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Abstract: In this study, an attempt on pulsed-fiber laser welding on an austenitic-duplex stainless
steel butt joint configuration was investigated. The influence of various welding parameters, such
as beam diameter, peak power, pulse repetition rate, and pulse width on the weld beads geometry
was studied by checking the width and depth of the welds after each round of welding parameters
combination. The weld bead dimensions and microstructural progression of the weld joints were
observed microscopically. Finally, the full penetration specimens were subjected to tensile tests,
which were coupled with the analysis of the fracture surfaces. From the results, combination of the
selected weld parameters resulted in robust weldments with similar features to those of duplex and
austenitic weld metals. The weld depth and width were found to increase proportionally to the laser
power. Furthermore, the weld bead geometry was found to be positively affected by the pulse width.
Microstructural studies revealed the presence of dendritic and fine grain structures within the weld
zone at low peak power, while ferritic microstructures were found on the sides of the weld metal
near the SS 304 and austenitic-ferritic microstructure beside the duplex 2205 boundary. Regarding
the micro-hardness tests, there was an improvement when compared to the hardness of duplex and
austenitic stainless steels base metals. Additionally, the tensile strength of the fiber laser welded
joints was found to be higher when compared to the tensile strength of the base metals (duplex and
austenitic) in all of the joints.

Keywords: fiber laser welding; dissimilar material; stainless steel; microstructure; hardness;
tensile strength

1. Introduction

In the automotive, oil, aerospace, and nuclear power industries, the welding of dissimilar materials
is a strategic area of interest [1,2]. Owing to the differences the metallurgical and physico-mechanical
behaviour of joined dissimilar materials (DM), they have attracted significant interest when compared
to the joints of similar materials. Components with adequate ductility, high strength, good corrosion
resistance, and desirable electrical and thermal conductivities have been achieved through DM
welding [3,4]. Several DM welding techniques have been reported, including Welding-Brazing [5–7],
Arc [8–10], Friction [11], Friction stir [12,13], Ultrasonic [14,15], Explosive welding [16], Laser [17–19],
and Hybrid Laser-Arc welding [20,21].

There is an increased risk of encountering problems with DM during welding and in the resultant
weldments. The noted problems with DM welding include (a) carbon migration from materials higher
carbon content to the materials with less carbon content; (b) the variation in the thermal expansion
coefficient of the materials, triggering a deviation of the thermal residual stress over disparate parts of
the weldments; and, (c) the challenges in the execution of the post-welding heat treatment, especially
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in compounds where one of the joined materials is sensitive to an unwanted deposition at elevated
temperatures [22]. Consequently, the solution largely depends on high-energy-density techniques,
including electron beam and laser beam welding methods, which result in excessive industrial
concerns [23].

The laser welding technique, both in continuous and pulse modes, gained interest in the 1960s.
The laser welding requires a low heat input during welding, which results in a higher capability of
combining heat-susceptible parts with low distortions. The small focusing zone of laser welding is the
main reason for its wide application in cropping narrow welding zones with low heat involvement.
Additionally, the welded beads from laser welding processes are created with limited residual stress
and deformation [24]. To create a high-quality joint between two different materials with different
physico-mechanical and metallurgical characteristics while using the laser welding technique, there
must be a suitable combination of welding variables [25]. For Arc welding procedures, fiber laser
welding (FLW) is one of the extensively recommended techniques due to its precise benefits such as
higher efficacy, absence of flux obligation, low defects, low maintenance cost and compact size, good
appearance, and simplicity of mechanization [26].

Austenitic stainless steels (ASS) account for about 70% of stainless steel groups. They have a
face-centred cubic structure, with individual characteristics, such as weldability, corrosion resistance,
toughness, and ductility [27]. Duplex stainless steels (DSS) were developed to accommodate strong
bonding and higher resistance to the pitting zones, and stress corrosion cracking to support 300-series
ASS [28,29]. When compared to ASS, DSS have greater product strength and stress-corrosion cracking
resistance to chlorides. This distinctive feature of the DSS is the reason for their application in many
industries such as chemical process plant piping, structures in marine environments, biomedical
applications, oil and gas transmission lines, and nuclear power plants [30–36]. DSS is composed of a
two-phase microstructure, showing an approximately similar ferrite and austenite balance [37]. Their
exclusive properties are completely based on the equal stability exhibited by ferrite and austenite.
However, with the duplex steels, it is advised to use a low welding joint energy [38–40].

