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Abstract: This paper presents the evaluation of durability for the material of repair welded joints made
from (13HMF) 14MoV6-3 steel after long-term service, and from material in the as-received condition
and after long-term service. Microstructure examinations using a scanning electron microscope,
hardness measurements and creep tests of the basic material and welded joints of these steels were
carried out. These tests enabled the time of further safe service of the examined repair welded joints
to be determined in relation to the residual life of the materials. The evaluation of residual life and
disposable life, and thus the estimation and determination of the time of safe service, is of great
importance for the operation of components beyond the design service life. The obtained test results
are part of the materials’ characteristics developed by the Institute for Ferrous Metallurgy for steels
and welded joints made from these steels to work under creep conditions.
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1. Introduction

Pressure components working at an elevated temperature are designed for a definitive
working time. This time is based on temporary creep strength used for calculations. It is 100,000 h for
old units, while, for those with supercritical working parameters designed and operated at present,
it is 200,000 h. Most of the units operated in Poland have significantly exceeded the design service life
of 100,000 h, reaching the actual operation time of more than 200,000 h. The extension of the operation
time beyond the design one of 100,000 h is made by using the calculation methods based on data
concerning the average temporary creep strength for 200,000 h and positive results of comprehensive
investigations and diagnostic measurements. Usually, the critical components in the pressure part
of boilers and turbines are subject to these investigations and evaluation. Out of these components,
those working above the limit temperature, i.e., under creep conditions, are crucial (Figure 1).

The above-mentioned operation of steam boilers for much more than 200,000 h requires a new
approach in the materials diagnostics. For safety reasons, a particularly important issue to be solved is
creep strength of the welded joints of the steam pipelines working under creep conditions [1–6].
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Figure 1. Schematic approach of the definition of residual and disposable durability.

In the evaluation of these components, it is important and necessary to evaluate the condition
of their material [7–13]. This evaluation is carried out based on non-destructive or destructive
materials tests. In the case of components working for more than 150,000 h, the estimate of residual
life by non-destructive testing is not sufficient. It needs to be determined based on destructive tests
performed on a sampled representative test specimen [14].

As part of the diagnostics, not only the basic material of the operated component but also the
material of welded joints is subject to evaluation [15]. It is necessary to evaluate the condition of
the material of welded joints to determine the component’s ability to carry the required operating
loads during its further service. If there is a need for repair to or replacement of a part or the entire
component with a new one, the ability of the basic material under operation to carry out such a repair
or replacement must be determined. When the condition of such material after service allows a repair
to be made, it is necessary to develop a technology for its performance. The repair welded joint is
defined as a new weld made to join a material after service with another material after service, and also
to join a new material with a material after service (for replacement of a part of a structural component
with a new one). Such repair welded joints are made during the renovation and modernisation works
on pressure elements including, but not limited to, steam pipelines.

The subject-matter of the investigations, including the materials and their repair welded joints
after long-term service made with materials after service or new materials, is an important issue
overseen by the Institute for Ferrous Metallurgy. The selected results of investigations with regard to
condition evaluation of the material of repair welded joints are the subject of this study. They mainly
concern the elements of primary steam pipelines made from 13HMF (14MoV6-3) steel, which in the
majority of Polish power plants exceeded the design service life of 100,000 h. Therefore, an important
issue in the evaluation of the safe operation of these devices is to provide a numerical value of the time
of their further operation and determine creep strength not for the material pipeline itself, but rather
for the welded joints of these materials made during repairs.

2. Material for Investigations

The material for investigations was tested specimens of repair welded joints made from (13HMF)
14MoV6-3 steel after long-term service, and of material in the as-received condition and after
long-term service. The summary of the material for investigations, including their steel grades,
geometrical dimensions, working parameters, the current time of service and macrophotography of
the test specimen is presented in Table 1.
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Table 1. Material for investigations.

Repair Welded Joint Made from Pipeline Sections after Long-Term Service, Marked ZS1

Steel grade: 14MoV6-3
Service time: material after 169,000 h
service, marked ZS1
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The check analysis of chemical composition of the examined materials of repair welded joints
from low-alloy Cr-Mo-V steels after long-term service and a material in the as-received condition
and after long-term service was performed in accordance with the following procedures: 3/CHEM,4
“Determination of C, Mn, Si, P, S, Cr, Ni, Cu, Mo, V, Ti, Al, Nb, B and Sn contents in low- and
medium-alloy carbon steel by the spark optical emission spectrometry method using natural standards”
with the optical emission spectrometer Magellan Q8 by Bruker, Germany. For the chemical composition
of the examined steels with regard to the requirements of standard specification [16], see Table 2.

