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Abstract: A polyvinylidene fluoride (PVDF)-type chelating membrane bearing poly(amino
phosphonic acid) groups, denoted as ethylenediamine tetra(methylene phosphonic acid)
(EDTMPA)-tetrabutyl orthotitanate (TBOT)/PVDF, was employed to remove Ni(II) from the
aqueous solution. The effects of coexisting Ca(II), Pb(II), citrate, nitrilotriacetic acid (NTA) and
ethylenediaminetetraacetic acid (EDTA) on the Ni(II) adsorption by this chelating membrane were
revealed using density functional theory (DFT) calculations. Pb(II) showed a more detrimental effect
than Ca(II) on the Ni(II) uptake; EDTA interfered with the capture of Ni(II) more remarkably than
citrate and NTA. The results derived from DFT calculations were consistent with the experimental
data. Ni(II) and Pb(II) showed more excellent affinity to the EDTMPA-TBOT/PVDF membrane than
Ca(II). The stabilities between Ni(II) and the [EDTMPA-TBOT]7− chelating ligand of the membrane
and those between Ni(II) and the three aforementioned complexing reagents followed the sequence:
[Ni(II)-(EDTMPA-TBOT)]5− > Ni(II)-EDTA > Ni(II)-NTA > Ni(II)-citrate. The complexation between
Ni(II) and the chelating membrane was prominent with the presence of citrate, NTA and EDTA.

Keywords: nickel ion; polyvinylidene fluoride-type chelating membrane; adsorption; density
functional theory; coexisting cation; complexing reagent

1. Introduction

The heavy metal pollution for water bodies has been a critical environmental problem of global
concern. Being one of the most toxic metals, the nickel ion with non-biodegradable characteristics
has been validated as a carcinogen; it easily accumulates in organisms, thereby resulting in
toxicities to ecological systems and human beings’ health [1–3]. Discharged effluents containing
Ni(II) mainly come from the mining of nickel ores, metallurgy, welding, nickel electroless and
electroplating. The discharged concentration of total nickel in China is strictly limited within 0.1 mg/L
according to the published Chinese regulation of “Emission standard of pollutants for electroplating
(GB 21900-2008)” [4]. Thus, the concentration of discharged Ni(II) should meet the requirement
mentioned above. In effluents derived from metallurgy, circuit board manufacturing and nickel
electroless plating industries, besides nickel ions, other substances, such as Ca(II), Pb(II), citrate,
nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) may be coexistent with Ni(II).
Undoubtedly, the coexisting cations and organic reagents mentioned above can retard the removal
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of Ni(II). From this viewpoint, the exploitation of effective techniques with an excellent disposal
performance for Ni(II) is thus of great significance for the removal of this metal with the presence of
coexisting substances.

Numerous techniques are feasible for removing Ni(II) from wastewater to guarantee that this
metal pollutant is discharged with a concentration smaller than the required value of 0.1 mg/L.
Techniques of chemical precipitation, biological treatment, ion exchange, solvent extraction, flotation,
electrocoagulation, adsorption and membrane separation processes [5–14] have been attempted so
far. Among the above processes employed to capture Ni(II), the membrane separation technique
deserves to be considered because of its merits of higher efficiency, inconspicuous pressure drop
and shorter axial-diffusion path [15,16]. As for the membrane techniques of electrodialysis, liquid
membrane extraction, nanofiltration, reverse osmosis and polymer-enhanced ultrafiltration [14,17–20],
the drawbacks of high costs and fussy pretreatments of these membrane techniques restrain their
wide applications. On the other hand, compared with the membrane techniques mentioned above,
the microfiltration and ultrafiltration may be more applicable for removing Ni(II), with respect
to their fascinating characteristics of high permeation flux, inexpensive investment and lacking
strict pretreatments. Generally, the two aforesaid conventional membrane techniques cannot be
of benefit for the removal of the dissolvable Ni(II). In light of the adsorption treatment of heavy
metals by the chelating resin, the chelating groups with a high affinity to metals incorporated
into the microfiltration (or ultrafiltration) membrane matrix will be helpful in the Ni(II) removal.
Various chelating groups, including pentaethylenehexamine, polyacrylic acid, ethylamine ligand,
polyethylene imine, hyperbranched poly(amidoamine), NTA, diethylenetriaminepentaacetic acid
(DTPA), ethylenediamine tetra(methylene phosphonic acid) (EDTMPA) and EDTA, can be suitable for
the candidates incorporated into the membrane framework [21–30]. Among them, in our previous
study [15,28], the DTPA group blended into the PVDF-type chelating membrane has been attested for
the capture of Cu(II) and Ni(II). Similar to the DTPA, amino phosphonic acid, such as EDTMPA, shows
an excellent affinity to metal pollutants. Thus, the enhancement in the Ni(II) uptake from the solution
for both microfiltration and ultrafiltration membranes by the incorporation of EDTMPA groups can
be considered.