DM welding is used in many industries for the combination of different stainless steels or with
other materials. The reasons for this combination of these dissimilar materials are economical and
evolutional. To create a weld joint with the benefits of the dissimilar materials and good service
performance, it is necessary to select a suitable welding technique and a proper filler metal [41]. Since
laser welding techniques does not involve the use of filler metals, it is therefore obvious that the process
parameters play a key role in achieving the desired weld joints. The mechanical properties of stainless
steel have strongly been reported to rely on the microstructure of the joint. It is necessary, therefore,
to study the relationship of the microstructure with their mechanical properties. Berretta [42] had
investigated the pulsed Nd:YAG laser welding of AISI 304–AISI 420 stainless steels, while Anawa [43]
experimented on the optimization of the tensile strength of ferritic/austenitic laser-welded components.
Similarly, another study has experimented on low carbon and austenitic stainless steels to determine the
major parameters that influence the mechanical properties and microstructure of a laser welded joint
steel [44]. The study reported that a variation of the laser beam position can be effective in controlling
the composition of the fusion zone. Anawa and Olabi [45] statistically studied the dissimilar LBW of
stainless steel and low carbon steel and reported a significant influence of the laser power and welding
speed on the weld bead characteristics. Torkamany et al. [46] studied low carbon-austenitic stainless
steel for the influence of dissimilar laser welding on its mechanical performance and microstructure.
The study revealed that the transition of laser welding mode from conduction to keyhole had a
significant influence on the size of the fusion zone and dilution percentage of low carbon steel. Even
though several works have been reported on the application of laser welding [18,44,47], limited studies
are available in the area of fiber laser techniques of dissimilar materials (DM), such as carbon steel with
aluminium alloys [44], titanium alloy with steel [48], wrought to powder stainless steel [49], stainless
steel to aluminium [50], magnesium alloy to stainless steel [51], and aluminium with titanium [52].
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In summary, many studies have reported interesting findings on the potential of welding stainless
steel. However most of these studies have failed to simultaneously examine the effect of fiber laser
welding on dissimilar duplex-austenitic stainless steel. Therefore, this study aims to experimentally
investigate the influence of fiber laser parameters on the mechanical and metallurgical characteristics
of dissimilar 2205-304 stainless steel plates.

In this study, a fiber laser welding technique was employed to join two dissimilar metals plates
(AISI 304 and AISI 2205) of 2 mm thickness. The joined metals were characterized for the tensile test,
microhardness, macrostructure, microstructure, and phase composition, using an optical microscope
(OM) and scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS).

2. Materials and Methods

2.1. Base Materials

AISI 2205 duplex and AISI 304 austenitic stainless steels were the metals used in this study, with
their chemical composition shown in Table 1. Before welding, the metal plates were shaped to sizes,
with L × W × T dimensions of 75 × 50 × 2 mm, respectively.

Table 1. Chemical composition of the base metals (wt %).

Elements C Cr Ni Mn Si P S Mo Nb

AISI 2205 0.03 22.07 4.8 1.15 0.53 0.003 0.005 3.65 0.002
AISI 304 0.07 18.3 8.6 1.18 0.47 0.003 0.005 - 0.002

The ASS is made up of randomly linking equiaxed austenite crystals (γ), whereas the DSS entailed
of grainy and lengthened particles of ferrite (α) and austenite (γ), respectively, as shown in Figure 1a,b.
The experimental setup is shown in Figure 2.
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2.2. Laser Welding

The laser welding studies were conducted using a pulse-mode with an output power of 2 kW.
The fiber laser welding (FLW) was performed at an angle of 10◦ from a vertical position, whereas
the laser was fixed at the joint border. Table 2 showed the varied parameters (peak power PP, beam
diameter BD, pulse width PW, and pulse repetition rate PRR) that were used during the welding
process. Argon gas (99.99% purity) at a flow rate of 20 L/min was used as the shielding gas.

Table 2. The fiber laser welding parameters.

