtained from the feed phase pH at any
time before or after contact [35], according to:

Vleak = Vf
10−pHf,0 − 10−pHf,t

10−pHf,t − 10−pHp,0
(2)

where Vf is the initial feed phase volume, pHf,0 and pHf,t are the pH in the feed phase at time 0 and at
time t, respectively, and pHp,0 is the initial pH of in the product phase.

The extent of Cu(II) removal from the feed phase (RE), was calculated, as a percentage, by using
the following equation:

R(%) =
[Cu2+]f,0 − [Cu2+]f,t

[Cu2+]f,0
× 100 (3)

where [Cu2+]f,0 and [Cu2+]f,t are the concentrations of Cu(II) in the feed phase initially and at time t,
respectively. Higher removal efficiencies were obtained at 15 min.

Initial copper(II) apparent fluxes (J) and permeabilities (P) through the membrane phase were
calculated from the slopes of the straight lines obtained when plotting the Cu(II) concentration in
the feed phase and ln[Cf,t/Cf,0], respectively, against time during the first 5 min of the experiments,
according to Equations (4) and (5) [32]. The use of these equations assumes that A is proportional to
the volume of the emulsion (A = k·Vemul), that the stripping reaction at the membrane phase/internal
phase interface is very fast, with no accumulation of solute in the membrane phase, and that the
emulsion globules obtained are of uniform size when the emulsion preparation conditions are the
same [36].

J = − Vf · dCf
Vemul · dt

(4)

ln
Cf,t

Cf,0
= −Vemul · P · t

Vf
(5)

3. Results

3.1. Emulsion Stability

Breaking percentages, at 30 min, of the emulsion liquid membranes prepared at different values of
the different parameters are shown in Table 2. The results show that breaking percentages lower than
3% were obtained in most of the experimental conditions. Only a high hydrochloric acid concentration
in the internal product phase, low Span concentrations in the membrane phase and high stirring rates
led to higher breakage values. The respective reasons for this were the hydrolytic rupture of some of
the ester bonds of Span 80 at high HCl concentrations in the product phase [37], which leads to some
destabilization of the emulsion, the increase in surface tension between the inner phase and kerosene
at low Span concentrations in the membrane phase [38], and the rupture of the emulsion globules
through impact with the impeller with the wall of the cell and with other emulsion globules at high
stirring rates [39].
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Table 2. Breaking percentages (B), at 30 min, of emulsion liquid membranes in different
experimental conditions.

Parameter Value B (%) Parameter Value B (%)

Feed pH

4.0 0.8

[HCl] (kg/m3)

1.825 0.5
4.5 0.9 3.650 0.8
5.0 0.9 18.250 0.9
5.5 0.8 36.500 4.2

[HBA] (kg/m3)

1 0.8

[Span 80] (kg/m3)

5 4.1
5 0.8 10 2.8
10 0.9 50 0.9
20 1.3 100 0.3

rstir (rpm)

50 0.6

Vf/Vemul

1 2.5
100 0.8 2 0.9
200 0.9 4 0.6
300 3.7 8 0.4

Vp/Vm

0.75 0.4
temul (min)

2.5 0,6
1.00 0.9 5.0 0.9
1.25 1.8 10.0 2.2

1.50 2.3
remul (rpm)

900 0.7

1800 0.8
2700 0.9

3.2. Copper(II) Removal

3.2.1. Transport Mechanism

The carrier-facilitated counter-transport of Cu(II) using benzoylacetone (HBA) as a carrier in the
membrane phase and protons (HCl) as counter-ions in the product phase is represented in Figure 2.
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The Cu(II) present in the feed phase reacted, at the feed/membrane interface, with the
carrier (HBA), which diffused from the bulk membrane phase to the interface, according to the
chemical equation:

Cu2+
(f) + 2HBA (m) ⇔ Cu(BA)2 (m) + 2H+

(f)
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The formed Cu(BA)2 complex diffused through the membrane (down its concentration gradient)
to the membrane/product interface, where the high proton concentration of the product phase led to
the break of the complex, by exchanging protons for Cu(II) and reversing the above reaction, which
resulted in the release of Cu(II) into the product phase and in the regeneration of the HBA, thus
initiating a new separation cycle. The described mechanism is therefore a coupled counter-transport
mechanism, with Cu(II) and H+ traveling in opposite directions.

