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Abstract: Shape memory alloys (SMAs) are advanced engineering materials which possess
shape memory effects and super-elastic properties. Their high strength, high wear-resistance,
pseudo plasticity, etc., makes the machining of Ni-Ti based SMAs difficult using traditional
techniques. Among all non-conventional processes, micro-electric discharge machining (micro-EDM)
is considered one of the leading processes for micro-machining, owing to its high aspect ratio
and capability to machine hard-to-cut materials with good surface finish.The selection of the most
appropriate input parameter combination to provide the optimum values for various responses is very
important in micro-EDM. This article demonstrates the methodology for optimizing multiple quality
characteristics (overcut, taper angle and surface roughness) to enhance the quality of micro-holes in
Ni-Ti based alloy, using the Grey–Taguchi method. A Taguchi-based grey relational analysis coupled
with principal component analysis (Grey-PCA) methodology was implemented to investigate the
effect of three important micro-EDM process parameters, namely capacitance, voltage and electrode
material.The analysis of the individual responses established the importance of multi-response
optimization. The main effects plots for the micro-EDM parameters and Analysis of Variance
(ANOVA) indicate that every parameter does not produce same effect on individual responses, and
also that the percent contribution of each parameter to individual response is highly varied. As a
result, multi-response optimization was implemented using Grey-PCA. Further, this study revealed
that the electrode material had the strongest effect on the multi-response parameter, followed by
the voltage and capacitance. The main effects plot for the Grey-PCA shows that the micro-EDM
parameters “capacitance” at level-2 (i.e., 475 pF), “discharge voltage” at level-1 (i.e., 80 V) and the
“electrode material” Cu provided the best multi-response.

Keywords: micro-EDM; Ni-Ti shape memory alloy; micro-machining; Grey relational analysis;
multi-response optimization
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1. Introduction

The advent of miniaturization in addition to perpetual consumer demands and competitive
markets are driving companies to extensively consider new methods of manufacturing. Moreover,
the universal adoption of artificial intelligence, information and communication technologies as
well as the requirements for product compactness, portability, flexibility have necessitated the
development of innovative and new paradigms in the production industries. As a result of
miniaturization, micro-machining applications have increased substantially in recent times. In fact, a
large number of sectors which thrive on miniaturization involve predominantly automation-enabled
electromechanical system products. The majority of products involving micro-machining can be
associated with the automotive industries (diesel engine injection nozzles, typically with micro-jet
holes of diameter < 300 µm, depth > 1 mm with a number of holes > 4), semiconductor devices,
biotechnology products, medical tools etc. [1]. Its applications have flourished with the realization of
the benefits of micro-machined features. For example, micro-nozzles in injectors directly affect the
performance of diesel engines in terms of combustion, noise, emissions and reliability. Additionally,
miniaturization has resulted in better atomization, penetration, and spatial distribution of injected fuel
in high pressure diesel engines [2]. There are numerous applications such as valves, industrial torch
tips and a large number of products in the medical, aerospace industries, etc., where micro-features
are crucial.

