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Abstract: Recently, the API X100 steel has emerged as an important pipeline material for
transportation of crude oil and natural gas. At the same time, the presence of significant amounts of
hydrogen sulfide (H2S) in natural gas and crude oil cause pipeline materials to corrode, which affects
their integrity. In this study, the effect of H2S concentration on the corrosion behavior of API X100 in
3.5% NaCl solution is presented. The H2S gas was bubbled into saline solutions for different durations,
and the corrosion tests were then performed using potentiodynamic polarization and electrochemical
impedance spectroscopy (EIS). X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD),
atomic force microscopy (AFM), and scanning electron microscopy (SEM) techniques were used
to characterize the corroded surface. The results indicate that the corrosion rate of API X100 steel
decreases with increasing H2S bubbling time due to the increase in H2S concentration in 3.5% NaCl
solutions. It is noticed that an accumulation of a critical amount of hydrogen in the metal can result in
hydrogen-induced crack initiation and propagation. It was further observed that, when the stress limit
of a crystalline layer is exceeded, micro-cracking of the formed protective sulfide layer (mackinawite)
occurs on the API X100 steel surface, which may affect the reliability of the pipeline system.
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1. Introduction

Pipelines are one of the most convenient means of transporting petroleum and its products from
one region to another. Carbon steels (C-steel) are commonly used as a material for the transportation
pipelines because of their economic advantages and their ability to withstand operating pressure [1,2].
However, the steel surfaces of pipelines are constantly exposed to corrosive environments during
the transportation of the petroleum and its products; hence, the integrity of the pipeline system is
always found to be affected [3–5]. The sulfur content in the petroleum and its products have been
shown to be instrumental in the internal corrosion of C-steel pipelines [6]. Sulfide is predominant
in aqueous solutions through industrial waste and various biological processes and has a significant
influence on the aqueous corrosion of steels [7]. Other parameters such as temperature, fluid,
velocity, and microstructure also are influential in the corrosion rate of C-steel used in the petroleum
industry [5,8–11].

Recently, attentions have been drawn to the sour corrosion of C-steel due to a poor understanding
of sulfide corrosion absorption. Many researchers have shown that the formed iron sulfide on the
steel surface during the sour corrosion process can be either protective or non-protective [12,13]. It has
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been reported that the formed corrosion product layer during the corrosion of API X52 is significantly
composed of iron sulfide and various oxides, which enhance the protective properties of the film [4].
In a similar study, the corrosion of API X52 steel in H2S revealed that the increase in the thickness of
formed iron sulfide film influences the corrosion rate of C-steel [14]. It has also been reported that,
when the stress limit of the formed sulfide layer exceeds, micro-cracks within the formed layers have
formed, allowing a more rapid penetration of sulfide and chloride species into the deposit, resulting in
an increase in the corrosion rate [15].

The properties and the composition of the steel play critical roles in the formation, nature and
stability of the sulfide layer and consequently its corrosion prevention behavior [3]. A recent study [16]
has shown that the chemical composition and microstructure of C-steel significantly influence its
resistance to corrosion in wet H2S environments. However, the needs to increase the strength and
reduce the corrosion rate of existing C-steel pipeline materials have inspired new interest in the quest
for higher-strength steels [17,18]. Despite several contributions of different authors regarding a shared
understanding of the corrosion of steel materials [19,20], few studies have investigated the corrosion
in a sour environment [21,22], especially at low temperatures and with higher grades of carbon steel.
The application of this high strength steel as a pipeline material is aimed at enhancing the corrosion
resistance of pipeline steel. Nevertheless, many of the electrochemical characteristics of these high
strength low-alloy steel materials have not yet been reported in the literature [23–27]. Furthermore,
the corrosion behavior and mechanism of these steels in sulfide environments have not yet been fully
understood. Here, the corrosion behavior and mechanism of API X100 steel in sour 3.5% NaCl solution
at different H2S concentrations are presented using experimental tools, while surface characterization
techniques are used to characterize the corroded surface.

2. Materials and Methods

2.1. Material Preparation

The pipeline steel plates supplied by Hebei Yineng Pipeline Group Co., Ltd. (Shandong, China)
were cast into slabs after ladle refining and hot-rolled into 10 mm thickness plates. This process was
followed by solid-solution fine-grain strengthening, precipitation, and controlled cooling to achieve
the desirable microstructure. The microstructure of the as-received samples were found to be pearlitic,
formed by cooling the austenite. A representative microstructure of the target steel is shown in Figure 1.
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Figure 1. Scanning electron microscopy (SEM) micrograph of API X100 steel.