3.2.2. Influence of Different Experimental Parameters on Flux, Permeability and Removal Efficiency

The effect of feed pH on Cu(II) removal was studied between pH 4.0 and pH 5.5 (Figure 3).
A higher pH was not considered because cupric hydroxide begins to precipitate above pH 6. In the
studied range, Cu(II) flux, permeability and removal efficiency increased as the feed pH increased.
This result was expected because the driving force of the transport process is the gradient of the proton
chemical potential (concentration) between the product and the feed phases [40], so the higher the feed
pH, the higher the proton gradient and the driving force. The presence of acetate buffer to maintain
the feed pH constant is therefore an important factor of the transport process.
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Value of other parameters: typical experimental conditions.

Figure 4 shows the influence of the concentration of hydrochloric acid in the internal aqueous
phase on the extent of Cu(II) removal. It can be observed that Cu(II) flux, permeability and removal
efficiency increased with the increasing HCl concentration from 1.825 to 18.250 kg/m3, due to the
greater difference in hydrogen ion concentrations between the internal and the external phases, which
increases the stripping driving force, delaying the accumulation of the Cu(II)-BA complex in the
membrane phase [40]. A further increase in the HCl concentration to 36.500 kg/m3 led to a decrease in
the Cu(II) flux, permeability and removal efficiency due to both an increase in the emulsion viscosity,
which leads to the increase in the size of the emulsion droplets (decreasing the mass transfer surface
area), and a decrease in the emulsion stability, due to the hydrolysis of Span 80, which produces a
partial loss of its surfactant properties and, consequently, a partial destabilization of the emulsion,
which leads to a diminution in the removal performance [37].
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The effect of the benzoylacetone concentration in the membrane phase on Cu(II) removal is shown
in Figure 5. The Cu(II) flux, permeability and removal efficiency increased as the carrier concentration
in the membrane phase increased from 1 to 10 kg/m3, but a further increase of the carrier concentration
had little effect on the transport efficiency. This is the result of two contrary effects: (i) the increase
in the HBA concentration enhances the extraction of Cu(II) as a higher number of HBA molecules
are associated to the Cu(II) ions to form the Cu(BA)2 complex, increasing its concentration gradient
through the membrane phase and favoring its diffusion to the membrane/product interface; and
(ii) the increase in the carrier concentration leads to a slight increase in the emulsion viscosity, which
leads to an increase of the droplet size, with a corresponding decrease in the mass transfer surface area,
which leads to a decrease in the transport efficiency.
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The effect of the surfactant concentration on Cu(II) removal is shown in Figure 6. As can be
seen, the Cu(II) flux, permeability and removal efficiency increased as the surfactant concentration
in the membrane phase increased from 5 to 50 kg/m3. The increase of the surfactant concentrations
tends to reduce the interfacial tension between the phases [38], which favors the formation of smaller
emulsion droplets, leading to a much larger mass transfer surface area. A further increase in the
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surfactant concentration leads to a slight decrease in Cu(II) transport through the membrane due to
the increase in the viscosity of the emulsion, which produces an increase in the emulsion droplet size
and, consequently, a decreases in the mass transfer surface area, and to the increase in the thickness
of the liquid membrane in the emulsion droplets [41], which leads to an increase in the Cu(II) mass
transfer resistance.
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The effect of the stirring speed, used to mix the emulsion and the feed solution, on the removal
of Cu(II) is shown in Figure 7. The Cu(II) flux, permeability and removal efficiency increased as the
stirring speed increased from 50 to 200 rpm, due to the increase in the number of smaller emulsion
droplets, which increased the interfacial area between the feed phase and the membrane phase, leading
to an increase in the mass transfer surface area. Any further increase in the stirring speed drastically
affects the emulsion stability, leading to a decrease in Cu(II) transport through the membrane, resulting
in the rupture of the emulsion globules, as already mentioned, through impact with the impeller with
the wall of the cell and with other emulsion globules [39].
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The effect of the feed phase/emulsion phase volume ratio on the permeation of Cu(II) was studied
at a constant permeate phase/membrane phase volume ratio by changing the volume of the feed
aqueous phase while keeping the volume of the emulsion (membrane phase volume plus permeate
phase volume) constant. As can be seen from Figure 8, the Cu(II) flux and permeability through the
membrane significantly increased when that volume ratio increased from one to four, but increased
only slightly when the ratio increased from four to eight. As the volume ratio increased, the number of
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Cu(II) ions to be transported increased, but with no change in the number of molecules of carrier (in
the membrane phase) or in the number of counter-ion molecules (in the product phase). The result
was an increase in both flux and permeability through the membrane as the ratio increased from one to
four, but with no further increase at a higher ratio. This was accompanied by a decrease in the removal
efficiency (the percentage of Cu(II) ions removed from the total Cu(II) ions present in the feed phase),
as a consequence of the substantial increase in the number of Cu(II) ions to be removed in the feed
phase (due to the increase in the feed phase volume) compared with the number of Cu(II) ions that can
be effectively transported by a constant number of carrier and counter-ion molecules.
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The effect of the permeate phase/membrane phase volume ratio on the removal of Cu(II) was
studied at a constant feed phase/emulsion phase volume ratio. The results showed that the removal
of Cu(II) increased as the volume ratio increased to one, while higher ratios led to a decrease in Cu(II)
removal (Figure 9). This may be explained by the fact that the increase of the internal aqueous phase
volume produces two contrary effects: (i) an increase in both the viscosity of the emulsion phase
(producing an increase in the size of the emulsion droplets and, consequently, a decrease of the mass
transfer surface area) and the emulsion breakage, which leads to a decrease of the removal efficiency;
and (ii) an increase in the amount of stripping agent in the product phase at a constant amount of
Cu(II) in the feed phase, which increases the stripping driving force, delaying the accumulation of the
Cu(II)-BA complex in the membrane phase [40] and leading to an increase in the removal efficiency.
The overall result of these two effects was an increase in the Cu(II) removal as the volume ratio
increased to one, but a decrease at higher volume ratios.
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The emulsification time and emulsification rate had no significant effect on the removal of Cu(II),
as can be seen in Figure 10. This can be explained if we assume that the expected decrease in Cu(II)
removal caused by the slight increase in the emulsion breakage when the emulsification time and
emulsification rate are increased is counteracted by a slight increase in the removal efficiency, the result
being no significant effect on Cu(II) removal. Whatever the case, the removal was slightly higher for a
5 min emulsification time and a 2700 rpm emulsification rate.Metals 2017, 7, 19 10 of 12 
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Figure 10. Effect of emulsification time (a) and emulsification rate (b) on Cu(II) flux (J), permeability
(P) and removal efficiency (RE). Value of other parameters: typical experimental conditions.