Aspects such as the dimensional accuracy of micro-features, their surface finish, profile, etc.,
are critical to the overall functioning of the respective product. Indeed, different micro-machining
approaches each with inherent benefits and limitations can be pointed out. As a consequence of the
size effect and slender tools in the case of mechanical micro-machining, the machining forces are
very high, which leads to frequent tool breakage, burr formation, surface cracks, etc. [3]. Similarly,
laser-based micro-machining results in a poor surface profile and inferior surface integrity. Among
several alternatives, electric discharge machining (EDM) has emerged as a reliable process for miniature
and micro-machining applications owing to its numerous benefits [4,5]. Furthermore, the EDM process
can be utilized independently of the hardness of the workpiece material, since no mechanical action of
the cutting tool or the abrasive tool is involved in the process [6]. As a result of the latest enhancements
and accomplishments in the EDM process, micro-machining—which was earlier regarded as unfeasible
or impractical—has now become achievable [7]. On account of its abundant benefits, different
special purpose variants based on EDM principles can be listed, such as micro-EDM, aerospace
EDM, medical EDM, semi-conductor EDM, etc. Micro-EDM, on account of its low discharge energy
and high frequency, can successfully achieve the desired accuracy and surface finish, as compared to
conventional EDM. The effective and efficient operation of micro-EDM depends on the appropriate
selection of process parameters and their range [8]. The spark gap in the case of conventional EDM is
primarily chosen depending on the material removal rate (MRR) and the desired surface finish. In
the case of micro-EDM, the spark gap is kept very small to achieve the desired accuracy and limit
the electrode wear rate (EWR). The performance of micro-EDM depends on many factors, including
the dielectric used, pulse current, pulse profile (e.g., shape, length, etc.), frequency, etc. [9]. The EWR
can be minimized with the use of lesser spark energy. Still, it is a matter of serious concern when a
combination of micro and macro-features need to be produced (often required in generating complex
3D micro-profiles) in micro-EDM. This can be attributed to differential EWR in micro and macro
features, which deteriorate the electrode profile. The drilling of a blind hole using an electrode with a
constant wear rate often results in a smaller diameter than required [10]. Actually, as a result of the
constant wear rate, the electrode diameter reduces continuously with increasing depth, thus producing
an inaccurate hole. Even though a narrow spark gap in micro-EDM results in higher accuracy and
lower EWR, it hinders the process of debris removal. Subsequently, the higher concentration of debris
between the electrode and the workpiece along with continued feed provides inaccurate geometry as
well as poor surface integrity [11].
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Machining at the micro level itself is a complicated process that requires precision and accuracy to
obtain good quality. If the micro-machining is done on difficult-to-machine material, the task becomes
more exacting. Ni-Ti based shape memory alloys (SMA) are one such difficult-to-machine material with
applications in numerous fields (automobile actuators, biomedical, aerospace, micro-electromechancial
systems, etc.) [12,13]. These alloys possess the unique properties of pseudo-elasticity, bio-compatibility,
corrosion resistance and shape memory effect. These properties make them an excellent material
for various applications, yet these properties also hinder their machining characteristics. While
Ni-Ti-based materials are hard to machine, the shape memory effect complicates the machining issue.
Furthermore, during the conventional machining of micro-sized shapes, the slender tool is required
and the machining forces are high due to the size effect. Thus, non-traditional methods such as
micro-EDM are the best alternative for machining micro-shapes on SMAs. Even for micro-EDM, the
selection of the range of parameters and the optimal solution is a challenge, as during machining the
electrode itself undergoes erosion, undermining the accuracy in cases where the erosion is beyond
acceptable limits. Therefore, it is important to find an appropriate combination of input machining
parameters for machining SMAs. Hsieh et al. [14] studied the machining characteristics of Ti-Ni-X
SMA during wire electro-discharge machining. Laser-based micromachining of Ni-Ti-based SMA was
explored to study the single and multishot ablation threshold fluence and the incubation coefficient
effect on the quality of microfeatures [15]. The optimization of the process parameters of the high speed
milling of Ni-Ti-based SMA was conducted [16]. It was revealed that to obtain low machining forces,
a burr size of 15 m/min cutting speed is optimal. Rasheed et al. [8] investigated the effect of the process
parameters of micro-EDM on hole quality while drilling micro-holes in Ni-Ti SMA. Jahan et al. [17]
compared the surface characteristics of Ni-Ti-based SMA with Ti-6Al-4V, when machined by the
micro-EDM process. It was discovered that Ni-Ti-based SMA possessed a comparatively smoother
surface finish.

The accomplishment of the desired dimensional accuracy, profile, surface finish, MRR, EWR,
etc., in micro-machining such as micro-drilling and micro-milling is a daunting task. It depends on
the appropriate selection of process parameters, their range, etc. The task becomes more complex
with the presence of more than one response and the requirement of their simultaneous control
within a closed range of acceptability limits. Notably, each process parameter has a variable and
contradictory effect on each response. It means an optimization tool which can identify the most
suitable combination of process parameters is crucial for the superlative performance of the micro-EDM
process. Multi-performance-characteristic (MPC) optimization is one such tool that can achieve
acceptable micro-machined quality. Generally, there exist a large number of MPC optimization
techniques, with each technique possessing its own merits and demerits. A particular MPC technique
may be ideal for some applications, but the same technique may produce inaccurate results for another
application. Therefore, the selection of the appropriate MPC tool for a given application is very
important to achieve the desired results in micro-EDM. This issue has been convincingly addressed
by [18]. They demonstrated that the application of Taguchi-based grey relational analysis (GRA)
compounded with principal component analysis (PCA) in precise machining. This approach was
all about synchronization between the robustness of Taguchi’s experiment design, the conversion
of characteristic response data into comparable normalized sequences without affecting its inherent
essence through GRA and the coupling of normalized-multiple-responses by applying an inherent
weighting of each response that is statistically derived through the inherent process characteristics by
employing PCA. As compared to a general MPC optimization technique, which is subjective in nature
and depend upon expert opinion, Taguchi-based Grey-PCA is quantitative in nature. The analysis of
responses and subsequent statistical processing brings out the weighting estimates through the inherent
nature of the process. Similarly, Chiang [19] optimized the process parameters of the injection-molded
thermoplastic part using a fuzzy GRA technique. GRA was also used by Chiang and Chang [20]
in the multi-response optimization (removal rate and surface roughness) of wire-EDM process
parameters for Al2O3 particle-reinforced composite. Moreover, Palanikumar et al. [21] employed
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GRA and Lin [22] applied the Taguchi-based GRA for the multi-response optimization of turning
process parameters. There have been numerous investigations in the literature, where single and
multi-response optimizations were carried out. However, the multi-response optimization of process
parameters for the micro-machining of Ni-Ti-based SMA using micro-EDM process is close to negligible
in the literature. Therefore, this study is conducted to make some progress in the field.