No. PP (kW) BD (mm) PW (ms) PRR (Hz)

1 1 0.3 5 15
2 1.2 0.3 5 15
3 1.4 0.3 5 15
4 1.6 0.3 5 15
5 1.8 0.3 5 15
6 1.4 0.24 5 15
7 1.4 0.3 5 15
8 1.4 0.35 5 15
9 1.4 0.4 5 15
10 1.4 0.45 5 15
11 1.4 0.5 5 15
12 1.4 0.35 3 15
13 1.4 0.35 4 15
14 1.4 0.35 5 15
15 1.4 0.35 6 15
16 1.4 0.35 7 15
17 1.4 0.35 8 15
18 1.4 0.3 5 8
19 1.4 0.35 5 10
20 1.4 0.3 5 12
21 1.4 0.3 5 15
22 1.4 0.3 5 18
23 1.4 0.3 5 20

2.3. Metallography

The weld geometry was studied at several weld zones to observe the changes in the bead profile,
and weld joint microstructures through low-intensity optical microscopy (MT8000 Series Metallurgical
Microscopes, Roanoke, NC, USA) and scanning electron microscopy (SEM) (HITACHI Table Top
Microscope TM3030Plus, Schaumburg, IL, USA). Energy dispersive X-ray analysis (EDS, HITACHI,
Roanoke, NC, USA) technique has been utilized for the qualitative analysis of the samples.
Metallographic investigations were conducted on a “compound region” of 30 mm × 10 mm × 2 mm,
which involved all of the weldment regions (base metal, heat-affected, and fusion zones). The samples
were etched with modified Kalling’s solution (5 mg CuCl2 in 100 mL ethanol and 100 mL HCl) for a
period of 20 s. The compound weldment regions were polished with alumina and distilled water, using
emery sheets of SiC of varied sand sizes ranging from 240 to 1200. The polishing process followed
regular metallographic techniques to achieve a perfect mirror finishing of approximately 1 µm.

2.4. Mechanical Tests

Figure 3 shows the weld bead dimensions (W: width of weld bead, D: depth of penetration),
while the micro-hardness was measured at 0.5 mm from the top surface of the welded joint. Vickers
hardness analysis technique was applied to study the mechanical behavior by using a hardness tester,
Tukon 1202 (Instran ITW Test & Measurement Co., Shanghai, China). Hardness measurements were
studied across the interface. Standard 500 gf load was smeared for a residing time of 10 s and the
quantities were measured at consistent intervals of 0.20 mm. The tensile tests were performed following
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the American Society for Testing and Materials (ASTM E8M-04 Standard). Sub-sized specimens were
prepared due to the small plate thickness. The samples for the tensile tests were transversely cut to the
weld direction and were machined to the dimensions that are presented in Figure 4.
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3. Results and Discussion

3.1. The Influence of Weld Parameters on the Weld Profile

3.1.1. Influence of Peak Power on Weld Geometries

The peak power exhibited a continuous effect on the heat input in each individual pulse (Tests 1–5).
A linear increase in the weld depth and width was observed at varied peak power rates. The weld
depth was significantly influenced by the increase in peak power when compared to the weld width
(see Figure 5a). A maximum depth and width value of 2 mm and 0.9 mm, respectively, at full
penetration was recorded at a peak power of 1.8 kW.
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Figure 5. Effects of (a) peak power and; (b) laser diameter on weld width and depth.

3.1.2. Laser Beam Diameter Effects on Weld Geometries

Figure 5b shows a decrease in the weld penetration depth and weld width with the laser beam
diameter (Tests 6–11). The decrease in the weld width was due to the decline in the applied laser ray
focal point. However, a decrease in the beam diameter caused an increase in the laser density at the
same laser power, which effectively increased the weld depth. The optimum values were the obtained
at a laser beam diameter of 0.35 mm, which fashioned almost a weld depth and width of 1.38 mm and
0.79 mm, respectively.

3.1.3. Influence of Pulse Width on the Weld Geometries

The pulse width demonstrated a bilateral influence on the weld bead dimensions (Tests 12–17).
Figure 6a showed that the best weld dimensions can be achieved at the optimum value, depending on
the materials involved and the thickness of the joined parts. The weld depth reached the maximum
value with increasing pulse length due to the increased system pulse overlapping. Furthermore,
there was a decrease in the weld depth as the pulse width exceeded the optimal value, but, on the
weld width, there was no significant effect. The decrease in the laser power is attributed the effect of
the increase in the pulse length and energy decline. An optimal pulse width of 5 ms at 1.4 kW was
achieved, resulting in a weld depth of 0.79 mm and weld width of 1.73 mm.
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weld bead.