The chemical composition of the API X100 steel used in the present study was determined
by an optical emission (OE) spectrometer, ARL 3460 (Thermo Fisher Scientific SARL, Ecublens,
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Switzerland). The sample preparation procedure and the chemical composition are detailed
elsewhere [28,29].

2.2. Electrochemical Measurement Setup

Different electrochemical experiments were carried out at various H2S concentrations using
an experimental setup that was described elsewhere [28]. Figure 2 shows the schematic diagram of the
corrosion set-up used in this study.
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Figure 2. Schematic diagram of the corrosion test set-up employed to study the corrosion behavior of
API X100 steel at room temperature.

The set-up was designed to allow and control the bubbling of both H2S and N2 into the saline
electrolyte solution. In the experimental study, the work was designed to investigate the corrosion
behavior of API X100 steel material in 3.5% NaCl solutions bubbled with H2S gas at different durations.
De-aeration was carried out using nitrogen gas for 2 h prior to bubbling H2S gas into the saline
solutions at a pressure of 0.5 MPa and regulated using a flow meter (CVG Technocrafts, Mumbai,
India) for different time intervals before each test. In addition, both the pH and the H2S concentration
of the solution were measured and calculated, respectively, at the end of each test (Table 1). The actual
concentration of H2S in the solution was determined following the NACE standard [30], as shown in
Table 1.

Table 1. The pH and H2S concentration used in the tests.

H2S Gas Bubbling Duration (h) H2S Concentration (ppm) PH

0 0 7.13
1 7 6.58
3 14 6.02
6 21 4.91

For reproducibility, each test was repeated three times. The electrochemical impedance
spectrometer (EIS) experiments were conducted within a frequency range of 0.1 to 100 KHz starting
from the higher limit towards the lower one. The potentiodynamic polarization experiments were
done using a Gamry Reference Eco potentiostat (Gamry Instruments, Warminster, PA, USA) at
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a scan rate of 0.167 m·Vs−1. The purity of the used gas, H2S, was 99.99% and was purchased
from Buzwair Scientific & Technical Gases, Doha, Qatar. The 3.5% NaCl solution was prepared
using deionized water with a conductivity of 18.6 µ Siemens. A JEOL JSM-7800F scanning electron
microscope (SEM, Peabody, MA, USA) and atomic force microscopy (AFM) (JPK Instruments, Berlin,
Germany) were used to capture micrographs to document and compare the surfaces before and after
the corrosion. Energy dispersion X-ray (EDX) (AZoNano, Manchester, UK) and Kratos Axis Ultra DLD
X-ray photoelectron spectroscopy (XPS) units (Kratos Analytical Ltd, Manchester, UK) were used to
qualitatively and quantitatively measure the elemental composition of the formed corrosion product
layers at different H2S concentrations.

3. Results and Discussion

3.1. Potentiodynamic Polarization

Figure 3 presents the typical potentiodynamic polarization curve of API X100 steels in 3.5% NaCl
solution and at different H2S concentrations.

Figure 3. Potentiodynamic polarization curves of API X100 steels.  
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Figure 3. Potentiodynamic polarization curves of API X100 steels.

The corrosion current decreases as the anodic current and the potential were scanned from open
circuit potential (OCP) in the anodic direction at different H2S bubbling durations, which confirms
that the protective nature of the formed sulfide film increases due to the increase in bubbling duration.
The decrease in the cathodic current with increasing bubbling duration is attributed to two opposing
factors: the pH and the H2S gas concentrations in the solution [10]. Table 2 shows the Tafel parameters
derived from the Tafel measurements shown in Figure 3.

Table 2. The Tafel analysis parameters derived from the Tafel measurement shown in Figure 3.

H2S Concentration (ppm) Ecorr (V) Icorr (µA·cm−2) βc (V·decade−1) βa (V·decade−1) × 10−3

0 −0.633 ± 0.011 52.29 ± 0.091 1.011 ± 0.012 98.92 ± 0.007
7 −0.667 ± 0.020 28.52 ± 0.054 1.018 ± 0.013 112.1 ± 0.013
14 −0.679 ± 0.015 22.15 ± 0.013 1.012 ± 0.006 116.7 ± 0.008
21 −0.748 ± 0.012 6.89 ± 0.017 535.8 ± 0.014 103.8 ± 0.015

3.2. Electrochemical Impedance Spectroscopy (EIS)

The resistance of carbon steel materials to corrosion depends significantly on the physicochemical
properties of the material [31]. Figure 4 shows the measured electrochemical impedance spectra



Metals 2017, 7, 109 5 of 12

(Nyquist and Bode formats) within a frequency range of 0.1 to 100 KHz starting from the highest to the
lowest frequency limit. The corresponding fitted data (dotted line) are also within a frequency range
of 0.1 to 100 KHz in 3.5% NaCl solutions saturated with H2S gas at 0, 7, 14, and 21 ppm concentrations.
All values were obtained using the Gamry Echem Analysis Software technique [32].