The objective of this study is the improvement of the quality of micro-machining in Ni-Ti based
alloy using micro-EDM. A methodology for optimizing the multiple quality characteristics, namely
overcut, taper angle and surface roughness has been developed. In this work, a Taguchi-based
grey relational analysis coupled with principal component analysis (Grey PCA) was implemented to
investigate the effect of three important micro-EDM process parameters, namely capacitance, voltage
and electrode material.

2. Materials and Methods

A resistor capacitor (RC) circuit-based micro-EDM (Masuzawa, Tokyo, Japan) is shown in
Figure 1a, with kerosene oil was used as the dielectric for performing the experiments. A tabletop
type micro-EDM was attached with an optical microscope, which facilitated inline observations of the
region being machined and enabled the assessment of a micro-hole without removing the work piece
from the setup.
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Figure 1. (a) Tabletop type micro-electric discharge machining (micro-EDM) used in the investigation;
(b) resistor capacitor (RC) circuit of the power source.

The general organization of the RC-type, generator-cut, process energy source (PES) circuitry of
micro-EDMs is schematically shown in Figure 1b. The PES is capable of generating pulse frequencies
ranging from a few tens of nanoseconds to a few micro-seconds, and can operate in the voltage range
between 45 to 120 V.

SMA have many advantages and applications. However, it is considered as difficult to cut
material by conventional machining, especially when micro-level manufacturing is required. That
is why Ni-Ti-based SMA is used in this study. The specimen was cut into a rectangular plate of
3 mm × 1.5 mm × 0.5 mm. Properties of the specimen material (as provided by supplier) are given in
Table 1.

Tungsten and brass electrodes with 100 micrometers in diameter were used. The tool’s material
properties (as provided by supplier) are provided in Table 2. Kerosene was used as the dielectric fluid
because it is easily available and cost effective, however many other types of dielectrics are available
in the market.
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Table 1. Specimen material properties.

Work Piece Material Ni-Ti SMA

Composition Ni: 55.8%, Ti: 44.2%, C < 0.02%
Density (kg/m3) 6500

Melting Point (◦C) 1310
Electrical Resistivity (µΩ·m) 820
Modulus of Elasticity (Mpa) 41–75 × 103

Coefficient of Thermal Expansion (/◦C) 11 × 10−6

Ultimate Tensile Strength (Mpa) 1070
Total Elongation (%) 10

Table 2. Properties of tool materials.

Tool Material Tungsten (Super FSK) Brass (C2680)

Composition W > 99.99% Cu:64–68%, Pb: < 0.05%, Zn: 36–32%
Density (kg/m3) 19,300 8400

Melting Point (◦C) 3370 930
Coefficient of Thermal Expansion (/◦C) 4.6 × 10−6 18.7 × 10−6

Thermal Conductivity (W/m·K) 180 119

Three process parameters, namely capacitance, discharge voltage and electrode materials were
chosen. The latter is a categorical parameter, whereas the remaining two are numeric parameters. Two
levels of all three parameters were chosen as shown in Table 3.

Table 3. Process parameters and range of parameters.

Parameters Symbol Type Units Level-1 Level-2

Capacitance A Numeric pF 155 475
Discharge Voltage B Numeric V 80 100
Electrode Material C Categorical - Brass Tungsten

To systematically investigate the effect of selected process parameters on individual and multiple
responses, Taguchi’s L8 orthogonal array—as shown in Table 4—was used to perform experimental
investigations. Three replicates were considered and the average of the measured responses was
considered for the analysis of the results.