In general, most adsorption studies have focused on the experiment scale. There is no doubt
that the adsorption experiment can be helpful in the description of the adsorption kinetics and
thermodynamics, but more details in the immanent interaction between the solute and the absorbent
will not be elucidated comprehensively. The density functional theory (DFT) simulation, identified as
a valuable supplement of the experiments [31–34], has been applicable for revealing various chemical
problems; of course, adsorption studies are involved [15,35–39]. Whereas insufficient efforts related to
the DFT simulation have paid attention to the Ni(II) adsorption by the PVDF-type membrane bearing
the EDTMPA groups, herein, we confirm that this research will provide a proposal for the preparation
of novel membranes and the removal of heavy metals.

In this research, a PVDF-type chelating membrane bearing the EDTMPA group was employed to
remove Ni(II) from the aqueous solution in the presence of Pb(II) and Ca(II) cations and citrate, NTA
and EDTA complexing reagents. The density functional theory (DFT) simulation was employed to
elucidate the Ni(II) adsorption characteristics of the chelating membrane and to reveal the effects of the
five aforementioned coexisting substances on the Ni(II) uptake. In this work, three DFT descriptors,
i.e., chemical potential (µ), hardness (η) and global electrophilicity (ω), were calculated to explore the
chemical reactivity of the EDTMPA group of the chelating membrane, Ni(II) and the coexisting Pb(II),
Ca(II), citrate, NTA and EDTA. Furthermore, the charge transfer (∆N), the adsorption energies (∆Eads)
and the Gibbs free energies of adsorption (∆Gads) between the chelating membrane and three metal
ions and those between Ni(II) and the three above complexing reagents were calculated.
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2. Materials and Methods

2.1. Materials

PVDF powders were purchased from Chen Guang Co., Ltd., (Chengdu, China); the average
molecular weight of this polymer is 400,000. Polyvinylpyrrolidone (PVP), dimethyl sulfoxide (DMSO),
EDTMPA, absolute ethanol (C2H5OH) and tetrabutyl orthotitanate (TBOT) were applied to prepare
the chelating membrane. Analytical-grade Ni(NO3)2·6H2O, Pb(NO3)2, CaCl2·4H2O, citrate, NTA,
ethylenediaminetetraacetic acid disodium salt (EDTA-2Na+) and NaOH employed in this experiment
were supplied by Jingchun Scientific Co., Ltd., (Shanghai, China). Without further purification,
all reagents were used as received.

2.2. Preparation of the Chelating Membrane

At first, 2.0 g of EDTMPA were dissolved in 40 mL of ethanol aqueous solution, and the volume
ratio between C2H5OH and H2O was 1:3; the pH of the solution was adjusted to 6.0 by 5 mol/L
of NaOH solution. After that, 4.7 mL of TBOT were dropwise added into this solution, and this
solution was magnetically stirred at room temperature for 24 h to obtain a microparticle-containing
solution; and then, the microparticle was separated by centrifugation at 3000 rpm for 10 min.
The obtained microparticle (labeled as EDTMPA-TBOT) was centrifugally washed three times using
absolute ethanol and DMSO. Afterward, 4.8 g of PVDF and 0.53 g of PVP were dissolved in 25 mL
of DMSO at 353 K, and the fabricated EDTMPA-TBOT powder was subsequently added into this
solution. At this temperature, the solution was stirred for 6 h. Lastly, a phase inversion technique
was employed to prepare the PVDF-based chelating membrane [15,28]. The fabricated membrane
(EDTMPA-TBOT/PVDF) was cleaned by deionized water and then kept for characterizations and
adsorption tests.

2.3. Characterization of the Membrane

The morphology of the chelating membrane was characterized by an FE-SEM (SUPRA55, Zeiss,
Jena, Germany) with an accelerating voltage of 5 kV; the compositions of the surface membrane
were determined with an X-Max EDS (Oxford Instruments, Oxford, UK.) attached to the scanning
microscope. FTIR spectra of the EDTMPA-TBOT chelating group before and after the Ni(II) uptake
were examined using an E55 + FRA106 FTIR spectrometer (Bruker, Karlsruhe, Germany). In addition,
the water permeability method was applied to characterize the mean pore size of the chelating
membrane [40].

2.4. Adsorption Experiments

In 200-mL solutions containing 1.0 mmol/L of Ni(II) with an ~0.2 g addition of the chelating
membrane, batch adsorption experiments for Ni(II) adsorption by the membrane were carried out
at the temperature of 298 K. The pH of this solution was adjusted to 5.4 by the buffer containing
0.3 mol/L acetic acid and 0.2 mol/L sodium acetate. The effects of coexisting Ca(II), Pb(II), citrate,
NTA and EDTA with different concentration (0–5 mmol/L) on the Ni(II) uptake were also evaluated.

