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Abstract: The influence of magnetic treatment on the yield strength, the ultimate tensile strength
and the elongation of laser tailor welded blanks (TWBs) of DP600 steel was investigated by uniaxial
tensile tests. The experimental results showed that the yield strength and the ultimate tensile strength
of the TWBs had only a slight change, but the elongation increased by 13.90%–36.23% after the
magnetic treatment. The dislocation distributions in the fusion zone (FZ) and the heat-affected zone
(HAZ) were observed respectively by transmission electron microscopy (TEM). It was found that after
magnetic treatment, the dislocations in both the FZ and the HAZ of the TWBs increased and showed
a relatively uniform distribution. The mechanism of the mechanical property improvement of the
TWBs by the magnetic treatment was then revealed on the basis of the relationship model between
the dislocation and shear strain, considering the evolution of magnetic domains and Frank-Read
dislocation multiplication in a magnetic field.
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1. Introduction

Tailor welded blanks (TWBs) are made up of several steels with different materials, thicknesses
and/or coatings to meet the diverse requirements of the components on the properties and thickness
of the material [1]. Compared to other welding methods, laser welding can create a narrow fusion
zone (FZ) and heat-affected zone (HAZ), and has become a widely used welding method of TWBs in
the modern automobile industry [2,3]. However, the performance of laser TWBs is greatly reduced
due to the existence of welded joints, which limits their application in automobiles [4–8]. Farabi [9]
researched the tensile properties of laser TWBs of DP600 steel and the results showed that the hardness
increased significantly in the FZ, the yield strength increased and the ultimate tensile strength remained
almost unchanged after welding. Kang [10] investigated the mechanical properties and formability
of laser-welded 600 MPa grade TRIP (Transformation Induced Plasticity) steel and DP (Dual Phase)
steel and the results showed that the FZ hardness increased, the yield strength and ultimate tensile
strength increased, but the elongation and the formability decreased. Therefore, it is important to find
approaches to improve the ductility of TWBs, especially for those made of high-strength steels.

Magnetic treatment is an advanced method used to improve the mechanical properties of metallic
materials [11]. At present, many scientific studies are being carried out to explore the rules and
mechanisms of magnetic treatment. Zhao [12] detected the micro-hardness of high-speed steel for
cutting tools under a pulsed magnetic field, and found that magnetic treatment with appropriate
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parameters clearly improved the micro-hardness of the high-speed steel. Celik [13] investigated the
fatigue life of AISI 4140 steel under different magnetic field intensities and found that the fatigue
life increased when the magnetic field was applied up to 30% of the fatigue fracture cycle of the
untreated samples, and the treated effects also varied according to different magnetic field intensities.
Klamechi [14] researched the residual stress of curved strip samples with and without applying an
external magnetic field and the results showed that the residual stress was reduced by 4%–13% after
the particular pulsed magnetic treatment. Cai [15] studied the effects of the magnetic field intensity
orientation on the welding residual stress release by the pulsed magnetic field treatment and the
results showed that the welding residual stress was reduced by up to 26% when the magnetic field
was oriented along the blank thickness. Song [16] investigated the welding residual stress in low-alloy
steel with a low-frequency alternating magnetic treatment and the experimental results revealed that
the welding residual stress was reduced by 20%–24%.

Besides the aforementioned welding residual stress relief caused by magnetic treatment, other
changes in the microstructures and properties of TWBs under a magnetic field are still not clear. Due to
the critical role of the mechanical properties on the formability of TWBs, in this work the influences of
magnetic treatment on the strength and ductility of TWBs are detected and the mechanism is explained
with the combination effect of the magnetic domain and dislocation.

2. Experimental

In this work, the DP600 steel sheet with 1.6 mm in thickness was chosen as the base material of
the TWBs. The main parameters of laser welding are shown in Table 1. After the laser welding, a weld
seam with a good surface quality, even width (nearly 2 mm) and high straightness is formed.

Table 1. The main parameters of laser welding.

Welding Power/(W) Welding Speed/(m/s) Defocusing Amount/(m) Shielding Gas

1500 0.05 0 Argon

The samples in two different dimensions in length and width were fabricated referred to the
Chinese standard GB/228.1-2010 [17] and their sketches are shown in Figure 1. To reduce the measuring
error, each group with the same dimension included three non-magnetic treated samples and three
magnetic treated ones.
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Figure 1. Sketches of the uniaxial tensile test samples with two different dimensions: (a) large size; and
(b) small size.