3.2.3. Optimal Removal Conditions

From the results shown in Figures 3–10 and Table 2, it can be concluded that the optimal
experimental conditions for Cu(II) removal from aqueous acetate buffer solutions by emulsion liquid
membranes using a facilitated counter-transport mechanism with HBA as the carrier, protons as
counter-ions (HCl as the stripping agent), Span 80 as the emulsifier and kerosene as the organic diluent
are: 5.5 feed pH, 10 kg/m3 HBA concentration in the membrane phase, 18.250 kg/m3 HCl concentration
in the permeate phase, 50 kg/m3 Span concentration in the membrane phase, 200 rpm stirring rate,
5 min emulsification time, 2700 rpm emulsification rate, 2:1 feed:emulsion volume ratio and 1:1
permeate:membrane volume ratio. In these optimal conditions, 80.3% of Cu(II) was removed in 15 min
with an apparent initial flux and permeability of 0.3384 kg·m−3·min−1 and 0.3208 min−1, respectively.

4. Conclusions

We have described the removal of Cu(II) from aqueous acetate buffered solutions by emulsion
liquid membranes using a facilitated counter-transport mechanism with benzoyl acetone as the
carrier, HCl as the stripping agent, Span 80 as the emulsifier and kerosene as the organic diluent.
The effects of different experimental conditions on the Cu(II) removal were studied in order to obtain
the optimal removal conditions. Cu(II) removal increased by increasing the HCl concentration in
the internal aqueous phase from 0.1 to 1.0 M, the surfactant concentration in the membrane phase
from 0.5% to 5.0%, the stirring speed from 50 to 200 rpm, and the treatment and phase ratios up to
one. Removal was slightly affected by changes in the emulsification time and emulsification speed.
The initial apparent fluxes and permeabilities of Cu(II) through the liquid membrane in the different
experimental conditions were also determined and were seen, in general, to follow a similar variation as
that of Cu(II) removal. Optimal Cu(II) experimental/economical removal conditions were: 5.5 feed pH,
10 kg/m3 HBA concentration in the membrane phase, 18.250 kg/m3 HCl concentration in the permeate
phase, 50 kg/m3 Span concentration in the membrane phase, 200 rpm stirring rate, 5 min emulsification
time, 2700 rpm emulsification rate, 2:1 feed:emulsion volume ratio and 1:1 permeate:membrane volume
ratio. In these optimal conditions, 80.3% of Cu(II) removal was attained in 15 min with an apparent
initial flux and permeability of 0.3384 kg·m−3·min−1 and 0.3208 min−1, respectively.
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