2.5. Computational Details

All DFT calculations were implemented by the Materials Studio DMol3 code [39,41] with Version
of 7.0, which was provided by Accelrys Inc., (San Diego, CA, USA). In this research, the generalized
gradient approximation (GGA) level with the spin unrestricted approach, double numerical plus
polarization functions (DNP) and Becke exchange functional in conjunction with the Lee–Yang–Parr
correlation functional (BLYP) were employed to optimize the structures. In order to accelerate
self-consistent field convergence, Pulay’s direct inversion in the iterative subspace (DIIS) technique
and the small electron thermal smearing with a value of 0.005 Ha were applied. To obtain the
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geometrical and energetic parameters, Mulliken population analyses and frequency were calculated.
A continuum salvation model (COSMO) with the dielectric constant of water as 78.54 was employed
considering the aqueous adsorption. In regard to the effect of weak interactions (such as hydrogen
bond and Van der Waals force), the Tkatchenko–Scheffler (TS) method for DFT dispersion correction
was also used.

3. Results and Discussion

3.1. Characterization of the Chelating Membrane

3.1.1. Analyses of FE-SEM and EDS

The morphologies of the fabricated EDTMPA-TBOT/PVDF chelating membrane were observed;
surface and sectional morphologies of the membrane are shown in Figure 1a,b. For the surface
morphology (Figure 1a), the uniform microporous structure can be identified. The presence of
micropores with an average size of 0.25 µm will be helpful for the solution permeating through
the membrane. In terms of the sectional morphology of the membrane, as shown by Figure 1b,
the finger-like pores near the surface layer (labeled by a circle) are observed, and the sponge-type
porous structures (described by a rectangle) can be found in the inner side of the membrane.
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Figure 1. FE-SEM pictures and the EDS spectra of the ethylenediamine tetra(methylene phosphonic
acid) (EDTMPA)-tetrabutyl orthotitanate (TBOT)/PVDF membrane: (a) surface morphology; (b) sectional
morphology; (c) EDS before Ni(II) adsorption; (d) EDS after Ni(II) adsorption.

EDS spectra before the Ni(II) adsorption (Figure 1c) and after the Ni(II) adsorption by the chelating
membrane (Figure 1d) were examined. Before the Ni(II) adsorption, as demonstrated by Figure 1c,
besides the elements of carbon and fluorine, the elements of nitrogen, titanium, oxygen and phosphorus
are detected, which indicates that the EDTMPA-TBOT groups were incorporated into the PVDF
membrane matrix. After the Ni(II) uptake, by the comparison results of Figure 1c,d, the nickel element
is detected, thereby suggesting the capture of Ni(II) by the chelating membrane.
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3.1.2. FTIR Spectra

The availability of Ni(II) adsorption by the EDTMPA-TBOT/PVDF chelating membrane was also
validated by FTIR analysis (Figure 2). Before and after Ni(II) adsorption (Figure 2a), for the FTIR
spectra of the EDTMPA-TBOT/PVDF chelating membrane, in contrast with that of the virgin PVDF
membrane, peaks at 890–1400 cm−1 show obvious changes, which can be attributed to the existence the
phosphonic acid groups of the EDTMPA-TBOT ligand. Herein, with and without the uptake of Ni(II),
the difference in the FTIR spectra of the chelating membrane is inconspicuous; this may be assigned to
the disturbance of PVDF chains. Thus, the FTIR spectra of the pure EDTMPA and the EDTMPA-TBOT
powder before and after Ni(II) adsorption (Figure 2b) were also measured to eliminate this disturbance.
The peaks appearing at 957 and 1007 cm−1 can be ascribed to the asymmetric stretching vibration of
P–OH groups; other peaks located at 1100–1270 cm−1 are attributed to P=O stretching vibration [42,43].
The broad peak at 1670 cm−1 can be identified as the plane bending of the hydroxyl group in the
phosphonic acid group [44]. Peaks at 1322 and 1435 cm−1 can be assigned to the stretching vibration
of the C–N and P–C groups. For the spectrum of EDTMPA-TBOT powder, the characteristic peaks
related to the phosphonic acid group (900–1270 cm−1) divided into two peaks (1030 and 1150 cm−1),
indicating the formation of P–O–Ti bond [29]. The broad peak at 1670 cm−1 becomes sharp and shifts
to 1650 cm−1; this can be due to the interaction between the TBOT and EDTMPA molecules and thereby
suggesting the formation of the P–O–Ti bond.
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Figure 2. FTIR spectra: (a) the virgin PVDF membrane and the EDTMPA-TBOT/PVDF chelating
membrane before and after Ni(II) adsorption; (b) the virgin EDTMPA and the EDTMPA-TBOT powder
before and after Ni(II) adsorption.