Table 4. Experiment scheme and responses.

Experiment
No.

Process Parameters Responses

Capacitance
(A)

Discharge
Voltage (B)

Electrode
Material (C)

Overcut
(µm)

Taper
Angle (o)

Surface Roughness
(Ra in µm)

1 1 1 1 7.8463 1.8504 0.0986
2 1 1 2 5.8022 1.3625 0.0882
3 1 2 1 9.1984 1.7579 0.1106
4 1 2 2 6.7986 1.9658 0.1013
5 2 1 1 8.4798 1.1140 0.1157
6 2 1 2 6.7408 0.9499 0.1053
7 2 2 1 9.3144 1.1404 0.1378
8 2 2 2 7.0628 0.7789 0.1194

Standard
Deviation 1.265 0.444 0.015

2.1. Responses

Since the wear behavior of the electrodes of selected materials is different, this may result in
characteristics of the drilled micro hole. Consequently, three responses, namely, overcut, taper angle



Metals 2017, 7, 486 6 of 15

and surface roughness were selected to record, analyze and investigate the effect of input process
parameters. The response parameters provided in Table 4 are the average of three replicate responses.
The dimensions of the holes were measured using a scanning electron microscope ((SEM), JEOL,
Tokyo, Japan).

The overcut of micro-hole is an important accuracy aspect of a micro-hole. It was estimated by
the difference between the average diameter of a micro-hole after machining and the diameter of a tool
by using Equation (1).

Overcut =
(Da − D)

2
(1)

where Da is the average diameter of micro-hole produced and can in turn be estimated as below:

Da =
(Dt + Db)

2

where, Dt is the top diameter of the micro-hole produced, and Db is the bottom diameter of the
micro-hole produced. D is the tool diameter.

The taper (represented by angle α) in the drilled hole is a typical characteristic of holes machined
by micro-EDM. It was measured as the difference between the diameter at the entry and exit of a
micro-hole as given in Equation (2).

α = tan−1
(

Dt − Db
2h

)
(2)

where α is the taper angle, and h is the thickness of the workpiece.
Surface roughness, which greatly influences the in-service performance of a machined component

is important to all machining processes, conventional or non-conventional, and hence, in micro-EDM
as well. In the present study, the average surface roughness (Ra) was measured by Talysurf CCI-6000
(Taylor Hobson, Leicester, UK) and through SEM. In order to measure the wall surface roughness,
holes were drilled at the edges of the plate such that only a portion of the hole is drilled at the edge as
shown in the Figure 2. Figure 2 compares the surface roughness of holes drilled with non-optimized
parameters and optimized parameters.

Metals 2017, 7, 486  6 of 15 

 

The overcut of micro-hole is an important accuracy aspect of a micro-hole. It was estimated by 
the difference between the average diameter of a micro-hole after machining and the diameter of a 
tool by using Equation (1). = −2  (1) 

where Da is the average diameter of micro-hole produced and can in turn be estimated as below: = +2   

where, Dt is the top diameter of the micro-hole produced, and Db is the bottom diameter of the micro-
hole produced. D is the tool diameter. 

The taper (represented by angle α) in the drilled hole is a typical characteristic of holes machined 
by micro-EDM. It was measured as the difference between the diameter at the entry and exit of a 
micro-hole as given in Equation (2). = −2ℎ  (2) 

where α is the taper angle, and h is the thickness of the workpiece. 
Surface roughness, which greatly influences the in-service performance of a machined 

component is important to all machining processes, conventional or non-conventional, and hence, in 
micro-EDM as well. In the present study, the average surface roughness (Ra) was measured by 
Talysurf CCI-6000 (Taylor Hobson, Leicester, UK) and through SEM. In order to measure the wall 
surface roughness, holes were drilled at the edges of the plate such that only a portion of the hole is 
drilled at the edge as shown in the Figure 2. Figure 2 compares the surface roughness of holes drilled 
with non-optimized parameters and optimized parameters. 

(a) (b)

Figure 2. Scanning electron microscope (SEM) image of hole cut at edge to measure surface roughness: 
(a) using unoptimized parameters; (b) using optimized parameters. 

This portion of the hole was then measured using Talysurf CCI-6000 as shown in Figure 3. The 
captured data is then processed using talymap software (Taylor Hobson, version gold, Leicester, UK) 
for the surface roughness analysis. 

