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Abstract: In this study, the microstructure and strength properties of friction stir welded 6061-T6
aluminum alloy to ultra-low carbon steel have been investigated using different advancing speeds
of 100, 200, and 400 mm·min−1 at constant rotation rate. Microstructure observations have been
conducted by optical and scanning electron microscopy. The joint strength was evaluated on a tensile
testing machine. The effect of advancing speed on the shear load of a joint has been found, as well as
a relationship between microstructures and mechanical properties.
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1. Introduction

Friction stir welding (FSW) is potentially a practicable joining process for dissimilar materials. It is
a solid state process where a non-consumable rotating tool with a specially designed pin and shoulder
is inserted into the abutting edges of sheets or plates to be joined and subsequently traversed along the
joint line [1]. Heat is generated by the friction between the tool and the work pieces, as well as the
plastic deformation [2–6]. It is an ideal process for producing low-cost and high performance joints.
The practical approach is to use a non-consumable rotating tool consisting of two parts: a shoulder
and a pin. Rotational speed, traverse speed, and vertical pressure on the plates during welding are the
main process parameters [7].

Many studies of the friction welding of dissimilar materials have been conducted by various
researchers. Ozdemir et al. [8] investigated the effect of rotational speed on the interface properties
of friction-welded AISI 304L and steel. They found a correlation between the tensile strength of the
joint and joining rotational speed. Dehghani et al. [9] investigated joining aluminum alloy to mild
steel, and looked into the effect of various FSW parameters such as traverse speed, plunge depth,
tilt angle, and tool pin geometry on the formation of intermetallic compounds (IMCs), tunnel formation,
and tensile strength. Watanabe et al. [10] investigated the effect of pin rotation speed and pin offset on
the mechanical and microstructural behavior of AA5083 aluminum alloy and SS400 low-carbon steel
dissimilar joint.

The previous works on the friction welding of steel to 6061 aluminum alloy using a lap joint
configuration were limited to a few investigations [11–13], but these studies were focused on coated
steel for a specific application.

The objective of this work is to focus on the effect of traverse speed on the mechanical properties
and microstructural characteristics of the welded FSW 6061 aluminum alloy to ultra low carbon steel
with a lap joint configuration. The tool used is made from X40CrMoV51 steel, which is an economical
tool steel.
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2. Materials and Methods

2.1. Base Materials

The 6061-T6 aluminum alloy and ultra-low carbon steel sheets with thicknesses of 3 mm and
0.8 mm, respectively, were used. The chemical composition is shown in Tables 1 and 2.

Table 1. Chemical composition of 6061-T6 aluminum alloy.

% (wt) Al Cr Cu Fe Ga Mg Mn Si

6061-T6 Al alloy 97.8 0.19 0.24 0.44 0.015 0.92 0.05 0.56

Table 2. Chemical composition of ultra low carbon steel.

% (wt) C Mn Si S P N

Ultra low carbon steel 0.013 0.136 0.01 0.005 0.0132 <0.008

2.2. Weld Production

The dissimilar materials were joined (Figure 1) with a lap joint configuration. (1) Two lapped
plates (steel and aluminum alloy) were clamped; (2) a rotating tool was vertically plunged through the
upper plate and partially into the lower plate (steel), and traversed along the desired direction, joining
the two plates. The rotating pin (pin Ø = 5 mm) was gently pushed into the Al-6061-T6 sheet until the
pin tip entered (tool offset) −0.1 mm into the ultra-low carbon steel; (3) with a specific traverse speed.
Three traverse speeds (100, 200, and 400 mm/min) were applied along the joint, with constant rotation
speed of 1200 rpm.
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Figure 2. The tool used for FSW.

The macrograph of welded dissimilar materials—6061-T6 aluminum alloy and ultra low carbon
steel—lap welds is shown in Figure 3. There are the “metallurgical bands” or “onion rings” in a friction
stir weld.
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Figure 3. Macroscopic view of a completed joint. ULC: ultra-low carbon.

