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Abstract: This paper deals with the improvement of fatigue life of AISI 1040 steel components by
using a High Power Diode Laser (HPDL). First, the meaningfulness of each operational parameter
was assessed by varying the experimental laser power and scan speed. After laser treatment, fatigue
tests were performed to investigate the influence of laser processing parameters on the material
resistance. The fatigue tests were carried out by using a rotating bending machine. Wöhler curves
were obtained from the analysis of experimental results. Second, in the light of experimental findings,
a 3D transient finite element method for a laser heat source, with Gaussian energy distribution, was
developed to predict the temperature and the depth of the heat affected zone on the workpiece. The
model allows us to understand the relationship between the laser treatment parameters and the
fatigue enhancement of the components. HPDL was found to significantly increase the fatigue life of
the irradiated workpieces, thus revealing its suitability for industrial applications.
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1. Introduction

The improvement of mechanical strength and fatigue life of structural components is one of
the most important objective to be achieved in order to satisfy the stringent requirements of today’s
designers and producers [1–3]. Designing, monitoring, and providing innovative technological
solutions aimed at improving the mechanical properties and in particular the fatigue life of steel
components are therefore of fundamental importance [4,5]. During the last decades, many different
approaches to improve the fatigue life of steels were proposed, i.e., heat and mechanical treatments,
surface alloying, overlying coatings, etc. Among them, surface treatments on steel components
have different applications in many technological domains. Generally, they are applied to obtain an
improvement of hardness, wear resistance, and corrosion properties. These treatments permit steel
components to meet the demand of high performance (load, pressure, wear, etc.) of the industrial
world [6]. However, these processes, while having many advantages, are often expensive, time
consuming, and do not allow a selective treatment of small portions of the component. In this respect,
the use of lasers for the thermal surface treatment of steel components has appeared as an innovative
solution since it offers selectivity, leaving areas not directly exposed to laser radiation unaltered,
making process control very easy and facilitating manipulation [7–10]. A high power laser beam
may be directed onto a surface using very precise multi-axis handling systems. A laser makes it
possible to achieve extremely localized heating areas, remaining the bulk of the workpiece at the lower
temperatures. The low temperature mass of the workpiece act as a heat sink during the cooling phase,
allowing cooling rates of 103–104 K/s suitable for the martensitic transition, resulting in increased
wear and fatigue resistance of the component [11]. Moreover, when compared to other solutions, laser
hardening causes little deformation of the part thanks to precise, controlled, and low heat input, thus
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virtually eliminating post-machining processes. In addition, laser sources can be applied to a wide
range of materials [12–16]. All cast iron, medium-carbon steel, and tool steel are amenable to the laser
hardening process [11], and even low carbon steels are amenable because of the rapid heating and
cooling rates generated by the laser radiation [17]. On the other hand, the main disadvantage compared
to conventional technologies is found with the effects of back tempering induced by multiple passes.
In fact, a multi-pass hardening process is characterized form back-tempering phenomena. Every laser
track re-heats the area previously heated, inducing a transformation of the martensite into tempered
martensite characterized by lower hardness. Thus, the back tempering phenomena leads to a lack of
uniformity of the surface mechanical properties [8,18]. A High Power Diode Laser (HPDL), different
from other sources, is well suited to surface hardening. In fact, the HPDL beam profile ensures a
uniform heating of the treated surface due to its characteristics: top-hat in the slow axis direction
and Gaussian in the fast axis direction. The shape of the spot is typically rectangular or elliptical [19].
Finally, HPDLs have important advantages in terms of energy consumption, compactness, endurance,
and running costs, making them suitable and appealing for many industrial applications [20].

To exploit the tremendous application potential of High Power Diode Lasers, research and
development programs have been undertaken since 1994 [19,20]. Pashby et al. [21] reported the use of
an HPDL for surface-hardening of a plain carbon and an alloy steel, investigating the relationships
between laser power and processing speed. They achieved a constantly hardened depth and
demonstrated the technical capability of diode lasers in surface hardening. Liu et al. [6] treated
grey cast iron surface with diode laser to improve the hardness and wear resistance of the surface.
They found that residual compressive stresses observed at the surface greatly enhance fatigue life and
hardness. Fly et al. [22] treated low carbon steel by means of a low-power laser. Even in this case, an
improvement in fatigue behavior was observed.