Figure 2. Scanning electron microscope (SEM) image of hole cut at edge to measure surface roughness:
(a) using unoptimized parameters; (b) using optimized parameters.

This portion of the hole was then measured using Talysurf CCI-6000 as shown in Figure 3.
The captured data is then processed using talymap software (Taylor Hobson, version gold, Leicester,
UK) for the surface roughness analysis.
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Roughness Analysis.

3. Analysis of Results

The three measured response parameters, namely overcut, taper and surface roughness were
analyzed to arrive at meaningful conclusions. The response data as given in Table 4 were systematically
processed to analyze individual and multi-response characteristics. The stepwise processing to analyze
the result is presented in the following text.

3.1. Estimation of Signal-to-Noise Ratio (S/N Ratio)

In the Taguchi method, the measured response is analyzed to obtain a targeted value through a
parameter “signal-to-noise ratio or S/N ratio”, where “signal” represents the desirable (mean) value of
the output characteristic and the term “noise” represents the undesirable value (standard deviation, or
S.D.) for the output characteristic. Taguchi uses the S/N ratio (ratio of mean to S.D.) to measure quality
characteristics deviating from the desired value. The S/N ratio Ψ is defined as per Equation (3):

Ψ = −10·log(M.S.D) (3)

where, M.S.D. is the mean-square deviation for the output characteristic.
The Taguchi method prescribes three categories of quality characteristics, i.e., the lower-the-better,

the higher-the-better, and the more nominal-the better. To obtain optimal micro-machining response,
lower-the-better quality characteristic for all the three responses were considered. Mean-square
deviation for lower-the-better quality characteristic can be expressed as per the Equation (4):

M.S.D =
1
m

m

∑
i=1

S2
i (4)

where, m is the number of tests and Si is the value of the individual responses as given in Table 4 for
the ith experiment.

The data was analysed for S/N ratios using MiniTAB software. Table 5 shows the S/N ratios
of all three response parameters. As per standard procedure, the level-wise mean of the S/N ratio is
plotted to analyze the main effect. A combination of the levels of parameters giving highest value of
S/N ratio gives the optimum setting.
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Table 5. Signal to Noise (S/N) ratios for the lower-the-better characteristics of all three responses.

Experiment
No.

Process Parameters Signal to Noise (S/N) Ratios for
Individual Responses

A B C Overcut Taper Angle Surface Roughness

1 1 1 1 −17.8933 −5.34530 20.1223
2 1 1 2 −15.2719 −2.68668 21.0847
3 1 2 1 −19.2742 −4.90000 19.1267
4 1 2 2 −16.6483 −5.87074 19.8875
5 2 1 1 −18.5677 −0.93785 18.7328
6 2 1 2 −16.9796 0.44599 19.5536
7 2 2 1 −19.3831 −1.14115 17.2182
8 2 2 2 −16.5743 2.16963 18.4631

The main effect plots for the three chosen responses, i.e., overcut, taper angle, and surface
roughness are shown in Figure 4a–c respectively. It shows that the effect of all the process parameters
on the three responses is different. The optimum setting for overcut was determined as A1B1C2; for
taper angle, it was A2B1C2; and for roughness it was A1B1C2. The results of the analysis of variance
performed at a confidence level of 95% showed that the factors A, B and C had a varied contribution to
every individual response. For overcut, the contribution of A, B and C is 6%, 8%, and 76%, respectively;
for taper angle, the contribution of A and C is 77% and 8.3%, respectively, while that of B is very
small. However, the contribution of the interactions A × B and A × C was 3.9% and 1.4%, respectively.
The contribution of A, B and C to roughness is 50.7%, 29.8% and 18.7%, respectively. These results
provide some meaningful revelations as the two electrode materials are exotically different in terms
of mechanical properties and consequently of wear behavior. It is clear that the contribution of
capacitance is very large for taper angle and surface roughness, since the capacitance represents the
total energy discharged in the electrode gap for an RC-based PES. At a high discharge energy, higher
capacitance causes increased roughness. Moreover, at a higher discharge energy, the erosion rate of the
brass electrode is considerably higher as compared to the tungsten electrode. This can be attributed to
the lower melting point of the brass (930 ◦C) electrode in contrast to the tungsten (3370 ◦C) electrode,
which possess a higher melting point. In fact, the difference in thermal conductivities of the two (119
and 180 W/m·K) electrodes is not very large. The higher erosion rate eventually results in a greater
taper angle in the case of holes drilled with brass tools.
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The analysis of individual single responses as evident from the main effect plots and the
results of the analysis of variance given in the preceding paragraphs suggests that a final decision
on the optimized process parameter setting cannot be obtained at this stage. This is because the
effect of the parameters and their contributions to each response are very different. Consequently,
multi-response optimization becomes very important. In multi-response analysis the S/N ratio data
are further processed to consolidate all the three responses into a single multi-response parameter
through Grey-PCA.

