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Abstract: Microarc oxidation (MAO) coatings were prepared on 2024-T4 aluminum alloy using
pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings
contained many crater-like micropores and a small number of microcracks. After the MAO coatings
were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE)
dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with
PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and
properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite
coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD), Vickers
hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the
wear rates of the MAO coatings decreased significantly with an increase in cathode current density.
Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited
a lower friction coefficient and lower wear rates.

Keywords: 2024-T4 aluminum alloy; microarc oxidation; cathode current density; PTFE; adhesion
strength; wear resistance

1. Introduction

Rich aluminum resources have already been discovered on the Earth. Aluminum alloy, due to its
high specific strength, low density [1], proper corrosion resistance and great workability, has received
much attention and is extensively applied in aerospace and transportation systems [2]. However, the
application of aluminum alloy is seriously restricted by its low surface hardness, high and unstable
friction coefficient, poor adhesive wear and severe abrasive wear [3–5]. To date, many aluminum alloy
surface modification technologies, such as physical vapor deposition, ion beam assisted deposition,
hard anodizing and thermal spraying, have been developed and employed to improve the hardness
and wear resistance of aluminum alloy. However, most of these technologies require high temperatures
and are complicated to employ. These technologies are also not environmentally friendly [6,7]. Microarc
oxidation (MAO), namely plasma electrolytic oxidation (PEO) [8], emerged as a novel technique with
broad application prospects [9,10]. MAO could be used to prepare ceramic-like oxide coatings on the
surface of some light metals in-situ through anodic oxidation, thermochemistry, electrochemistry and
plasma chemical mechanisms [11,12]. The ceramic coatings prepared by MAO have high hardness,
good adhesion to substrate, and excellent wear resistance etc. [13–15].

The microstructure and properties of MAO coatings are influenced by many factors such as
electrolyte composition, power supply modes, electrical parameters, processing time and additives.
The pulsed bipolar current mode has received more attention and has been applied widely during
MAO due to the prepared coatings having a more compact structure and superior performance.
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Hussein [16] investigated the effect of current mode (unipolar, bipolar) on the wear properties of
MAO coatings on an AM60B magnesium alloy and found that the MAO coatings using a pulsed
bipolar current mode exhibited better wear resistance. Wu [17] found that the composition, structure
and physical and chemical properties of MAO coatings on the surface of Ti alloy can be extensively
modified by changing the anodic and cathodic voltages. Liu [18] studied the effects of cathodic voltages
on the structure and performance of MAO coatings prepared on NiTi alloy. Su [19] investigated the
effects of cathode current density on corrosion resistance of MAO coatings on ZK60 Mg alloy. Li [20]
discovered that the wear resistance of MAO coatings can be significantly improved by increasing the
cathodic voltage. There is currently little work about cathode current density improving the structure
and anti-wear of MAO coatings. Moreover, the MAO ceramic coatings produced also behave as
a high friction coefficient, which limit the extensive engineering applications for MAO technology.
MAO ceramic coatings contained many crater-like micropores of various sizes and a small number of
microcracks. This creates the possibility to deposit small sized lubricants into these micropores and
microcracks to form microarc oxidation self-lubricating composite coatings.

The microarc oxidation self-lubricating composite coatings could possess relatively improved
hardness and higher anti-wear attributes as well as self-lubricating performance coupled with a
lower friction coefficient. MAO self-lubricating composite coatings are extensively applied in extreme
working conditions where liquid lubricants and greases are too volatile to function, such as high
vacuum, chemical, high temperature and radioactive environments. Moreover, MAO self-lubricating
composite coatings are also useful in industrial applications to avoid contamination through use of
lubricating oil or grease.