For the spectrum after the Ni(II) adsorption compared with that before the Ni(II) adsorption,
the peak at 1030 cm−1 shifts to 1047 cm−1, and the intensity of this peak also slightly increases.
The intensity of the peak at 1150 cm−1 related to the P=O stretching decreases, inferring the formation
of the P=O–Ni(II) complexing bond. The peak at 1322 cm−1 in correlation with the C–N group almost
completely disappears, and the formation of the N–Ni(II) bond can be validated [28]. In addition,
the decrease in intensity for the peak at 1650 cm−1 accompanied by a negative shift of 15 cm−1 may be
due to the fact that Ni(II) is complexed by the O–H group of the EDTMPA molecule [15,45].

3.2. Effects of Coexisting Cations

The coexisting Ca(II) and Pb(II) can hinder the Ni(II) adsorption. Ni(II) uptakes of the
EDTMPA-TBOT/PVDF membrane in the presence of these two cations were measured to elucidate
their interferences. Ni(II) uptakes of the membrane reduce with Ca(II) and Pb(II) concentrations
increasing from 0 to 5 mmol/L (Figure 3); these two coexisting cations show an interferential effect on
the uptake of Ni(II) because they compete with Ni(II) for occupying the active sites of the membrane.
As Ca(II) and Pb(II) coexist with Ni(II) at the concentration of 1 mmol/L, Ni(II) uptake of the membrane
decreases by 35% and 83%. Based on this result, it can be inferred that Pb(II) exhibits a more
conspicuously detrimental effect than Ca(II) on the Ni(II) adsorption.
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Figure 3. Effect of the coexistent cations on Ni(II) adsorption. c0(Ni(II)) = 1.0 mmol/L; t: 360 min;
membrane amount: ~0.2 g; T: 298 K; pH: 5.4.

3.3. Effects of Coexisting Complexing Reagents

The influences of citrate, NTA and EDTA coexisting with concentrations from 0 to 5 mmol/L
on Ni(II) uptakes of the chelating membrane were studied, and the results are depicted in Figure 4.
As the concentration of the three complexing reagents increases, the Ni(II) uptake of the chelating
membrane decreases. This can be explained by the fact that most nickel ions are complexed with the
increasing concentration of these three complexing reagents, and the complexed form of Ni(II) retards
this metal uptake. As citrate, NTA and EDTA coexisted at a concentration of 1 mmol/L, the Ni(II)
uptake of the membrane decreases by 26%, 53% and 73%, respectively. Thus, it can be concluded
that the interferences of these three complexing reagents follow the order of citrate < NTA < EDTA.
Although the disturbance of coexisting cations and complexing reagents is validated, the chelating
membrane still exhibits the ability of Ni(II) capture, manifesting its potential application for removing
Ni(II) from aqueous solutions.
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3.4. DFT Simulations

3.4.1. Structure Analysis of the EDTMPA-TBOT Ligand

The optimized structure of the EDTMPA-TBOT ligand is given in Figure 5. Considering the
difference of pH in the aqueous solution, the EDTMPA-TBOT ligand will exist in the forms of
[Hn(EDTMPA-TBOT)](7−n)− (n = 0–7). The free HySS2009 software (Protonic software, Leeds, UK) was
employed to identify the species of the EDTMPA-TBOT ligand at different pH. The simulated existing
forms of the EDTMPA-TBOT complexes are shown in Figure 6. As shown in Figure 6, at pH = 5.4,
the EDTMPA-TBOT complexing ligand will be mainly in the form of [EDTMPA-TBOT]7−. In addition,
in view of the results of DFT calculation (not shown here), citrate, NTA and EDTA suitable for
the capture of Ni(II) will exist in the forms of [H2Cit]−, [H2NTA]− and [H2EDTA]2−, respectively.
Hence, [EDTMPA-TBOT]7− ligand, [H2Cit]−, [H2NTA]− and [H2EDTA]2− were adopted as the
computed geometries. The optimized structures of [EDTMPA-TBOT]7− ligand, [H2Cit]−, [H2NTA]−

and [H2EDTA]2− are reported in Figure 7. In addition, the structures for Ni(II), Ca(II) and Pb(II) ions
in the forms of [Ni(II)(H2O)6]2+, [Pb(II)(H2O)2]2+ and [Ca(II)(H2O)8]2+ were employed [39,46].
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Figure 7. Optimized structures of the [EDTMPA-TBOT]7− ligand, [H2NTA]−, [H2Cit]− and [H2EDTA]2−