Table 2. Check analysis of chemical composition.

Grade of Material
Content of Elements (%)

C Mn Si P S Cu Cr Ni Mo Others

14MoV6-3
according to [16]

0.10
0.18

0.40
0.70

0.15
0.35

max
0.04

max
0.04
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169,000 h service
Designation ZS1-PM1

0.16 0.58 0.35 0.017 0.018 0.20 0.46 0.23 0.62 V 0.29
Al 0.026

14MoV6-3
169,000 h service
Designation ZS1-PM2

0.16 0.58 0.35 0.017 0.020 0.20 0.46 0.23 0.63 V 0.29
Al 0.024

14MoV6-3
in the as-received condition
Designation ZS2-PM1

0.17 0.51 0.22 0.008 0.006 0.11 0.53 0.11 0.52 V 0.26
Al 0.013

14MoV6-3
169,000 h service
Designation ZS2-PM2
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Al 0.023
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The analysis results of the check of chemical composition show that the materials of the examined
test specimens of repair welded joints meet the requirements of the standard with regard to the
chemical composition of the examined steel grade, i.e., 13HMF (14MoV6-3) [16].

3. Research Scope and Methodology

As part of the investigations, the properties of the material of the repair welded joints
were evaluated. In the evaluation of the material condition and the level of required utility properties
for repair welded joints, the following was subject to investigation:

• The microstructure of repair circumferential welded joints of components in the pressure part of
a boiler was examined, with tests were carried out using a scanning electron microscope (SEM,
FEI, Hillsboro, OR, USA) Inspect F on nital-etched metallographic microsections;

• Analysis of precipitation processes was carried out using X-ray analysis of isolated carbides,
with the use of a Empyrean diffractometer (XRD, Panalytical, Almelo, Netherlands) and selective
diffraction of electrons;

• The level of hardness for individual joint components and its nature in the course from the parent
material through the heat-affected zone and weld was obtained, taken by Vickers method using
a Future—Tech FM—7 machine (Kawasaki, Japan) at the indenter load of 10 kG;

• The material’s residual life was determined based on abridged creep tests at a constant test stress
corresponding to the operating one σb = σr = const and at a constant test temperature Tb for
each test. The tests were performed using Instron single-sample machines (Norwood, MA, USA)
with an accuracy of temperature during the test of ±1 ◦C.

The obtained results of the investigations are part of the study, which is under preparation for
verification of the proposed method for evaluating and predicting the time of further safe service of
homogeneous circumferential welded joints from low-alloy Cr-Mo-V steels. In the case of its positive
result, this test method will be used in materials diagnostics to be performed for the power industry.

4. Results

4.1. Microstructure Investigations: Structure of Steel in the As-Received Condition

The microstructure of 14MoV6-3 steel in the as-received condition is a mixture of bainite and
ferrite, sometimes with a slight amount of pearlite. Moreover, very fine MC carbide precipitates that
occur inside the ferrite grains are observed within the structure. In the bainite areas, there are small
spheroidal cementite precipitates, while in the pearlite colonies, cementite lamellas exist. An example
of the characteristic microstructure of 14MoV6-3 steel in the as-received condition is shown in Figure 2.
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4.2. Evaluation of the Microstructure of Repair Welded Joints

The investigations of microstructure were carried out on metallographic microsections.
The microsections were made on the cross-section of test specimens of the examined components
in the area of the weld and prepared by mechanical grinding and polishing as well as etching.
The observations were performed with magnifications of 500 to 5000×. For the repair welded joint
made from materials after long-term service, marked ZS1, the results of the investigations are presented
as photographs of the microstructure of the materials of the circumferential welded joint components,
in particular: parent material, heat affected zone of the joint and weld, respectively, in Figure 3.
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Figure 3. Structure of the material of components of the repair welded joint marked ZS1 made from
14MoV6-3 steel after 169,000 h service; microstructure investigation locations (a): parent material
marked (c) PM1, (e) PM2; heat affected zone marked (d) HAZ1, (f) HAZ2; weld marked (b) WELD.