For microstructural analysis, the FSW samples were cross-sectioned perpendicular to the
welding direction, polished, and then etched with a solution of a standard metallographic procedure.
The aluminum side was etched by a Killer’s solution (HCl: 22.5%, HF: 7.5%, HNO3: 7.5%, H2O: bal.).
The microstructure and quantitative chemical analyses of the joints were performed by an optical
microscope (Olympus, Beijing, China) and scanning electron microscope (SEM, Zeiss Ultra55, Carl
Zeiss AG, Jena, Germany) with Energy-dispersive X-ray spectroscopy EDS capability. The joint strength
was evaluated with a tensile testing machine (Zwick 50 kN, Zwick company, Ulm, Germany) using
a cross-head speed of 0.5 mm/min at room temperature. The tensile shear specimens had an overall
length of 80 mm and width of 10 mm (Figure 4). The tensile properties of each joint were evaluated
using five lap shear specimens cut from the same joint.
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3. Results

3.1. Microstructures

Figure 5 shows the initial microstructure of the 6061-T6 aluminum alloy before welding.
The microstructure of the base metal was formed by homogeneous microstructure with elongated
grains. This microstructure is a result of the manufacturing process.
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Figure 5. Microstructure of the 6061-T6 aluminum alloy.

Micrographs of a joint cross-section of the 6061-T6 aluminum alloy and an ultra low carbon steel
lap welds after welding by FSW process is shown in Figure 6. It is clear that all of the deformation
and transformation during the welding process occurs on the aluminum side of the joint, because
the aluminum is a softer material compared to the steel. A distinct region from the advancing side to
the retreating side in the aluminum part can be observed. This heavily deformed region is called the
Nugget or Stir zone, which is the main area in the welded aluminum side. This recrystallized zone is
the result of a severe plastic deformation, in which tool pin rotates and produces frictional heat [14,15].
The grains within the stir zone are roughly equiaxed, and often with an order of magnitude smaller
than the grains in the parent material [16].

The effect of traverse speed on the microstructural evolution of the friction stir welded
6061 aluminum alloy to ultra low carbon steel is shown in Figure 7. The main phenomenon produced in
the welded joint was the grain refinement in the aluminum side. Generally, the increase of the advancing
speed generates plastic deformation and heat treatment in aluminum side, which leads to dynamic
recrystallization. The average grain size of the welded zone of the aluminum side was about 10 µm.
However, the average grain size of the base metal was 50 µm, which confirms the recrystallization
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reaction after welding. The interface microstructure examination showed an intermetallic compound
which was formed at the joint interface.
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Figure 7. Microstructural evolution in welded joint by friction stir welding of aluminum alloy
AL6061-T6 to ultra-low carbon steel after different advancing speed: (a) 100; (b) 200; and (c) 400 mm/min.

Figure 8 shows SEM observation of the joint cross-section of the 6061-T6 aluminum alloy and
ultra-low carbon steel lap welds after welding. The interface structure of the joint showed that
an intermetallic compound layer (IMC) was formed along the interface, and it was not uniform. The EDS
analysis of the chemical composition inside the IMC layer is shown in Table 3. The concentration of the
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main dominant elements—Fe and Al—was measured. In addition, X-ray diffraction analysis has been
performed on the critical region (nugget zone and IMC layer) to determine the main phases. The XRD
diffractogram (Figure 9) indicates that this region is formed mainly by two phases: AlFe3 and Al13Fe4.
These phases have been observed in other investigations [17].
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The relationship between the thickness of the intermetallic compound layer (IMC) and advancing
speed is presented in Figure 10. The thickness of the IMC layer decreases from 2 µm to 0.1 µm with
increasing welding speed, which significantly affects the strength of the joint. The decrease of the
thickness of IMC layer with increasing the advancing speed is mainly due to the decreasing time of the
interaction between the two adjacent dissimilar materials. The decrease of the interaction time induces
a low time of inter-diffusion process [18].
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3.2. Lap Shear Testing

Figure 11 shows the specimen after lap shear test of friction stir welded 6061-T6 aluminum alloy
to ultra-low carbon steel. The fracture zone was developed in the center of the welded joint.
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The effect of advancing speed on the shear strength of the welded joint is presented in Figure 12.
It is clear that the shear strength increases with increasing advancing speed. This can be explained by
the relationship between shear strength and IMC thickness formed in welded join, and also with grain
refinement in the aluminum side.
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of 1200 rpm; tool offset of −0.1 mm of friction stir welded 6061-T6 aluminum alloy to ultra low
carbon steel.

4. Conclusions

The microstructure and strength properties of friction stir welded 6061-T6 aluminum alloy to
ultra low carbon steel have been investigated. The results show that friction stir welding can be used
for the joining of dissimilar 6061-T6 aluminum alloy to ultra low carbon steel. The advancing speed
effect on the microstructure and strength properties of the welded dissimilar materials has shown that:

- A phenomenon of grain refinement is developed in the aluminum side; i.e., the nugget region
NG is dominated by a dynamically recrystallized grain structure.

- The thickness of the IMC layer decreases with increasing welding speed, which significantly
affects the strength of the joint; i.e., the shear strength increases by increasing the traverse speed.
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