with the numbered atoms: numbered atoms are denoted as follows: (a) [EDTMPA-TBOT]7− ligand
(2, 3, 5, 9, 13, 17, carbon; 7, 8, 11, 12, 15, 16, 19, 20, 33–36, 38, 43, 48, oxygen; 1, 4, nitrogen; 6, 10, 14,
18, phosphorus); (b) [H2NTA]− (14–21, hydrogen; 2, 3, 6, 7, 10, 11, carbon; 4, 5, 8, 9, 12, 13, oxygen;
1, nitrogen); (c) [H2Cit]− (11, 12, 14, 15, 18, 19, hydrogen; 1, 2, 4, 5, 7, 8, carbon; 3, 6, 9, 10, 13, 16, 17,
oxygen); (d) [H2EDTA]2− (21–34, hydrogen; 2, 3, 5–12, carbon; 13–20, oxygen; 1, 4, nitrogen). NTA,
nitrilotriacetic acid.
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3.4.2. The Chemical Reactivity Descriptors

Energies of the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital
(LUMO) and the band gaps (∆ELUMO-HOMO) of [EDTMPA-TBOT]7−, [Ni(II)(H2O)6]2+, [Pb(II)(H2O)2]2+,
[Ca(II)(H2O)8]2+, [H2Cit]−, [H2NTA]− and [H2EDTA]2− were calculated, and the values are listed
in Table 1. Of all of the reactants, the HOMO energy of [EDTMPA-TBOT]7− is the highest,
and the LUMO energy of [Ni(II)(H2O)6]2+ is the lowest, except [Pb(II)(H2O)2]2+. In this sense,
it can be confirmed that Ni(II) and the [EDTMPA-TBOT]7− ligand show the most noticeable
tendencies for accepting electrons and donating electrons than other reactants. Furthermore,
[EDTMPA-TBOT]7− and [Ni(II)(H2O)6]2+ have smaller ∆ELUMO-HOMO than other species, indicating
that the [EDTMPA-TBOT]7− ligand and Ni(II) have remarkably nucleophilic and electrophilic
characteristics, respectively. In addition, the ELUMO of [Ni(II)(H2O)6]2+ and [Pb(II)(H2O)2]2+ are
lower than the EHOMO of the [EDTMPA-TBOT]7− ligand, suggesting that the chelating interaction
between the [EDTMPA-TBOT]7− ligand and Ni(II) and that between the [EDTMPA-TBOT]7− ligand
and Pb(II) take place easily. In other words, the EDTMPA-TBOT/PVDF chelating membrane
shows excellent affinities to Ni(II) and Pb(II). The energy difference in the ELUMO of Ni(II) and
the EHOMO of three complexing reagents follows the trend: ∆E(ELUMO(Ni(II))-EHOMO(EDTA)) <
∆E(ELUMO(Ni(II))-EHOMO(NTA)) < ∆E(ELUMO(Ni(II))-EHOMO(citrate)), indicating that the interference
of EDTA on Ni(II) adsorption is more remarkable than those of citrate and NTA.

The chemical reactivity descriptors of chemical potential (µ), global hardness (η) and electrophilicity
(ω) can be calculated by Equations (1)–(3) [15,47].

µ =
(EHOMO + ELUMO)

2
(1)

η =
(ELUMO − EHOMO)

2
(2)

ω =
µ2

2η
(3)

The chemical reactivity descriptors of the seven aforementioned reactants were calculated and
summarized in Table 1. Values of µ for [Ni(II)(H2O)6]2+, [Pb(II)(H2O)2]2+ and [Ca(II)(H2O)8]2+

are more negative than those of the [EDTMPA-TBOT]7− ligand, [H2Cit]−, [H2NTA]− and
[H2EDTA]2−. Therefore, Ni(II), Pb(II) and Ca(II) serve as electrophiles, while the [EDTMPA-TBOT]7−

ligand and the three complexing reagents act as nucleophiles. Among the three electrophiles,
the electronegativity (χ = −µ) shows a descending order of [Pb(II)(H2O)2]2+ > [Ni(II)(H2O)6]2+ >
[Ca(II)(H2O)8]2+. Compared with Ni(II) and Ca(II), Pb(II) can more easily obtain the electrons from the
[EDTMPA-TBOT]7− ligand. However, for Ni(II), Pb(II) and Ca(II), the calculated values of η and ω are
inconsistent with the order of χ, and this is also in contradiction with the experimental result. It can be
inferred that the above-mentioned three cations may show a different electrophilic behavior in other
reacting processes.