The results of the microstructure investigations for the components of the repair welded joint made
from a material in the as-received condition and after long-term service, marked ZS2, in particular:
parent material, heat affected zone and weld, are provided in Figure 4.

The classification of the microstructure including the evaluation and exhaustion extent te/tr

estimated based on the Institute for Ferrous Metallurgy’s own classification [1] is provided in Table 3.
The parent material of the welded joints marked ZS1 (PM1, PM2) and ZS2 (PM2) after service

was characterised by a ferritic microstructure with partially coagulated bainite areas. At the ferrite
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grain boundaries, there are precipitates of different size, mostly fine ones, whereas inside the ferrite
grains, mostly very fine precipitates distributed evenly within the structure were observed.

The microstructure of the parent material of the welded joint marked ZS2 (PM1) in the as-received
condition was characterised by ferritic-bainitic microstructure, which is typical for this type of steel.

In the microstructure of the materials of the examined repair welded joints, no discontinuities or
microcracks, nor initiation of internal damage processes due to creep, were observed.
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Table 3. Review of the results of microstructure investigations and hardness tests on the material of
components of repair welded joints.

Material for Investigations Figure No. Description of Microstructure Material
Condition—Exhaustion Degree

Hardness
HV10

Repair welded joint
Designation ZS1

PM1

Figure 3

Ferritic-bainitic structure. No discontinuities or
micro-cracks are observed in the structure.
Bainitic areas: class I/II, precipitates: class A.
Damaging processes: class 0.
CLASS 2, EXHAUSTION DEGREE: approx. 0.3 ÷ 0.4.

173

PM2 169

HAZ1
No discontinuities or micro-cracks
are found in the structure.

247

WELD 240

HAZ2 247

Repair welded joint
Designation ZS2

PM1

Figure 4

Ferritic-bainitic structure.
No discontinuities or micro-cracks are observed in
the structure.
Bainitic areas: class 0; precipitates: class 0;
Damaging processes: class 0.
MATERIAL CONDITION: CLASS 0; EXHAUSTION
DEGREE: ~0.

160

PM2

Ferritic-bainitic structure.
No discontinuities or micro-cracks
are observed in the structure.
Bainitic areas: class I/II, precipitates: class A.
Damaging processes: class 0.
CLASS 2, EXHAUSTION DEGREE: approx. 0.3 ÷ 0.4.

168

HAZ1
No discontinuities or micro-cracks are found in the
structure.

247

WELD 242

HAZ2 168

4.3. X-ray Analysis of Phase Composition of Precipitated Carbide Isolates

As a result of dissolving the matrix of the material of the examined test specimens of repair
welded joints by the electrolytic method, the existing carbides were isolated. The X-ray phase analysis
was carried out on the obtained carbide isolate, and the existing carbides were identified. The obtained
results of the investigations of the material of test repair welded joints are summarised in Table 4.

Table 4. Phase composition of carbides in repair welded joints.

Material Condition Phase Composition of Carbides Precipitation Sequence

As-received condition
14MoV6-3 steel

M3C
MC M3C + MC

14MoV6-3 steel 169,000 h service
Designation ZS1-PM1

Isovit Cr23C6—main phase
Cementite Fe3C

VC
M23C6 main_ph. + M3C av + MC nw

14MoV6-3 steel 169,000 h service
Designation ZS2-PM2

Isovit Cr23C6—main phase
Cementite Fe3C

VC
M23C6 main_ph. + M3C av + MC nw

The type and contribution of the revealed precipitates correspond to the exhaustion degree
estimated based on the microstructure image of the examined materials of repair welded joints from
low-alloy steels after operation beyond the design service time (Table 3).

The sequences of carbides (Table 4) within the examined materials formulated based on the X-ray
diffraction analysis of electrolytically isolated carbide deposits confirm the class of microstructure as
determined based on the analysis of its observed images.

4.4. Hardness Evaluation of Repair Welded Joints

Hardness measurement was taken by Vickers HV10 method on the transverse metallographic
microsection of the examined repair circumferential welded joints made from materials after long-term
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service, marked ZS1, and material in the as-received condition and after long-term service marked ZS2.
The HV10-hardness measurement results against the background of the macro photograph showing
a cross-section of the repair welded joints in the examined test specimens are presented in Figure 5.
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Figure 5. Distribution of the results of HV10 hardness measured on transverse microsections of the
repair welded joint made from 14MoV6-3 steel. Test location—transverse microsection: (a) ZS1; (b) ZS2.