PTFE has low shear strength and is often used as a solid lubricant. Moreover, PTFE dispersion
has good liquidity. In this study, a 2024-T4 aluminum alloy was treated through microarc oxidation
using a pulsed bipolar current mode at different cathode current densities. After the MAO coatings
were formed, the micropores and microcracks on the surface of the MAO ceramic coatings were
filled with PTFE dispersion for preparing MAO self-lubricating composite coatings containing PTFE.
The microstructure and properties of MAO coatings, and the wear resistance of the microarc oxidation
self-lubricating composite coatings were investigated. The adhesion strength between the MAO
coatings and substrates are also analyzed.

2. Experimental Details

2.1. Samples Preparation

The MAO coatings were prepared on a 2024-T4 aluminum alloy. The main chemical composition
(mass fraction, wt. %) of the 2024-T4 aluminum alloy is 3.8–4.9% Cu, 0.5% Si, 0.5% Fe, 0.3–0.9% Mn,
1.2–1.8% Mg, 0.25% Zn, 0.10% Cr, 0.15% Ti, balanced with Al. The main mechanical properties of
the 2024-T4 aluminum alloy are a yield stress (0.2% offset) of σ0.2 = 325 MPa, a tensile strength of
σb = 470 MPa, a Vickers hardness of 130 Hv, an elongation of δ = 20% and a Young modulus of 69 GPa,
respectively. The sample size was 30 mm × 15 mm × 2 mm. Samples were polished using abrasive
papers from 600# to 2000#, degreased by ultrasound in acetone, rinsed in deionized water, and then
dried in warm air. The AC pulse microarc oxidation unit was used in this experiment. The sample
was used as the anode and the electrolytic tank was used as the cathode. The silicate electrolyte was
prepared in deionized water. The composition of electrolyte contained (6 g/L) Na2SiO3, (1.5 g/L) KOH,
and was of high purity. A pulsed bipolar constant current power supply was used in this experiment.
The schematic of pulse output of bipolar constant current power supply is shown in Figure 1 and the
MAO process parameters are listed in Table 1. The mixing pump was opened and the electrolyte was
stirred continuously during MAO treatment. The cycle cooling system was opened to ensure that
the electrolyte temperature was less than 40 ◦C. After the microarc oxidation coatings were formed,
the coated samples were rinsed with deionized water and dried in warm air.
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increased from 0 to 30 N at a normal loading speed of 30 N min−1 as the diamond is drawn across the 
surface of the MAO coatings. The scratch length was 5 mm. The critical load values (Lc) were 
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The coated samples were immersed into water-based PTFE dispersion. The deposition time was
15 min. The micropores and microcracks on the surface of the MAO coatings were filled with the
PTFE dispersion. The samples were heated for 40 min at 220 ◦C and the PTFE dispersion solidified.
The PTFE was embedded into the micropores and microcracks of the MAO ceramic coatings, which
formed microarc oxidation self-lubricating composite coatings containing PTFE. The parameters for
preparing the microarc oxidation self-lubricating composite coatings are listed in Table 1.

2.2. Testing and Characterization

The morphologies of microarc oxidation ceramic coatings formed using pulsed bipolar power
supply at different cathode current densities and the morphologies of the microarc oxidation
self-lubricating composite coatings were observed by FEI Sirion scanning electron microscopy (SEM).
The surface roughness of microarc oxidation ceramic coatings was measured by a OLS3000 laser
confocal microscope. The phase structure of the microarc oxidation ceramic coatings was analyzed by
X’ Pert PRO X-ray spectroscopy (XRD).

Adhesion strength of microarc oxidation coatings was evaluated using a CSM microscratch tester.
In this test, the load on a diamond Rockwell indenter with a tip radius of 100 µm was linearly increased
from 0 to 30 N at a normal loading speed of 30 N min−1 as the diamond is drawn across the surface of
the MAO coatings. The scratch length was 5 mm. The critical load values (Lc) were determined using
supplementary data graphics including acoustic emission and friction coefficient.