3.1.4. Influence of Pulse Repetition Rate on the Weld Geometries

Figure 6b showed an increasing pattern of the weld width and depth, with an increasing pulse
repetition rate (Tests 18–23). This result is largely due to the enhanced pulse overlapping because of
an increase in the pulse repetition rate. The pulse overlapping resulted in an increased pulse density,
which increased the weld depth. The optimal pulse repetition rate value was obtained at 20 Hz; thereby,
producing a weld depth of 1.95 mm and weld width of 0.97 mm.
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3.2. Metallography and Visual Examination

Macro and Microstructure of the Welded Joint

A top view of the fiber-laser welded dissimilar joints is illustrated in Figure 7, showing the
different zones (fusion zone (FZ), HAZ) of the welded seam for the joined plates. The Macrograph of
the weld geometry of the welding tests that were studied during the analysis is presented in Figure 8.
As shown in the Figures, several variables (dimensions of the welds) and their effects were determined
by the presence of a persistent variable. Samples 1–5 were used to scrutinize the behavior of the peak
power, while Samples 6–11 were studied to reflect the effect of laser beam diameter. Samples 12–17
were used to show the properties of the pulse width, while Samples 18–23 were studied for the effects
of the pulse repetition rate.
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A macro investigation showed narrow welded beads of 2205-304 stainless steel welded joints
with complete fusion (Figure 8). A fast interaction of solid metals and molten liquids, as well as the
formation of metallic vapors at high laser power intensity, results in instability in the weld pool during
keyhole laser welding. On one side, it encourages deep laser penetration, and on the other hand,
it controls the welded bead profile by governing the different patterns of heat transfer and fluid flow
in the welded pool which can lead to various surface deformations [53].

During fusion welding, the deformation of the welded surface can assume a convex or concave
profile (the convex weld bead profiles are profiles that protrude above the joining material, while
those that form a dip are termed concave weld bead profiles). Few studies have been reported on
the mechanisms that are responsible for the shape of weld bead profiles [54–56]. The effect of surface
deformation and melt flow on weld bead formation was first investigated by Bradstreet [57] when
correlated the bead profile of a convex-shaped profile to the surface tension, which controls edge
wetting in the weld pool. Similarly, several reasons, such as the aspect ratio, heat transfer, melt flow,
pressure balance, and welding speed account for the development of concave-shaped weld bead
profiles [53,58–60].

The weld microstructure of various materials is highly complex because of different cooling rates
in the laser welding process [61]. On the other hand, steadiness in the microstructures at different weld
locations can be determined. The micrographic examination was performed on a cross-section of the
2205-304 dissimilar welded joints (Figure 9).
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Figure 9. Micrograph of fiber-laser welding dissimilar 2205-304 stainless steels (SS).

The study was conducted to examine and analyse several points at the fusion zone and near the
base metals. Figure 10a shows the microstructure (mainly a mixture of ferrite and austenite) present at
the 2205 DSS base metals near the 2205 DSS (point “a” in Figure 9). Conversely, the microstructure
at the position closer to the 2205 stainless steel was improved and additionally subtle than the initial
dual phase assembly of the 2205 SS. A superior cooling rate is considered responsible for this behavior
in laser welding [39,62,63]. Figure 10b showed the microstructures in the fusion zone (FZ), and at the
boundary between the FZ and the base metals (point “b” in Figure 9). Larger grains were observed in
the FZ, while fine grains were noted in the BM section. The fine grains in the FZ were bordered by the
coarse grains of the two diverse metal sides due to dynamic recrystallization [64].

In Figure 10b, the longitudinal columnar grain structures were dispersed at the principal area of
the FZ along the vertical direction. The area next to the BM was categorized by the equiaxed particles,
as shown in Figure 10a,c (point “c” in Figure 9). Paralleled-lined structures were observed on the side
of the ASS near the central equiaxed particle structures and the neighboring boundaries, are presented
in Figure 10c.
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11. Generally, the final microstructure of all the weldments can be standardized by the chemical 
composition of the parent metals and the thermal cycle of the welding process, as the stainless steel 
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(a) 2205 side, (b) in the center line of the fusion zone, (c) close to 304 side.