Hardness for all the examined components of repair welded joints is lower than the maximum
permitted one, which is 350 HV10 for joints in the as-received condition and ranges from 160 to 179
HV10 for the parent material, from 209 to 268 for the heat-affected zone and from 240 to 249 HV10
for the weld material. This suggests that the examined welded joints were properly heat-treated after
welding and will be able to transfer the required considerable loads, including those that occur during
water pressure tests, shut-downs and start-ups. Hardness measurements have also shown no sudden
changes when passing through the individual zones of the joint. Hardness for the 14MoV6 steel repair
circumferential welded joint made from materials after 169,000 h service is, on average, 173 HV10
for the parent material, while in the weld it increases up to 262 HV10. Hardness for the 14MoV6
steel repair circumferential welded joint made from a material in the as-received condition and after
169,000 h service is, on average, 165 HV10 for the parent material, while in the weld it increases up to
268 HV10.

4.5. Abridged Creep Tests

The abridged creep tests were carried out for five test temperature levels ranging between 600 ◦C
and 680 ◦C at 20 ◦C intervals with constant test stress σb = const corresponding to the operating one,
which allows for obtaining test results within several months. This provides a good estimate of residual
life tre as it was verified in [17,18].

The method used to reduce the duration of creep tests involves accelerating the creep process
by increasing the test temperature Tb well over the temperature level Te suitable for operation in
the samples maintained at a constant test stress corresponding to the operating one σb = σr = const.
They allow for the plotting of a straight line inclined at the time to rupture the tr axis. The residual life is
determined by extrapolation of the obtained straight line towards a lower temperature corresponding
to the operating one Te.
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The results of creep tests for the examined repair welded joints marked ZS1 and ZS2 are
summarised in Table 5 and presented in comparative graphs (Figure 6) as logtz = f (Tb) at σb = const,
where tr is the time to rupture in the creep test.

Table 5. Results of abridged creep tests.

Test Specimen
Designation

Working Parameters Test Stress
σb

(Mpa)

Test Temperature, Tb (◦C)

600 620 640 660 680

Pressure Pr
(MPa)

Temperature
Tr (◦C) Time to Rupture, tr (h)

Repair welded joint
made from materials
after 169,000 h service
Designation ZS1

- -

50

(3127) 1197 559 234 120

Repair welded joint
made from material in
the as-received
condition and material
after 169,000 h service
Designation ZS2

- - (3161) 1178 822 179 103

Parent material after
169,000 h service
Designation PM

13.0 538

55

(286) (1365) 559 429 196

Repair welded joint
made from materials
after 169,000 h service
Designation ZS1

- - 2834 672 373 189 97

Repair welded joint
made from material in
the as-received
condition and material
after 169,000 h service
Designation ZS2

- - (2592) 1297 481 191 84

(-)—tests in progress.
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The comparison of the results of abridged creep tests in the form of logtr = f (Tb) at
σb ≈ σr = 50 MPa for the repair welded joint made from 14MoV6-3 steel after 169,000 h service and the
repair welded joint made from 14MoV6-3 material in the as-received condition and 14MoV6-3 material
after 169,000 h service is presented in Figure 6a.
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The comparison of the results of abridged creep tests in the form of logtr = f (Tb) at
σb ≈ σr = 55 MPa for the parent material of 14MoV6-3 after 169,000 h service and the repair welded
joint made from materials of 13HMF (14MoV6-3) after 169,000 h service and the repair welded joint
made from 14MoV6-3 steel in the as-received condition and 14MoV6-3 steel after 169,000 h service is
presented in Figure 6b.

On the basis of the previously completed creep tests, based on the extrapolation method used,
the residual life (interpreted as the time to failure) was determined and the disposable residual life
(being the safe time of service, which is about 0.6 of the residual life, Figure 1) was estimated as the
safe time of service for the examined parent material, repair welded joint made from materials after
long-term service and repair welded joint made from material in the as-received condition and after
long-term service. The obtained results of extrapolation based on creep tests are summarised in Table 6
for two values of stress—50 and 55 MPa.