Nyquist and Bode with the phase angle plots obtained for API X100 steel materials tested in 3.5%
NaCl solution with and without H2S are shown in Figure 4. An increase in resistance with increasing
H2S concentration can be seen in the impedance behavior of the API X100 steel. The Nyquist plot of the
API X100 steel without H2S displays a defined single smaller semicircular shape, while the tests with
H2S showed increasing semicircular curves (Figure 4). The fitting was done using the equivalent circuit
shown in Figure 5. The values of the fitted data are shown in Table 3. In the diagram, Rs represents the
solution resistance; CPE in the circuit is the constant phase element; W is the mass transfer Warburg
element [33]. Rct stands for the charge transfer resistance, and Rpo is the pore resistance.
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Figure 4. Measured Electrochemical Impedance Spectroscopy (EIS) data represented in (a) Nyquist and
(b) Bode with phase angle represented in a dotted line format for API X100 steel at different durations
in 3.5% NaCl solutions with hydrogen sulfide within a frequency range of 0.1 to 100 KHz.
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Figure 5. The equivalent electrical circuit model used to analysis the EIS data. CPE: constant phase element.

Table 3. Influence of hydrogen sulfide concentration on the corrosion of API X100 steel—data exported
from fitted circuits.

H2S
Concentration

(ppm)

Rs
(ohm·cm2)

Rpo
(ohm·cm2)

CPE1
(Ssncm−2)
× 10−3

n1
Rct

(ohm·cm2)

CPE2
(Ssncm−2)
× 10−4

n2

0 12.73 52.95 4.52 0.735 840 5.17 0.869
7 19.05 67.13 3.31 0.718 1095 4.82 0.785

14 70.99 98.22 2.78 0.632 1440 3.09 0.807
21 98.19 106.10 1.52 0.640 1747 2.17 0.676

It can be observed that an increase in hydrogen sulfide concentration increased the charge transfer
resistance (Rct) of the steel [34].
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The increase in Rct indicates that the sulfide film is becoming more protective. Additionally,
the higher the Rct is, the lower the double layer capacitance will be. As can be seen in Table 3, the most
protective sulfide layer was at a hydrogen sulfide concentration of 21 ppm. The corrosion resistance of
the API X100 steel increases when the hydrogen sulfide concentration is increased from 0 to 21 ppm.
This observation is attributed to the iron sulfide film formation and growth [13,35], which is in good
agreement with the findings of Tang et al. [36], who observed similar iron sulfide film deposits on
the SAE-1020 carbon steel when exposed to a sour environment. Furthermore, the increase in the
hydrogen sulfide concentrations from 14 to 21 ppm showed evidence of crack development, which may
be ascribed to hydrogen-induced cracking (HIC). The hydrogen-induced crack (HIC) has been reported
to be one of the most significant damage modes in a sour environment [37,38]. It is believed that
hydrogen atoms produced due to surface corrosion of the steel diffuse into it through microstructural
defects that exist in the material [38]. The accumulation of a critical amount of hydrogen in the metal
defeats results in HIC initiation and propagation, as recently reported by Kittel et al. [39].

It is demonstrated that the corrosion resistance of API X100 steel material enhances significantly
with increasing sulfide concentration, and can be attributed to the formation of a protective iron
sulfide layer on the API X100 steel surface when exposed to an aqueous hydrogen sulfide environment.
A previous study [40] has shown that a chemical reaction occurs in a sour environment when H2S
is bubbled into the aqueous solution. However, some authors have reported the occurrence of
supersaturated mackinawite when low concentrations of H2S are combined with an increase in Fe2+

concentration, resulting in the growth of mackinawite on the steel surface [41–44]. Furthermore,
several authors [45,46] have also reported the significant effects of H2S concentration on the sulfide
layer formation.