A proper fusion of the base metals was achieved with the predetermined process parameters
using fibre laser welding technique. The SEM observations of various weld metal microstructure
at room temperature of some selected AISI 304 samples welded with duplex 2205 are listed in
Figure 11. Generally, the final microstructure of all the weldments can be standardized by the chemical
composition of the parent metals and the thermal cycle of the welding process, as the stainless steel
welds had four potential solidification modes namely, fully ferritic, primary ferritic, primary austenitic,
and fully austenitic [65,66].
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Type A (fully austenite) or AF (austenite to ferrite) principally refers to austenite solidification,
which results in diverse austenite and ferrite morphologies. The FA (ferrite to austenite) mode signifies
emaciated and/or stripped ferrite caused by ferrite to austenite transformation; F symbolizes acicular
ferrite with a particle boundary of austenite, as illustrated in (Figure 9). A successive transformation of
ferrite to austenite ensues in solid form within a temperature range of 1300–800 ◦C [33]. Additionally,
an increase in the Creq/Nieq ratio results in a higher ferrite propensity foundation and altering of the
solidification approach from A and AF to FA or F [67].

SEM investigations (point b in Figure 9) revealed the formation of delta ferrite at the center
line of the FZ due to the higher cooling level during laser welding, as shown in (Figure 11). On the
304 austenitic SS side (point c in Figure 9), a significant decrease in the austenite quantity was observed,
and the microstructure largely comprised of ferrite materials (Figure 12). The chemical composition
of the welded metals near 304 SS were studied using EDS; the line mapping of the weldment is
shown in Figure 13, and the elements that were analyzed included both ferrite (Cr, Mo, Si, Fe) and
austenite (Ni, C, Mn) stabilizing elements; while, the analyses and the corresponding values are
presented in Table 3. Moreover, Table 3 also presents the chemical composition of the 304 stainless
steel. Commencing the WRC-1992 diagram [68], it is expected that the weld microstructures would
enclose a combination of austenite and ferrite, containing approximately 11–18% of ferrite. The Creq

value was equivalent to 19 and the Nieq value was close to 11, giving a Creq/Nieq ratio of 1.73 and that
means the solidification process led to ferritic formation, as previously reported [69,70].

Table 3. Chemical composition of 304SS base metal and the weld zone near 304 SS.

Position Fe Cr Ni Cu Si V Mo Mn

Base 304 54.46 14.8 5.96 1.48 0.53 0.09 0.18 1.49
WZ near 304 51.04 15.8 5.23 0.09 0.57 0.05 1.44 1.14
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Figure 13. Energy dispersive spectrometer (EDS) line mapping analysis of duplex-austenitic stainless
steel weldment.

At test number 5, a solidification crack was detected on the side of 304 SS at a peak power of 1.8 kW
due to the high peak power value. The crack was instigated from the center of the weld and it was
directed towards the base metal, as illustrated in Figure 14. The diverse thermal and physical (heat
capacity, thermal conductivity; and the relationship between hardness and temperature) behaviors of
the materials, which were supposed to weld in DSS metal welding resulted in a general symmetrical
distortion. In contrast to the duplex stainless steel, the tested specimens did not exhibit any extensive
warp. This behavior of austenitic stainless steel is due to their less hardness and heat conductivity
at elevated temperatures. This behavior has been recognized in the friction welding of different
weldments, such as stainless steel to copper, steel to aluminum, and steel to titanium [26,71,72].
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The basis of crack-susceptible microstructure in stainless steels is the evolution of impurity-developed
and low-melting liquid films along the grain boundaries in the final phase of the solidification
process [53,73]. The influence of ferrite content in welds on the solidification and cracking at room
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temperature has long been documented, but it has not been accurately linked with the cracking
sensitivity. A greater focus has been on the solidification behavior of stainless steel welds [74–76].
For alloys that display a Creq/Nieq ratio of less than 1.5, austenite is the key phase of solidification.
With an increment in the Creq/Nieq ratio (1.5 to 2.0), the primary solidification is promoted by ferrite.
Duplex stainless steels are those that solidify completely to ferrite (Creq/Nieq > 2) [39]. They exhibit
cracking vulnerability to indeterminate alloys that experience complete austenitic and ferritic/austenitic
solidifications [33]. In the welding process, most of the produced duplex weld metals are initially
solidified in a fully ferritic mode. At the fusion line of the base metal, there is a higher rate of ferritic
solidification within the weld metal. In the DSS weld, ferrite grains are encouraged to form a coarse
columnar structure as a reasonable and epitaxial result of the growth of ferrite grains. Figure 15 showed
that in the weld metal with excessive ferrite content, the austenite aggregate drops; the morphology
modifies to granular form; and, fine precipitation appears in the ferrite. Austenite precipitates in the
cooling process of a welded metal from a temperature of 1300 ◦C to 800 ◦C due to the higher free
energy of the ferrite grain interfaces. The degree of precipitation is governed by the cooling rate and
chemical composition of the compound [77,78]. However, the austenite morphology (Widmanstätten
or intergranular) plates are largely based on the cooling rates and the size of the ferrite grains [33].
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Figure 15. SEM of weld microstructures at a point near 2205 side.