The χ value of the four above nucleophiles increases in the order of [EDTMPA-TBOT]7− <
[H2EDTA]2− < [H2NTA]− < [H2Cit]−, revealing that the [EDTMPA-TBOT]7− ligand owns a stronger
nucleophilic ability than the other three complexing reagents. Moreover, the results of the analysis on
the η andω value of the [EDTMPA-TBOT]7− ligand and three complexing reagents are in accordance
with that of χ. Thus, it indicates that the Ni(II) uptake of the EDTMPA-TBOT/PVDF chelating
membrane plays a dominant role in the adsorption process with the presence of citrate, NTA and
EDTA. Furthermore, it can be deduced that the interference of EDTA on Ni(II) adsorption is higher
than those of citrate and NTA.
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Table 1. Calculated EHOMO, ELUMO, ∆ELUMO-HOMO, µ, η and ω in Hatree for the [EDTMPA-TBOT]7−

ligand, Ni(II), the coexistent cations and complexing reagents.

Chemical Species EHOMO/Ha ELUMO/Ha ∆ELUMO-HOMO/Ha µ/Ha η/Ha ω/Ha

[EDTMPA-TBOT]7− −0.1298 −0.0650 0.0648 −0.0974 0.0324 0.1464
[Ni(II)(H2O)6]2+ −0.2593 −0.1401 0.1192 −0.1997 0.0596 0.3346
[Pb(II)(H2O)2]2+ −0.3387 −0.1459 0.1928 −0.2423 0.0964 0.3045
[Ca(II)(H2O)8]2+ −0.2957 −0.0477 0.2480 −0.1717 0.1240 0.1189

[H2Cit]− −0.1797 −0.0429 0.1368 −0.1113 0.0684 0.0906
[H2NTA]− −0.1782 −0.0434 0.1348 −0.1108 0.0674 0.0911

[H2EDTA]2− −0.1631 −0.0392 0.1239 −0.1012 0.0620 0.0826

The three intramolecular parameters of µ, η and ω are only related to the characteristics
of an isolated molecule. In contrast, another parameter, namely charge transfer (∆N) calculated
using Equation (4) [32,47], will further contribute to reveal inherent the characteristics of the
adsorption process.

∆N =
(EB

HOMO + EB
LOMO − EA

HOMO − EA
LUMO)

2(EA
LUMO + EB

LUMO − EA
HOMO − EB

HOMO)
(4)

where the A and B superscripts are used to mark the species A and B. If ∆N < 0, we can
confirm that A and B serve as the electron donor and electron acceptor, respectively. Furthermore,
the higher absolute value of ∆N will suggest the stronger interaction between two molecules [32,47].
The amounts of calculated charge transfer between the three cations (Ni(II), Pb(II) and Ca(II)) and
the [EDTMPA-TBOT]7− ligand and those between Ni(II) and three complexing reagents (citrate, NTA
and EDTA) are listed in Table 2. The negative ∆N indicates that Ni(II), Pb(II) and Ca(II) serve as
electrophiles, while the [EDTMPA-TBOT]7− ligand and three complexing reagents act as nucleophiles.
The calculated ∆N between Ni(II) and the [EDTMPA-TBOT]7− ligand (∆N[EDTMPA-TBOT]

7−
→Ni(II))

is slightly lower than ∆N[EDTMPA-TBOT]
7−
→Pb(II), but is much larger than ∆N[EDTMPA-TBOT]

7−
→Ca(II),

which indicates that the EDTMPA-TBOT/PVDF chelating membrane shows a strong affinity to Pb(II),
followed by Ni(II) and lastly by Ca(II). The interference of Pb(II) on Ni(II) adsorption is more notable
than that of Ca(II). In comparison with the value of ∆N[EDTMPA-TBOT]

7−
→Ni(II), the lower absolute

values of ∆N[citrate-2H]
−
→Ni(II), ∆N[NTA-2H]

−
→Ni(II) and ∆N[EDTA-2H]

2−
→Ni(II) suggest that these three

coexisting complexing reagents show a smaller affinity to Ni(II) than the EDTMPA-TBOT/PVDF
chelating membrane. In addition, EDTA shows a more negative effect on the Ni(II) uptake than citrate
and NTA.

Table 2. ∆N between the [EDTMPA-TBOT]7− ligand and Ni(II), Pb(II) and Ca(II) and that between
Ni(II) and citrate, NTA and EDTA.