3.3. Surface Characterizations

The atomic force microscopy (AFM) technique was used for a better understanding of the corroded
API X100 steel surface. The 3D AFM images of the corroded surfaces are presented in Figure 6a–d.
It is evident that the surface roughness increases with increasing H2S concentration. The specimens
corroded at highest H2S concentration have the highest surface roughness (Ra = 400 nm), while the
specimens tested in the absence of H2S have the lowest surface roughness (Ra = 50 nm). This behavior
can be ascribed to the increase in the formation of more scale layers on the API X100 steel surfaces
with increasing concentration of H2S (Figure 6).
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Figure 6. 3D atomic force microscopy (AFM) images of API X100 steel exposed to a sour environment
at different H2S concentrations of (a) 0 ppm; (b) 7 ppm; (c) 14 ppm; (d) 21 ppm.
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Evidence of the sulfide layer formation of sulfide layer on the surface of the API X100 steel
specimen when tested in an H2S environment was confirmed by EDX analysis. The presence of sulfur
(S) peak in the EDX spectra shown in Figure 7b–d clearly confirms the formation of a sulphide layer on
the surface of all API X100 steel tested under H2S environment. However, there was no evidence of “S”
in the spectra taken from the test specimen performed without H2S (Figure 7a).
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Figure 7. SEM images of API X100 steel material for tests conducted in 3.5% NaCl (a) without H2S, (b)
with 7 ppm of H2S, (c) with 14 ppm H2S, and (d) with 21 ppm H2S.

Evidence of cracks can be seen on the sulfide layers at different H2S concentrations, especially at
higher concentrations (Figure 7). The phenomenon of the formation of a sulfide film and its cracking is
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influenced by test solution conditions [47]. It is clear from Figure 7 that deposits of iron sulfide layers
have been built up on the sample surface (Figure 7). SEM micrographs shown in Figure 7 reveal that
the sulfide layers appear finer and more clustered as the H2S concentration is increased, which can be
attributed to the formation of a more homogeneous protective iron sulfide layer on the steel surface.
It has been reported that the continuous diffusion of hydrogen sulfide on a steel surface can lead to
generate internal stresses into the formed sulfide layer [15]. Upon exceeding the stress limit of the
crystalline layer, micro-cracking of the formed layers occurs as observed in Figure 7b–d. Analysis of
the corroded metal surface state can be carried out using surface X-ray photoelectron spectroscopy
analysis techniques. Figure 8 displays the survey XPS spectra of API X100 steel after exposure to
different H2S concentrations. The presence of iron peaks at 709.82 eV, 713.53 eV and a carbon peak at
285.5 eV can be noticed. However, the peaks at 163 and 170 eV binding energy (Figure 8b) indicate the
presence of sulfur and thus deduce the possible formation of sulfide layers on the corroded API X100
steel surfaces. This is in good agreement with previous studies [48].

Figure 9 shows the XRD spectra of the corroded API X100 steel samples in saline and sour
solutions. XRD peaks located at different 2θ values confirm the presence of different iron compounds.
The test performed in the absence of H2S shows a diffraction pattern typical of the peak of iron oxide
(Fe2O3, 2θ = 65.08◦) [4]. However, the presence of iron sulphide also referred to as mackinawite
(FeS, 2θ = 82.43◦) was observed on the surface of API X100 steel surface when exposed to different
H2S concentrations.
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Several researchers have reported that the initial formation of mackinawite layer on the steel
surface before the formation of the more stable sulfide species depends on the sample material and the
test conditions [49,50]. The presence of this iron sulphide (mackinawite) layer provides some protection
to the surface of the material from further corrosion due to its structural orientation [51], resulting in
a decrease in the corrosion rate. This protective iron sulfide layer becomes more homogeneous and
dense with increasing H2S concentration as can be observed in the SEM micrographs (Figure 7).
Similar studies have shown that iron and sulfide films were observed on API X52 pipeline steel surface
when exposed to sour environments [4]. However, their quantity is sensitive to the experimental
procedure [4,52]. Subsequently, iron sulfide layer (mackinawite) is formed due to the presence of iron
and sulfide ions in the solution. Nevertheless, an increase in the sulfide concentration as seen in this
test decreases the iron concentration in the solution, resulting in the precipitation of protective iron
sulfide on the steel surface [53].

4. Conclusions

In order to understand the effect of hydrogen sulfide on the corrosion behavior of API X100 steel,
sets of experiments in the presence and absence of sulfide in 3.5% NaCl were performed on API X100
steel. Based on the experimental results, the following can be concluded:

1. EDX and XPS analyses confirm the presence of sulfur on the corroded API X100 steel surfaces at
different H2S concentrations.

2. A significant decrease in the corrosion rate of API X100 steel in 3.5% NaCl solutions containing
various concentrations of H2S is noticed which can be attributed to the formation of sulfide layer.

3. SEM micrographs confirm that the formed protective sulfide layer becomes more homogenous
and denser as the H2S concentration is increased.

4. The formation of more homogeneous, dense and protective iron sulfide layer (mackinawite) is
responsible for the decrease in the corrosion rate with increasing concentration of H2S.

Acknowledgments: This publication was made possible by National Priorities Research Program (NPRP) Grant
6-027-2-010 from the Qatar National Research Fund (a member of the Qatar Foundation). Statements made herein
are solely the responsibility of the authors.
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