3.3. Mechanical Tests

3.3.1. Microhardness

The microhardness profiles of the weld regions (304-AHAZ-FZ-DHAZ-2205) are presented in
Figures 16 and 17. AHAZ refers to the austenitic heat-affected zone, while DHAZ refers to duplex
heat-affected zone. Specimens were selected for the microhardness studies based on the peak power
(Tests 2,3,4) and pulse width (Tests 12,14,16) of the welding process. All of the microhardness profiles
in Figures 16 and 17 have the same tendency. The hardness increases in the weld zone and decreases
towards the base metals.
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Figure 17. The cross-sectional Vickers microhardness profile of welds joint different pulse width.

For the peak power effect, the fusion zone presented a higher microhardness when compared to
those of the base materials (AISI 304 and AISI 2205), likely being due to the rapid solidification effect.
The microhardness and elemental (Cr, Fe, and Ni) redistribution gradients are positively correlated,
which may be a special attribute of dissimilar joints [79]. The fusion zone of the laser keyhole welds
had a rapid cooling rate of about 104 and 106 ◦C·s−1 [80] which not only increased the probabilities of
under-cooling and nucleation with the attendant formation of fine structures, but also extended the
solubility of the solutes, thereby preventing marked segregation and resulted in a supersaturated solid
solution with new microstructures [81]. The microhardness of the weld HAZ was less than that of
the weld metal, but greater than that of the base metals at both sides due to the earlier stated reasons.
Figure 16 revealed the hardness dispersal across the welded regions, which indicates that the hardness
was greater on the DSS side when compared to the ASS side. The BM regions showed an average
hardness of 292 HV in the austenitic stainless steel 304 side and 332 HV for the duplex stainless steel
2205 side. The microhardness values increased in the FZ section, with a calculated maximum hardness
value of 432 HV. This indicates that the FLW enhanced the hardness of the material to the level of about
32% and 23% for the duplex and austenitic stainless steel, respectively. The higher heating of laser
welding is beneficial for the growth of ferrite, which is primed to immensely increase the hardness
of the FZ region. Thus, the principal factor that is affecting the hardness in the FZ region is mainly
ferrite formation.

For the pulse width effect, the operational parameters of sample 12, 14, and 16 differed in the pulse
width (3, 5, and 7 ms, respectively). The welding parameters influenced the mode of solidification
and cooling rate of the welding zone. Also, the microstructure of the weld zone was noted to change
with the welding parameters as well. Moreover, the microhardness profile of the samples affected the
variations in their cooling rate. In Figure 17, sample 16 (from Table 2) had the highest hardness value
of 453 HV when compared to samples 12 and 14 with hardness values of 363 and 421 HV, respectively,
due to the variation in the cooling rate. The cooling rate increases with the pulse duration.