Table 6. Residual life determined and disposable residual life estimated by abridged creep tests of the
parent material, repair welded joint made from materials after long-term service and repair welded
joint made from material in the as-received condition and after long-term service.

Test Specimen
Designation

Adopted
Operating Stress

σr (MPa)

Adopted Further
Operation

Temperature Tr
(◦C)

Estimated Life Time (h)

Residual tre

Disposable
Residual Life tb

(about 0.6 tre)

Joint from
materials after
long-term service
Designation ZS1

50

538

25,000 15,000

Joint from material
in the as-received
condition and
material after
long-term service
Designation ZS2

60,000 36,000

Native material
Designation PM1

55

20,000 12,000

Joint from
materials after
long-term service
Designation ZS1

23,000 13,800

Joint from material
in the as-received
condition and
material after
long-term service
Designation ZS2

58,000 34,800

The residual life determined by extrapolation of creep results obtained in abridged tests, for the
temperature of further service and the adopted stress level of further operation of the parent materials
and repair welded joints, has allowed the disposable residual life, which is the time of further safe
service, to be determined.

The residual life tre determined for the adopted stress level of 50 MPa for the repair welded joint
of the materials after service, marked ZS1, is 25,000 h and its estimated disposable life tb is 15,000 h
(Figure 6, Table 4), while the residual life tre determined for the repair welded joint of the material
after service and the material in the as-received condition, marked ZS2, is 60,000 h and the estimated
disposable life is 36,000 h.

The residual life tre determined for the adopted stress level of 55 MPa for the repair welded joint
of the materials after service marked ZS1, is 23,000 h and the estimated disposable life tb is approx.
14,000 h, while the residual life tre determined for the repair welded joint of the material after service
and the material in the as-received condition, marked ZS2, is 58,000 h and the estimated disposable
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life is approx. 35,000 h. For the parent material after service marked PM1, the residual life is 20,000 h,
and the estimated disposable life is tb 12,000 h.

The time of further safe service of the examined new repair welded joints may be assumed to be
15,000 h for the ZS1 joint and 36,000 h for the ZS2 joint at the further service stress σe = 50 MPa, while for
the adopted further service stress σe = 55 MPa the time of further safe service of the examined new
repair welded joints may be assumed to be approximately 14,000 h for the ZS1 joint and approximately
35,000 h for the ZS2 joint.

5. Conclusions

1. The set of destructive materials tests presented in this paper allows for the evaluation of material
condition and determination of suitability for service of repair. It is of particular importance for
the operation of steam pipelines beyond the design service time.

2. The evaluation of the material condition of repair welded joints is made based on a comprehensive
summary of the results of investigations on mechanical properties, microstructure and abridged
creep tests. These results are in turn a part of the database of the materials’ characteristics for steels
and their welded joints with materials showing varying degrees of degradation. This database is
used in diagnostic tests for pressure parts of boiler elements.

3. The quantitative dimension of suitability for service of the material of repair welded joints is
achieved by extrapolating the straight line obtained in abridged creep tests from logtr = f (Tb)
at σb = const towards the temperature of assumed operation, which allows residual life tre and
disposable residual life tb to be determined for the working temperature.

4. The knowledge of the share of disposable residual life tbe in residual life tre (tbe/tre) allows the safe
time of service of the examined joints to be determined for the required performance parameters.

5. The examined repair welded joints are suitable for operation for a limited time resulting
from the disposable residual life determined for defined temperature and stress parameters
of further service.

The completed tests of the material of steam pipeline and welded joints have shown that long-term
operation beyond the design service time does not disqualify the material from service. It has been
demonstrated that the modernisation and repair works carried out on the steam pipeline materials by
making welded joints show lower creep strength than the basic material. The lower strength of repair
welded joints in relation to the parent material should be taken into account in design calculations
while extending the service time beyond the design service life.

It has also been demonstrated that, in contrast to the microstructural investigations and the basic
investigations of mechanical properties, the abridged creep tests allow the real determination of the
time of further safe operation of the elements of power equipment working beyond the design service
life to be obtained.

The analysis of the research results of abridged creep tests shows that, independently, of the values
of the stress, creep resistance of repair welded joint ZS2 is twice as high as welded joints marked ZS1.
This difference is probably related to the higher creep resistance of the parent material resulting in
a higher creep resistance of joints marked ZS2.
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