The magnetic device used here comprises a coil and an AC (Alternating Current) variable
frequency power supply, as shown in Figure 2. The inner diameter and height of the coil are about
80 and 201 mm, respectively. The tensile samples were placed in the center of the coil vertically for
magnetic treatment. The parameters of magnetic treatment were set as follows: the peak value of
magnetic intensity was about 104 A/m, the frequency was 50 Hz and the processing time was 90 s.
After the magnetic treatment, the mechanical properties of both the non-magnetic treated and magnetic
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treated samples were measured by a series of uniaxial tensile tests via a material testing machine
(Mode: MTS810, MTS, Eden Prairie, MN, USA). All the strain rate used in this work was 0.01/s.
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3. Results

The broken tensile samples with and without magnetic treatment are shown in Figure 3 and the
measured engineering stress–engineering strain curves are given in Figure 4.
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4. Discussion 

Figure 4. Engineering stress–engineering strain curves before and after magnetic treatments: (a) large
size; and (b) small size.

The mechanical properties including the yield strength, ultimate tensile strength and elongation
before and after the magnetic treatment are compared in Figure 5. According to the data in Figure 5a,
the average yield strength of TWB samples in both large and small sizes after magnetic treatment
increased (or decreased) by less than 5%. Similarly, it can be found from Figure 5b that the average
ultimate strength of TWB samples in both large and small sizes after magnetic treatment increased
by less than 5%. This indicates that the magnetic treatment has little effect on the strength of the
laser TWBs.
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4. Discussion 

Figure 5. Mechanical properties before and after magnetic treatment: (a) yield strength; (b) ultimate
tensile strength; and (c) elongation. Groups A and B represents the samples in large and small sizes,
respectively. The blue line segments denote the standard deviation of measured data of three samples
in each case.

As can be seen from Figure 5c, however, the average elongations of the samples after the magnetic
treatment were increased by 36.23% and 13.90% for the TWB samples in large and small sizes,
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respectively. The results show that the magnetic treatment can effectively improve the ductility
of the laser TWBs.

4. Discussion

Since the plastic deformation is carried out by the movement of dislocations, the change in the
mechanical properties of the TWBs after the magnetic treatment can be explained from the evolution
of dislocations under a magnetic field. Hence, the dislocations of TWBs before and after magnetic
treatment were observed by the transmission electron microscope (TEM, mode: JEM-2100F, JEOL,
Tokyo, Japan). Before the TEM test, the thin films with thicknesses of less than 60 µm in the center
were obtained by an ion beam thinner for observation.

Figure 6a,b show the microstructures in the FZ of the non-magnetically and magnetically
treated TWBs, respectively. As can be seen from the photographs, the microstructure of the FZ was
predominantly martensite. The formation of martensite in the FZ was due to the rapid cooling speed
of the weld pool during the laser welding process [9]. Before the magnetic treatment, the dislocation
density in the FZ was relatively low. After the magnetic treatment, the density of dislocation density
increased distinctly with a relatively uniform distribution.
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shown at the top right corner of each photograph. FZ: fusion zone; TWBs: laser tailor welded blanks.

Figure 7a,b show the microstructures in the HAZ of the non-magnetically and magnetically
treated TWBs, respectively. It can be seen that, similar to that of the weld zone, after the magnetic
treatment, the dislocation density in the HAZ increased obviously and dislocation nets were formed in
some local areas.

The dislocation multiplication after the magnetic treatment is thought to be related to the evolution
of magnetic domains for a ferromagnetic material. There are five main interactions in a ferromagnetic
material, namely the exchange energy, the magnetocrystalline anisotropy energy, the magnetic and
elasticity interaction energy, the demagnetizing field energy and the external magnetic field energy.
In order to reduce the demagnetizing energy, self-magnetization magnetic domains are formed
in a ferromagnetic material (Figure 8a). Vector Ms is used to represent the average value of the
self-magnetization intensity in a single magnetic domain. The directions of Ms in different magnetic
domains are disordered before magenization [18]. Therefore, a ferromagnetic material does not exhibit
magnetic properties at the macro level without an external magnetic field. Thus the total magnetization
intensity of each domain is [19]
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∑
i

Msvi cos θi = 0 (1)

where vi is the volume of magnetic domain i, θi is the angle between Ms and H.
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When an external magnetic field is applied, the directions of Ms in different magnetic domains
become ordered and the ferromagnetic material is then magnetized (Figure 8b). Here, H represents
the magnetic field intensity. Then magnetization intensity δMH along the direction of the external
magnetic field can be expressed as follows