3.2. Grey Relational Analysis

A Taguchi-method-based, grey-relational, multi-performance optimization of micro-EDM
maximizes machining quality as evaluated by overcut, taper angle and surface roughness. The absolute
values of the S/N ratios of individual responses are varied and cannot be compared. Grey relational
analysis generates [23] the linear normalization of S/N ratios in order to convert incomparable data
into a comparable sequence in the range between zero and unity. The normalized S/N ratio xij for the
ith performance characteristic in the jth experiment can be expressed as in Equation (5) [18]:

xij =
ηij − minj ηij

maxj ηij − minj ηij
(5)

According to GRA, the normalized S/N ratios of every response are converted between zero
and one using Equation (5). The normalized values of the S/N ratios of all the responses are given in
Table 6. This is further processed into the “Grey Relational Coefficient (GRC): ξij”, which for the ith
performance characteristic in the jth experiment can be expressed as per Equation (6).

ξij =
mini minj

∣∣xo
i − xij

∣∣+ ξmaximaxj
∣∣xo

i − xij
∣∣∣∣xo

i − xij
∣∣+ ξmaximaxj

∣∣xo
i − xij

∣∣ (6)

where xo
i is the normalized S/N ratio for ith response parameter and ξ is the distinguishing coefficient,

which is defined in the range 0 ≤ ξ ≤ 1 and is usually taken as 0.5 [18].
The S/N ratios of each response parameter as converted into GRC (using Equation (6)) are still

unique for individual responses, and can be transformed into a single, multi-response parameter. The
GRCs for all the three responses are generated from the normalized sequence and the same is given in
Table 6. All calculations for the Grey-PCA were done mathematically using Equations (5)–(11).
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Table 6. Normalized sequences of S/N ratios and Grey relation coefficients.

Experiment No.
Normalized Sequences Grey Relation Coefficients

Overcut (X) Taper Angle (Y) Surface Roughness (Z) For X For Y For Z

1 0.5820 0.9028 0.2081 0.4621 0.3564 0.7061
2 0.0000 0.4917 0.0000 0.4621 0.3564 0.7061
3 0.9670 0.8249 0.4505 0.3408 0.3774 0.5260
4 0.2837 1.0000 0.2626 0.6380 0.3333 0.6556
5 0.7624 0.2823 0.5535 0.3960 0.6391 0.4746
6 0.2672 0.1441 0.3434 0.6517 0.7763 0.5928
7 1.0000 0.3045 1.0000 0.3333 0.6215 0.3333
8 0.3589 0.0000 0.6283 0.5821 1.0000 0.4432

The GRCs (i.e., ξij) of individual responses are clubbed, in next step, into a single multi-response
parameter by applying weightings to each GRC and subsequently adding them. The task of finding the
weighting factors for the GRCs of the individual responses is performed through principal component
analysis (PCA).

3.3. Principal Component Analysis

Pearson [24] initially proposed the PCA method and later Hotelling [25] developed this method
into a useful statistical tool for analysis. The main essence of this method is that it is based on
statistical technique and free from subjective judgment and preserves as much original information as
possible. Various data processing steps involved with the PCA simplify a large number of correlated
variables into fewer uncorrelated and independent principal components. Eventually, PCA evolved as
a powerful analytical tool for the optimization of multi-response parameters [18]. The various steps
involved in PCA are described in the following text [26]:

Step-1: For an experiment scheme of m number of experiments (in the present case it is eight) and
n number of the response parameters (in present case it is three), the array of GRC: x, of each response
parameter can be represented as in Equation (7):

xi(j), i = 1, 2, . . . , m; j = 1, 2, . . . , n;

X =


x1(1) x1(2) · · · · · · x1(n)
x2(1) x2(2) · · · · · · x2(n)

...
... · · · · · ·

...
xm(1) xm(2) · · · · · · xm(n)

 (7)

As a first step to PCA, the GRC array is processed to generate correlation coefficients (CCs).
The CC array (Rji) is generated from the array of the GRC as per Equation (8). The CC array so
generated is given in Table 7.