3.3.2. Tensile Strength

The tensile tests performed on the fiber laser butt welded joints with complete penetration based
on the impact of peak power (Tests 3, 4, 5 in Table 2). The tests were conducted following the relevant
standards at room temperature. Three samples from each condition were subjected to the tensile
strength test and the average of the triplicates was reported. Figure 18 presents the typical engineering
stress-strain curve of the samples. The SEM analysis accomplished, to show the fracture manner of
tensile test (brittle or ductile failures), as shown in (Figure 19a–c). Moreover, the EDS analysis was
carried out to exhibit the redistribution of elements in the weld zone that form as a result to the fiber
laser welding of dissimilar metals (2205-304).
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Figure 19. SEM image and EDS analysis of fiber-laser welded tensile-tested joints at (a) 1.4 kW;
(b) 1.6 kW; and (c) 1.8 kW.

From the SEM fractographs of the tensile tested of peak power 1.4, 1.6, and 1.8 kW weldments
using, the presence of dimpled facets with the macro/micro-voids coalesced in shiny, fibrous fringes
were clearly shown, signifying the ductile mode of the fracture. Also, the 1.8 kW weldments showed
shallow ridges with more voids and dimples, which contributed to the ductile fracture. The percentage
elongation of the 1.4 kW weldments was also noted to be greater, which further confirmed the absence
of any deleterious phase in the fusion zone.

The presence of Mn, Cr, Ni, Fe, Si, and Mo were confirmed from the EDS analysis.
The fractography in Figure 19a showed a dimpled pattern, which indicates that a ductile fracture
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was shown, while in Figure 19b,c, deep dimples were depicted when compared to Figure 19a, which
indicates an improved ductility. From Figure 19a, chromium, and manganese were observed to have
the highest presence, indicating a higher tensile strength in the fractured joint when compared to
the base material (AISI 2205 and AISI 304). The presence of oxygen, which suggests the oxidation of
the material due to the presence of Fe, was noted in the three samples (Figure 19a–c). In Figure 19c,
Mo notably had the lowest presence, pointing towards more ductility. A maximum percentage of Cr
was observed in Figure 19a, which might be due to the increased tensile strength of the joint.

At a tensile stress range of 611, 646, and 674 MPa, respectively, the entire welded sample broke
from the joint during the testing with a corresponding percentage elongation of about 39%, 43%,
and 54%, respectively. During the tensile testing, failures at the weldment were due to the low strength
of the welds due to their slightly increased hardness. The welded specimens and the base metal
had similar tensile properties only that the ductility of the welded joint was somewhat lower when
compared to that of the base metal because of the decreased amount of austenite in the welded joint
as compared to the base metal. An increased Cr/Ni ratio resulted in the presence of ferrite in the
solidified weld region and consequently increased the tensile strength of the weld material [67].

It is worthy to note that despite the higher volume of austenite in this study, an increase in the
heat input did not significantly affect the tensile elongation of the laser welded joint which was likely
due to the larger size of the fusion zone with a higher heat input. In other words, the decrease in
the tensile elongation because of the fusion zone size was more than the austenite volume effect on
increasing the tensile elongation.

4. Conclusions

Detailed experiments were carried out under diverse process environments, and based on the
microstructural studies using OM, SEM, and EDS the following conclusions are made:

• Fiber-laser welding was effectively employed to produce austenitic–duplex stainless steels weldments.
• Weld bead profiles and hardness can be articulated in terms of the method parameters.
• The mechanical properties of the produced DSS-ASS joints were better when compared to that of

the base metals due to the small HAZ that resulted from the laser welding and the advantageous
effect of rapid solidification in the fusion zone.

• Using fiber-laser welding in the austenitic-duplex steel joint significantly increased the
microhardness, largely because of the presence of ferrite structures. High heat inputs resulted in
coarse grain size formation and a decrease in the microhardness values.

• In the 2205-304 joints, regions with a fully austenitic solidification mode were prone to
solidification cracking.

• The welded joints had an average tensile strength of 611, 643, and 674 MPa, respectively, all
satisfying the tensile strength requirements for engineering structures.

• From the SEM results, the presence of micro-voids and dimples confirmed the ductile mode
of fracture.

• The small HAZ and the beneficial effects of rapid solidification in the fusion zone were demonstrated
in the improved mechanical properties of the laser welds. The fusion zone microstructure demands
further investigations using TEM. Also, there is a need to conduct a detailed study on the fractures
behaviour and welding defects of dissimilar jointed materials.
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