δMH = ∑
i
(Ms cos θiδvi −Msvi sin θiδθi + vi cos θiδMs) (2)

where the expression Ms cos θiδvi is related to the movement of domain walls due to the growth of
magnetic domains. The expression Msvi sin θiδθi is related to the change of the direction of the vector
Ms due to the rotation of the magnetic domains. The expression vi cos θiδMs is related to the increase
of vector Ms. The evolution of the magnetic domains in a ferromagnetic material will certainly cause
local stress. For example, the stress caused by the movement of domain walls in a local area was
deduced in our former work [20] and can be expressed by

σi ≈
2

3λs A1
(µ0HMsx × cos θ+ C)2 − 2K1

3λs
(3)
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The above stress further causes local strain and micro-deformations in the ferromagnetic material
and thus contributes to the multiplication of dislocations.

Based on the above, the increase of the dislocation density in TWBs after magnetic treatment
can be illustrated by the mechanism of Frank-Read dislocation multiplication. In Figure 9a, DD′ is a
dislocation line and it cannot move because of its two fixed endpoints and the obstacles may be a fixed
dislocation, impurities or foreign particles, and so on. When the external magnetic field is applied, the
component of stress, τ, starts to act on the dislocation line DD′. Due to the fixed nodes D and D′, the
line dislocation DD′ can only bend forward, as shown in Figure 9b. Once the dislocation line bends
to more than a semicircle, it curls and forms helical branches m and n around D and D′, as shown in
Figure 9c,d. When the two bending lines gradually approach, helical branches m and n, whose Burgers
vectors, b, are opposite, annihilate after meeting. Thus the dislocation line is divided into two parts, as
shown in Figure 9e. After that, the dislocation DD′ goes back to its original position and repeats the
above process and finally results in the increase of the dislocation density [21,22].
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The increase of the dislocation density is the main cause of the ductility improvement of the
TWBs. The mechanism is deduced by the relationship model between the dislocation and shear strain
as shown in Figure 10. Using b to represent the value of Burgers vector b, when the dislocation moves
through an element in a unit length along the slip plane, the shear strain can be expressed as [23]

γ =
b
h

(4)
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Assuming that the dislocation slip distance is xi, and the displacement at the top of the element,
relative to its bottom, is

δi =
xib
L

(5)

The total displacement produced by the slip of N dislocations on many parallel slip planes is

∆ =
N

∑
i=1

δi =
b
L

N

∑
i=1

xi (6)

The corresponding shear strain is

γ =
∆
h
=

b
hL

N

∑
i=1

xi (7)

The average displacement of dislocations x can be expressed as

x =
1
N

N

∑
i=1

xi (8)

Then the shear strain caused by the slip of N dislocations on a series of parallel slip planes is

γ =
bNx
hL

= bρx (9)

Thus, the average displacement of the dislocations can be further written as

x =
γ

bρ
(10)

where ρ = N/(hL) is the dislocation density.
Considering the plastic deformation at a certain moment of the uniaxial tensile test, the average

displacements of dislocations at the beginning and end of the deformation are supposed to be x0 and
xb, respectively. According to Equation (10), different dislocation density values bring different line
slopes and shear strains in Figure 11. Therefore, a higher dislocation density causes a smaller slope and
thus a larger shear strain, i.e., γt > γu. Since the dislocation density of the magnetically treated TWBs
is much higher than that of non-magnetically treated ones according to the results of TEM, the former
has a much larger strain for a certain average displacement of dislocations. The displacement, in the
plastic deformation process, is continuous from the beginning to the fracture of the TWB. Namely,
the process of the dislocation slip is continuous. Therefore, it can be concluded that the magnetically
treated TWBs have a higher elongation.
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The increase of the dislocation density leads to the formation of dislocation cells, which further
affects the local stress/strain field and thus the ductility of TWBs. At the same time, the evolution of
the magnetic domain under the magnetic field and the dimensions of the uniaxial tensile samples also
increase the complexity of magnetic treatment effects on TWBs.

5. Conclusions

(1) The yield strengths and the ultimate tensile strength of the TWBs changed slightly (less than
5%), but the elongation increased by 13.90%–36.23% after the magnetic treatment.

(2) The increase in the elongation of laser TWBs is mainly caused by the increase of the dislocation
density, which is explained by the relationship model between the dislocation and shear strain.

(3) The evolution of the magnetic domain of ferromagnetic materials under the magnetic field
produces local stress and strain, which can promote the multiplication of dislocations.

(4) The comprehensive effect of the magnetic domain evolution, the dislocation evolution and the
corresponding changes in the stress/strain field increases the complexity of property changes under
the magnetic field.
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