Rjl =

(
Cov(xi(j), xi(l))
σ(xi)

(j)× σ(xi)
(l)

)
, j = 1, 2, 3, · · · , n; l = 1, 2, 3, · · · , n (8)

where, in Cov (xi(j), xi(l)) is the covariance of sequences xi(j) and xi(l); σ(xi)(j) is the standard deviation
of sequence xi(j); σ(xi)(l) is the standard deviation of sequence xi(l).

Step-2: The covariance array developed in Step-1 and as given Table 7 is further processed to find
eigenvalues and eigenvectors. The eigenvalues and eigenvectors are determined from the CC array as
per Equation (9):

(R − λk Im)Vik = 0 (9)

where, R is the correlation matrix λk, ∑n
k=1 λk = n, k = 1, 2, . . . , n are eigenvalues; Vik =

[ak1, ak2, . . . akn]
T are eigenvectors corresponding to the eigenvalue λk. The eigenvectors for principal

components are given in Table 8.
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Table 7. Array of covariance sequences derived from Grey relation coefficients.

Experiment No.
Covariance Sequences

X-X X-Y X-Z Y-Y Y-Z Z-Z

1 11.5886 13.9712 12.7034 16.8436 15.3152 13.9255
2 11.5886 13.9712 12.7034 16.8436 15.3152 13.9255
3 12.4290 14.3950 13.7909 16.6719 15.9723 15.3021
4 10.4219 13.3238 12.2100 17.0337 15.6099 14.3050
5 12.0425 13.2611 13.7533 14.6031 15.1451 15.7072
6 10.3338 11.8434 12.3603 13.5734 14.1658 14.7841
7 12.4819 13.5633 14.5011 14.7384 15.7574 16.8469
8 10.7859 11.3650 13.1192 11.9753 13.8237 15.9574

Table 8. Eigenvectors for principal components.

Response Parameter
Eigenvector

First Principal
Component

Second Principal
Component

Third Principal
Component

Overcut (X) 0.627056 −0.151254 0.764149
Taper angle (Y) 0.376495 −0.799933 −0.467287

Surface roughness (Z) 0.681947 0.580714 −0.444656

Step-3: The eigenvectors, or principal components, determined in Step-2 are used to find a
weighting to be multiplied with the GRC (i.e., ξij) of each response parameter. The uncorrelated
principal component Ymk is formulated as per Equation (10):

Ymk =
n

∑
i=1

xm(i) · Vik (10)

where Ym1 is called the first principal component, Ym2 is called the second principal component and
so on. The principal components estimated using Equation (10) are aligned in descending order with
respect to variance, and therefore the first principal component i.e., Ym1 accounts for most variance in
the GRC data. The square of the constituents of the principal component i.e., loading (denoted as wi)
gives a weighting to the GRC of the corresponding response variable. The weightings or contributions
of each response parameter to the multi-response parameter so calculated is given in Table 9.

Table 9. Contribution of individual response to multi-response parameters.

Individual Response Parameter
Contribution and Weightage to Multi-Response Parameter

Weightage Contribution

Overcut 0.393199 39.32%
Taper angle 0.141748 14.28%

Surface roughness 0.465052 46.50%

The multiplication of weighting with the respective GRC (i.e., ξij) of each experiment integrates all
three GRCs from each experiment into a single index known as grey relational grade (GRG). The overall
evaluation of the multi-response parameter is based on the GRG denoted as γj. The GRGs so calculated
are shown in Table 10.

γj =
n

∑
i=1

wiξij (11)

where γj is the GRG for jth experiment, the weighting factor for the ith performance characteristic,
and n is the number of performance characteristics. From a set of m experiments, in present case
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eight, the experiment with largest GRG gives the best multi-response parameter i.e., the experiment with
largest GRG gives the process parameter setting which will give the optimized multi-response parameter.

Table 10. Contribution of individual response to multi-response parameters.

Experiment No. Grey Relational Grade Order or Rank

1 0.560615 4
2 0.560615 5
3 0.432148 7
4 0.603019 2
5 0.467047 6
6 0.641973 1
7 0.374177 8
8 0.576729 3

These contributions (i.e., w1, w2 and w3) listed in Table 10 for three individual responses, namely
overcut, taper angle and surface roughness, are indicated as 0.393199, 0.141748, and 0.465052 (giving a
contribution of a single response i.e., overcut, taper angle and surface roughness on the multi-response
as 39.23%, 14.28% and 46.5%, respectively). According to the performed experiment design, it can be
clearly observed from Table 10 that the micro-EDM process parameter settings of experiment number
six has the highest grey relation grade. Thus, the sixth experiment provides the best multi-response
parameter among the eight experiments.