Reactant [Ni(II)(H2O)6]2+ [Pb(II)(H2O)2]2+ [Ca(II)(H2O)8]2+

[EDTMPA-TBOT]7− −0.5560 −0.5621 −0.2375
[H2Cit]− −0.3453 – –

[H2NTA]− −0.3500 – –
[H2EDTA]2− −0.4054 – –

3.4.3. Complexing Sites of the EDTMPA-TBOT Ligand

As illustrated in Figure 7a, the chelating membrane will provide thirteen complexing sites: N1, N4, O7,
O8, O11, O15, O16, O19, O20, O33, O34, O35 and O36. Conventionally, Ni(II) will be complexed in the form of
the six-coordinated configuration [39]. In addition, taking into account the nucleophilic characteristics
of these complexing sites and the stability of the [Ni(II)-(EDTMPA-TBOT)]5− configuration,
three configurations in correlation with the complexing sites of the EDTMPA-TBOT ligand were
chosen (shown in Figure 8), and they are shown as follows: [Ni(II)-(O33-O15-O16-O7-O19-O36)]5−,
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[Ni(II)-(O33-O15-O7-O19-O36-O34)]5− and [Ni(II)-(N1-N4-O33-O15-O7-O36)]5−. For the purpose of
simple illustration, the above three complexes are denoted as [Ni(II)-(EDTMPA-TBOT)]5−-1,
[Ni(II)-(EDTMPA-TBOT)]5−-2 and [Ni(II)-(EDTMPA-TBOT)]5−-3. As shown in Figure 8a, the bond
lengths of Ni(II)-O19 (3.545 Å) and Ni(II)-O33 (3.022 Å) exceed 3.0 Å, indicating that the coordinating
interactions between Ni(II) and O19, O33 cannot take place. The [Ni(II)-(EDTMPA-TBOT)]5−-1
complex will exist in the form of the four-coordinated conformation. Similarly, the length of the
Ni(II)-O36 bond in the [Ni(II)-(EDTMPA-TBOT)]5−-2 complex is 3.535 Å (shown in Figure 8b),
so the [Ni(II)-(EDTMPA-TBOT)]5−-2 complex will be present with the form of the five-coordinated
conformation [46]. However, the [Ni(II)-(EDTMPA-TBOT)]5−-3 complex can exist in a stable form of
the six-coordinated conformation (presented in Figure 8c).
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[Ni(II)-(EDTMPA-TBOT)]5−-3 complexes with the numbered atoms: numbered atoms are denoted as
follows: (a) [Ni(II)-(EDTMPA-TBOT)]5−-1 (7, 8, 11, 15, 16, 19, 20, 33–36, oxygen; 6, 10, 14, 18, phosphorus);
(b) [Ni(II)-(EDTMPA-TBOT)]5−-2 (7, 8, 11, 15, 16, 19, 20, 33–36, oxygen; 6, 10, 14, 18, phosphorus);
(c) [Ni(II)-(EDTMPA-TBOT)]5−-3 (7, 8, 11, 15, 16, 19, 20, 33–36, oxygen; 6, 10, 14, 18, phosphorus).
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The adsorption energy (∆Eads) at 298 K obtained from Equation (5) can be valuable for elucidating
the stability of complexing geometries [39,46].

∆Eads = ΣE(product) − ΣE(reactant) (5)

where E(X) is the computed total energy of species (X) with respect to the COSMO effect.
The calculated ∆Eads for the above three complexes are −9092.55, −9092.24 and −9092.91 kJ/mol.
The [Ni(II)-(EDTMPA-TBOT)]5−-3 complex has a minimum ∆Eads, so this complex is more stable than
the other two geometries. Therefore, the complex derived from the chelating interaction between Ni(II)
and the membrane will be presented as the form of [Ni(II)-(EDTMPA-TBOT)]5−-3.

When the EDTMPA-TBOT/PVDF chelating membrane absorbed Ni(II) with the coexistence of
Ca(II) and Pb(II) cations and citrate, NTA and EDTA complexing reagents, the optimized geometries
accompanied by minimum energies of the [Ca(II)-(EDTMPA-TBOT)]5−, [Pb(II)-(EDTMPA-TBOT)]5−,
[Ni(II)-citrate]+, [Ni(II)-NTA]+ and [Ni(II)-EDTA]0 complexes are displayed in Figures 9 and 10.
[Pb(II)-(EDTMPA-TBOT)]5− and [Ni(II)-EDTA]0 will be present in the six-coordinated conformations,
while [Ni(II)-NTA]+ is the form of the four-coordinated conformation and [Ni(II)-citrate]+ a
three-coordinated conformation. In addition, for the [Ca(II)-(EDTMPA-TBOT)]5− complex, the length
of the Ca(II)-O15 bond is 3.864 Å (Figure 9a), indicating the nonexistence of bonding interaction
between Ca(II) and the O15 atom. In this respect, the Ca(II)-[EDTMPA-TBOT]7− complexes in the
forms of the seven-coordinated conformation can be manifested.
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with the numbered atoms: numbered atoms are denoted as follows: (a) [Ca(II)-(EDTMPA-TBOT)]5−

(7, 8, 11, 15, 16, 19, 20, 33–36, oxygen; 6, 10, 14, 18, phosphorus); (b) [Pb(II)-(EDTMPA-TBOT)]5− (7, 8, 11,
15, 16, 19, 20, 33–36, oxygen; 6, 10, 14, 18, phosphorus).
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Figure 10. Optimized structures of [Ni(II)-citrate]+, [Ni(II)-NTA]+ and [Ni(II)-EDTA]0 complexes with
the numbered atoms: numbered atoms are denoted as follows: (a) [Ni(II)-citrate]+ (24–27, 29, 30,
hydrogen; 1–3, 5, 8, 11, carbon; 4, 6, 7, 9, 10, 12, 13, 21, 23, 28, oxygen); (b) [Ni(II)-NTA]+ (25–28,
hydrogen; 2, 3, 6, 7, 10, 11, carbon; 4, 5, 8, 9, 12, 13, 22, 24, oxygen; 1, nitrogen); (c) [Ni(II)-EDTA]0 (2, 3,
5–12, carbon; 13–19, 33, oxygen; 1, 4, nitrogen).