In laser surface treatments, obtaining required hardness while minimizing thermal deformation
is critical because structural components require high precision. Unfortunately, satisfying both the
aforementioned requirements is a challenging task, and a good predictive model can significantly
reduce time and costs in finding optimal process conditions. For this reason, extensive research has been
carried out to either develop predictive models or uncover relationships between process parameters
and process outcomes [23,24]. To have the possibility to carry out a full analysis of thermal treatment,
it is necessary to have proper mathematical and numerical models that can provide information about
instantaneous temperature fields, the change in time of fractions of particular phase proportions of the
material, instantaneous stress distributions, and residual stresses. Currently, numerical methods are
leading in the modelling of technological processes, allowing us to analyse complex shapes with any
initial and boundary conditions. Moreover, numerical modelling is characterized by high elasticity with
respect to numerical algorithm development and the possibility to consider variable thermo-physical
parameters of the analysed problem [25–28].

In the present investigation, a High Power Diode Laser was used to improve the fatigue life of
AISI 1040 steel workpieces. The interaction between laser source and steel surface was looked into
by varying the laser operational parameters (i.e., laser power and scan speed). Laser treatment was
performed by simultaneously rotating and translating the substrate under a stationary laser head to
generate a helical scanning pattern. The effectiveness of the laser treatment was studied by rotating
bending fatigue tests and microscopic analysis.

In the light of experimental findings, a 3D transient finite element method for a laser heat source,
with a Gaussian energy distribution, was developed to predict the temperature and the depth of
the Heat Affected Zone (HAZ) on the AISI 1040 steel workpiece. The thermo-mechanical problem
was solved sequentially in two phases. First, a transient thermal analysis was carried out in order
to obtain the temperature distribution, which was used as input for the following static analysis.
The experimental investigation demonstrated that HPDL surface treatment significantly increase
the fatigue life of the irradiated workpieces, thus revealing its suitability for industrial applications.
Furthermore, the simulation results turned out to be in good agreement with the experimental data.
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2. Experimental

2.1. Material and Methods

A low carbon steel (AISI 1040) was chosen as the starting material due the suitability for thermal
hardening treatments [17,29] and since it is commonly used in structural components as gears, shafts,
axles, bolts, studs, couplings, and cold headed parts. The mechanical properties and chemical
composition of the steel are reported in Table 1. The thermal properties are reported in Table 2.
Starting from 2 m rods, 75 samples were cut with the geometry reported in Figure 1 (Φ 15 × 116 mm).
The surface of the section, with diameter 6 mm, was machined with the same operational conditions,
using a milling machine with medium finishing inserts. Surface hardening thermal treatments were
performed using an HPDL (Rofin-Sinar model DL015, Plymouth, MI, USA) with a maximum peak
power of 1.5 kW, wavelength of 940 nm and elliptical spot of 0.6 mm along the minor axis and 1.9 mm
along the major axis. During the laser thermal treatments, the samples were held on a CNC turning
device (DENFORD, Brighouse, West Yorkshire, UK) and processed by rotating them under the laser
source as reported in Figure 2. For protection and insulation purposes, an inert gas flow of Argon was
directed to the surface of the sample. Figure 2 reports a schematization of the system used.

Table 1. Mechanical properties and chemical composition of AISI 1040.

Property Value Composition (wt %) Value

Rm (Mpa) 670 C 0.37–0.44
E (GPa) 200 Mn 0.50–0.80

ν 0.3 Si 0.15–0.40
HRC 13 P and S ≤ 0.035

Table 2. Thermal properties of AISI 1040.

Temperature (◦C) Heat capacity (J/kgK) Thermal Conductivity (W/mK)

0–100 486 50.7
200 515 48.1
300 569 45.7
400 586 41.7
500 649 38.2
600 708 33.9
700 770 30.1
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Surface laser treatments followed the experimental schedule reported in Table 3. The experimental
factors investigated were laser power and scan speed (peripheral speed calculated as the product
of the rotational speed and the radius of the small section). Focus and number of passes were fixed
respectively at 0 and 1. For each condition investigated (that is, 25), the rotation speed and the beam
feed were properly chosen to ensure no overlap of the laser treatment. All the tests were replicated
three times (75 experimental tests). After that, the area treated was characterized in terms of variations
in the extent of the hardened area (i.e., (Heat Affected Zone) HAZ).

Table 3. Experimental factors

Factors Values

Laser power (W) 100 150 200 250 300
Scan speed (mm/s) 12 14 16 18 20

2.2. Fatigue Tests

A four-point rotating bending machine was used to carry out the fatigue tests, as shown in
Figure 3. The samples were loaded with alternate cycles of tensile and compressive stresses as
they were simultaneously bent and rotated. Loads from 10 to 16 kg were applied during the tests,
corresponding to an alternating stress (σMAX) in the range of approximately 320 to 460 MPa.
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2.3. Numerical Model

A thermo-mechanical numerical simulation was performed to describe the hardening process on
the fatigue specimens. ANSYS code (ANSYS, Inc., version 17.2, Canonsburg, PA, USA) was used for
the numerical model definition. The simulation first step was the thermal analysis that was carried out
by using SOLID70 thermal elements. In the second step of the simulation, starting from the thermal
solution, the thermal elements were converted into SOLID185 structural elements. At the end of
the simulation, the radial displacement, strain and stress of specimen were evaluated, in order to
have the profile of the deformed specimen [30]. An axially symmetric object (standard tensile test
specimen), 15 mm in outer diameter, 6 mm in inner diameter, and 116 mm in length, was subjected
to the simulation as reported in Figure 4, where the meshes used in both thermal and mechanical
calculations are presented. As shown in Figure 4, a finer mapped mesh was used in the area subjected
to higher temperatures being directly located below the incident laser heat flux. This approach permits
to reduce modelling and solution times.
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(b) ocal magnification.