In accordance with the Taguchi method, the level-wise mean of the grey relation grade for each
micro-EDM process parameter was calculated and is shown Table 11. It was calculated by taking
the average of those values of GRG with the same levels of every process parameter. In this way,
the average GRG for process parameter A at Level-1, process parameter A at Level-2, process parameter
B at Level-1, process parameter B at Level-2 and so on are estimated. Figure 5 shows the mean values of
GRG at different levels of each micro-EDM process parameter. The dashed line in this figure represents
the magnitude of the total mean of the GRGs.

Table 11. Response table for signal-to-noise ratios and Grey relational grade.

Symbol Parameter Level-1 Level-2 Max-Min.

A Capacitance −5.849 −5.530 0.318
B Voltage −5.265 −6.114 0.849
C Electrode Material −4.513 −6.866 2.354

Evidently, the larger the value of GRG, the better the multiple-response parameter. As per
response Table 11, A2, B1 and C1 provide the largest values of GRG for factors A, B and C, respectively.
Therefore, A2, B1 and C1 are the condition for the optimal parameter combination of the micro-EDM
process, i.e., capacitance at 455 pF, voltage 80 V and brass electrode. The mean of the GRG plot
shown in Figure 5 also clearly represents the response of the micro-EDM process parameters on GRG.
The level-wise GRG plot also depicts the variation in the multi-response when the process parameters
change from level one to level three. When the values of the last column of Table 11 are compared, it is
evident that the difference between the maximum and minimum values of GRG for factor C are the
largest, followed by factors B and A. This specifies that the electrode material has the strongest effect
on the multi-response parameter, followed by voltage and capacitance. This is especially true for the
selected factors, which were varied in the selected range.
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Figure 5. Level-wise response of the Grey relational grade.

Figure 6 depicts the image obtained by scanning electron microscope (SEM) of the drilled hole on
Ni-Ti SMA using the unoptimized parameters and optimized parameters. The optimized parameters
showed good circularity, less overcut, and good surface finish.
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Figure 6. SEM image of hole drilled on Ni-Ti SMA: (a) using unoptimized parameters; (b) using
optimized parameters.

4. Conclusions

A proper combination of input parameters is essential in micro-EDM in order to obtain the
optimum values of different responses. As a consequence, this article has established a methodology
for optimizing multiple attributes (overcut, taper angle and surface roughness) to improve the quality
of micro-holes in Ni-Ti based alloy, using the Grey–Taguchi method. The following conclusions can be
drawn from this investigation.

• A Taguchi-based, grey-relational analysis coupled with principal component analysis (Grey PCA)
methodology was implemented to investigate the effect of three important micro-EDM process
parameters, including capacitance, voltage and electrode material.

• The optimal combination of process parameter settings for individual responses revealed that for
each response there was a different process parameter setting, thus, optimizing one response may
perturb the other responses.
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• Hence, the analysis of individual single responses established the importance of multi-response
optimization. It was evident from the main effects plot and ANOVA that the effect of the
parameters and their contributions to each response was different. As a result, multi-response
optimization became very important, where the S/N ratio data were further processed to
consolidate all the three responses into a single multi-response parameter through Grey-PCA.

• Three response parameters, i.e., overcut, taper angle and surface roughness, were combined
into a single multi-response parameter called “grey relational grade or GRG” to arrive at
the optimal input process parameter setting. As a result, the optimization of complicated
multiple-performance characteristics can be simplified extensively through this approach.

• The optimal combination of the micro-EDM process parameters obtained from the proposed
method were A1B2C1, which resulted in the simultaneous optimization of all the three responses.

• The proposed methodology provided a greatly simplified optimization design of micro-EDM
process parameters with multi-response parameters.

• Further, this study revealed that the electrode material had the strongest effect on the
multi-response parameter, followed by the voltage and capacitance.

Responses such as residual stresses, micro-structural changes and the formation of recast layers
will be studied in the machining of Ni-Ti shape memory alloy using micro-EDM. The authors also aim
to improve the machining of shape memory alloys using vibration-assisted micro-EDM (i.e., through
hybridization) in a future project.
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