3.4.4. Analyses of the Adsorption Energy and the Gibbs Free Energy of Adsorption

The Gibbs free energy of adsorption (∆Gads) at 298 K defined by Equation (6) was used to reveal
the available formation of metal-based complexes; where G(X) is the calculated temperature-corrected
free energy of species (X) at 298 K [39,46] and ∆Eads is already depicted by Equation (5).

∆Gads = ∆Eads + (ΣG(product) − ΣG(reactant)) (6)

The calculated ∆Eads and ∆Gads of Ni(II)-, Pb(II)- and Ca(II)-(EDTMPA-TBOT)7− complexes
and those of Ni(II)-citrate, -NTA and -EDTA complexes are tabulated in Table 3. ∆Gads with
a negative value reflects the spontaneous characteristic of Ni(II) adsorption. ∆Eads of the three
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kinds of metal-[EDTMPA-TBOT]7− complexes is in the order of [Pb(II)-(EDTMPA-TBOT)]5− <
[Ni(II)-(EDTMPA-TBOT)]5− < [Ca(II)-(EDTMPA-TBOT)]5−, indicating that the complexation ability of
the EDTMPA-TBOT/PVDF chelating membrane toward three metal ions follows the sequence: Pb(II) >
Ni(II) > Ca(II). This result is consistent with the experimental analysis. The chelating membrane exhibits
a more excellent affinity to Pb(II) and Ni(II) than Ca(II), and thus, Pb(II) will remarkably interfere with
the uptake of Ni(II). In addition, it can be deduced that the fabricated chelating membrane can be
competent for removing heavy metals with a high biotoxicity from the aqueous solution.

Table 3. Calculated values of ∆Eads and ∆Gads for the metal-based complexes.

Reactant ∆Eads/(kJ/mol) ∆Gads/(kJ/mol)

[Ni(II)-(EDTMPA-TBOT)]5− −58.30 −114.20
[Pb(II)-(EDTMPA-TBOT)]5− −112.47 −117.85
[Ca(II)-(EDTMPA-TBOT)]5− −12.88 −91.97

[Ni(II)-citrate]+ 16.88 −24.71
[Ni(II)-NTA]+ 8.07 −3.55
[Ni(II)-EDTA]0 −6.41 −59.51

The coexisting citrate, NTA and EDTA can form stable complexes with Ni(II). Considering the
∆Eads value between Ni(II) and these, it can be concluded that the detrimental influence of the
three complexing reagents follows the sequence of EDTA > NTA > citrate. However, the abilities
of these three complexing reagents with respect to the uptake of Ni(II) are smaller than that of the
EDTMPA-TBOT/PVDF chelating membrane. Based on the result of this research, with the coexistence
of complexing reagents, the fabricated EDTMPA-TBOT/PVDF chelating membrane is still applicable
for the recovery of Ni(II) from aqueous solution.

4. Conclusions

The fabricated EDTMPA-TBOT/PVDF chelating membrane was employed for the removal of
Ni(II) from aqueous solutions. Batch adsorption experiments in conjunction with DFT calculations
were employed to evaluate the adsorption characteristics of the chelating membrane toward Ni(II)
in the presence of Ca(II), Pb(II), citrate, NTA and EDTA. The obtained conclusions are summarized
as follows:

(1) The combination of DFT simulations and the adsorption experiments is suitable for evaluating
the adsorption process between Ni(II) and the EDTMPA-TBOT/PVDF chelating membrane.

(2) The coexistent Pb(II) shows a stronger interferential effect on Ni(II) uptake than Ca(II). Furthermore,
the disturbance of EDTA on the Ni(II) uptake of the EDTMPA-TBOT/PVDF membrane is more
remarkable than those of NTA and citrate.

(3) The large absolute value of charge transfer, the negative values of adsorption energy and Gibbs
free energy of adsorption for the [Ni(II)-(EDTMPA-TBOT)]5− and [Pb(II)-(EDTMPA-TBOT)]5−

complexes suggests that the fabricated EDTMPA-TBOT/PVDF chelating membrane will be
qualified for the removal heavy metals with a high biotoxicity from the aqueous solution.
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