The laser heating was modelled as thermal load by using a heat flux over an approximated
elliptical spot of 3.8 × 1.2 mm2. The laser beam power of 200 W was obtained by imposing a flux
density of about 43.86 W/mm2. The moving laser beam has a Gaussian distribution of heat flux.
The model contains overall about 18,000 nodes and 36,000 elements. The starting environmental
temperature was 20 ◦C. The material properties used in the Finite Element Method (FEM) model are
reported in Tables 1 and 2.

The numerical model was calibrated using the following experimental scenario: laser power
200 W and scan speed 16 mm/s. In this experimental condition, thermocouples were used to
obtain the experimental temperature profiles over time in three different tests. All the experimental
thermal trends were compared with the numerical response of the model, as shown in Figure 5. The
convective coefficients were chosen to have the best fitting between the experimental and numerical
temperature profiles.
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3. Results and Discussion

Results show that among the laser power values examined (see Table 3), the treatments at 200 W
highlight the best performance. These process conditions lead to a change in substrate properties
without melting phenomena, with scan speed in the range 16 to 20 mm/s. On the contrary, the
treatment conditions at lower laser power (100–150 W) did not lead to significant changes in the
morphology of the analysed substrates. In particular, any grain structure modification was observed.
Increasing the power to 250 or 300 W, independently from the scanning speed, surface melting of
the specimen was observed. These results are in good agreement with literature results [31] and are
supported by the results reported in Figure 6. It reports life cycles of the steel specimen vs. the laser
scan speed treatment obtained fixing the laser power at the value of 200 W. The laser scan speed was
found to be an influential factor in the process. Increasing the laser scan speed, the life of the specimen
increases. The amount of thermal energy the steel can absorb during its treatment decreases, and the
process reaches the condition in which it is possible to have a martensitic transaction. The curves trend
indicates that there is a significant increasing of the fatigue life in the specimen treated with the diode
laser. More importantly, the nose of the Wöhler curve for the laser-treated substrates is reached at a
number of cycles that is almost twice that of the untreated substrates (NT label in Figure 6). These
results are also confirmed in literature in the study made from Guarino et al. [18] and are also in good
agreement with data reported in the pertinent literature [6,19]. The increment of the fatigue life can be
attributed to the formation of a superficial annealed martensitic structure due to thermal phenomena
induced by the laser treatment. The subsequent laser scan causes a further heat treatment which leads
to a slight annealing of the steel (i.e., back tempering phenomenon) [29,32]. This phenomenon is clearly
reported in Figure 7, which shows a cross section of the steel specimen heat-treated at 200 W and
20 mm/s in laser power and scan speed, respectively. In the latter figure, it is possible to observe that
the martensitic transition reaches a thickness of about 180 µm.

Laser treatments were carried out in order to maintain a constant laser scan speed. Due to the
varying section of the sample, its rotating speed was accordingly changed when moving from the
largest section zone of the substrate to the smallest one. It is worth to note that all the parameters
were chosen to avoid or at least limit the overlapping phenomenon. As shown in Figure 8, each laser
treatment started at point A, where the diameter of the specimen is the largest, and continued along the
surface of the substrate passing to point B, varying the laser scan speed as mentioned before because
of the decreasing of the diameter. Between the points B and C, the diameter is constant, as it is the
laser scan speed. Finally, passing from C to point D, the diameter increases, and the laser scan speed is
adjusted accordingly. Table 4 reports the interaction time between the laser beam and the specimen at
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different scan speed obtained along the constant section (i.e., from B to C). In particular, the lower the
scan speed the higher the interaction time. It must be noticed that an excessive treatment time lead to
the back-tempering phenomenon while a too-short treatment time does not guarantee sufficient heat
input required for the martensitic transition.
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Table 4. Interaction time and fatigue test results. NT refers to the untreated sample.

Factors Values

Laser scan speed (mm/s) NT 12 14 16 18 20
Interaction time (s) 0 15.71 13.46 11.78 10.47 9.42√
Interaction time (s1/2) 0 3.96 3.66 3.43 3.23 3.06
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Figure 9 shows the fatigue tests results in terms of number of cycles vs. the square root of laser
interaction time with the substrate. The latter term, which is suggested to be proportional to the laser
power, as reported in literature [12,32], allows a better understanding of the dependence of the fatigue
life from the laser power itself. As expected, the number of cycles decreases as the laser power increases
(Figure 9). It has been seen, from the experimental model regression, that there is a dependence of
fatigue life endurance from the treatment time according to the following regression model:

CN = −6.1 × 104
√

t + 2.5 × 105, (1)

where CN is the cycle number and t is the treatment time. The R2 is 0.95.
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fatigue life from the laser power itself. As expected, the number of cycles decreases as the laser power 
increases (Figure 9). It has been seen, from the experimental model regression, that there is a 
dependence of fatigue life endurance from the treatment time according to the following regression 
model: = −6.1 · 10 √ + 2.5 · 10 , (1) 

where CN is the cycle number and t is the treatment time. The R2 is 0.95. 

 
Figure 9. Number of cycles vs. laser interaction time (Scan speed = 20 mm/s). Figure 9. Number of cycles vs. laser interaction time (Scan speed = 20 mm/s).

3.1. Numerical Simulation Results

Figure 10 shows the temperature over the time for three different points (A, B, C) in a small section
of the specimen during the laser treatment process. The peak temperatures were observed in proximity
of the heat source position (point A). A high temperature gradient can be observed during the heating
step, which is followed by the cooling phenomenon after the maximum temperature is reached.
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Figure 11 shows the temperature map evolution during the hardening process simulation at two
different times: 1.5 and 16 s. The laser scan speed was set at 20 mm/s. The maximum temperature
reached is about 850 ◦C, lower than the melting point of the material (1515 ◦C). This scenario clearly
indicates that all examined points are outside the fusion “window” and in the right thermal conditions
for the hardening transition.
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Figure 11. Temperature distribution during the hardening process of AISI 1040 steel specimen at two
different times: (a) t = 1.5 s; (b) t = 16 s.

As showed in Figure 12, the FEM model allows identifying the substrate thickness of the workpiece
with a temperature profile of greater than 600 ◦C. This area corresponds to the HAZ zone where there
are the thermal conditions for the martensitic transition. Figure 12 shows a good agreement between
the simulation (Figure 12a) and experimental results (Figure 12b) being, in both cases, the hardened
thickness of about 180 µm. In particular, the simulation predicts a slightly shallower depth for all
the scan speed investigated. It must be noticed that the fitting between the numerical model and the
experimental data is characterized by a mean absolute error of ~7%. The matching between the FEM
model and the experimental data can therefore be considered very good, even if it is compared with
data available in the literature [11,24,33].
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Figure 12. Heat Affected Zone (HAZ) in (a) numerical and (b) experimental model (Laser
power = 200 W and Scan speed = 20 mm/s).

The reliability of the developed FEM model is also confirmed by considering the data that the
simulation can predict in terms of max stress vs. cycle number. In the experimental test, sample
rupture is taken when there is a strong reduction in the stress level compared to the stabilized cycles. In
numerical simulation, this method is not suitable for predicting sample failure. However, the model is
able to make a good prediction of the maximum stress vs number of cycles providing a useful support
for the experimental investigation.

4. Conclusions

A High Power Diode Laser source was adopted to investigate its capability to increase the fatigue
life of AISI 1040 steel samples by the thermal-surface-hardening process. Analysis of the microstructure
of the specimens revealed two main different areas: (i) a topmost area characterized by a homogenous
distribution of the annealed martensite and (ii) an unaltered underling area made of ferrite and perlite
structure. From the experimental results, the following conclusions can be drawn:

• The most suitable thermal conditions (i.e., change in structure without melting phenomena) are
reached with a single laser scan by using a laser power of 200 W and a scan speed of 20 mm/s.
Lower laser power has no effect, higher laser power causes the surface melting. In both cases, the
result is independent of the scan speed adopted.

• The laser thermal surface treatment increases the fatigue life of treated material with respect to
the untreated material.

• The extent of the Heat Affected Zone was consistently found to depend on the laser fluency.
An excessive treatment time or a too-high laser power inhibit the thermal conditions required for
the martensitic transition. This is due to the excessive heat input supplied to the sample.

Finally, in the light of experimental findings, a Finite Element Method model was developed and
validated with the aim to have a suitable tool for laser surface hardening process simulation. The
comparison of experimental and numerical results revealed a good correlation for both the extent of
the Heat Affected Zone and fatigue life with an error of ~7% and ~4%, respectively. The experimental
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results show the great potential of High Power Diode Laser for the surface hardening of steel substrates,
and the simulations reveal the capability of the Finite Element Method solutions to be very helpful in
predicting, controlling, and managing the laser surface hardening processes.
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