Hardness was measured by Vickers hardness tester and the load was 10 N and the dwelling time
was 10 s. For each sample, tests carried out six times. The friction coefficient of the MAO coatings and
the microarc oxidation self-lubricating composite coatings was measured by CETR-UMT-2 ball-on-disk
wear tester. WC balls with a diameter of 5 mm and a surface roughness greater than 0.05 µm were
used as counterface materials. All wear tests were conducted with WC balls in sliding contact with a
load of 10 N at a fixed sliding speed. The rotating diameter and rotating speed of the wear tester were
6 mm and 200 RPM, respectively. The test time of each sample measured on the wear tester was 20 min.
The width of the wear tracks were measured via SEM and OLS3000 laser confocal microscope. The
depth and volume of the wear tracks were detected by OLS3000 laser confocal microscope. The average
value of the three profiles on the wear tracks was used to calculate the wear rate. The computation
formula of wear rate is as Equation (1) [21]. In Equation (1) Q is the wear rate, VW is the wear volume
(mm3), P is the applied load (N), and S is the sliding distance (m).

Q =
VW

PS
(1)

3. Results and Discussion

3.1. Microstructure of MAO Coatings and MAO Self-Lubricating Composite Coatings

The variation curves of voltages are shown in Figure 2. In Figure 2I the anode and cathode
voltages increased as the MAO processing time increased during microarc oxidation. The resistance of
MAO coatings increased as MAO coatings grew, resulting in an increase of anode and cathode voltages
under the constant current mode during MAO. Moreover, Figure 2II,III shows that the growth rates
of anode and cathode voltages increased in association with cathode current density, which may be
related to the growth rate of MAO coatings during MAO.

The surface morphologies of microarc oxidation ceramic coatings prepared on the surface of
2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities are
shown in Figure 3. MAO ceramic coatings contained many crater-like micropores of various sizes
and a small number of microcracks. The quantity of micropores on the surface of MAO ceramic
coatings decreased significantly as the cathode current density increased from nine to 37 A/dm2.
These micropores were formed by molten “oxide magma” and the gas bubbles ejected from discharge
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channels. The rapid solidification of molten oxide magma ejected from discharge channels in the
electrolyte, however, also produced thermal stress, which caused microcracks [22].

As shown in Figure 3, A-type holes, B-type holes, and C-type holes were clearly exhibited on the
surface of MAO coatings. A-type holes and C-type holes showed a porous foam-like structure. B-type
holes looked like flat pancakes and showed a more compact structure. According to previous studies,
three typical discharge events occurred in the process of MAO. A-type discharge events occurred in
holes on the surface of MAO coatings. B-type discharge events penetrated through MAO coatings.
C-type discharge events occurred in the relatively deep holes on the surface of MAO coatings. A-type
holes, B-type holes and C-type holes were formed by A-type discharge events, B-type discharge events
and C-type discharge events, respectively [23]. Li [20] hypothesized that B-type discharge events
may result in the formation of new oxides, and the existence of the cathode current can promote the
occurrence of B-type discharge events. At the same time, the existence of the cathode current decreased
the occurrence of A-type discharge events and C-type discharge events. Therefore, it can be inferred
that with the increase in cathode current density, B-type discharge events increase and MAO coatings
become more compact.

The surface roughness of microarc oxidation ceramic coatings is shown in Figure 4. The surface
roughness of the microarc oxidation coatings increased significantly with the increase in cathode
current density. As shown in Figure 3, the foam-like structures were more porous and higher than the
pancake-like structures. The foam-like structures decreased in size with the increase in cathode current
density, which can decrease the surface roughness of microarc oxidation coatings. The pancake-like
structures increased in size and quantity with an increase in the cathode current density. This is due
to the increase of the B-type discharge intensity, the quantity of the formed molten oxide magma on
the coatings/substrates interface, the pressure in the discharge channels, and the ejected height of the
molten oxide magma.
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The cross-sectional morphologies of microarc oxidation ceramic coatings are shown in Figure 5.
Figure 5I shows the defects and micropores. In MAO coatings, the defects and micropores decreased
significantly with an increase in cathode current density, and the MAO coatings became more compact.
As shown in Figure 3, B-type holes looked like flat pancakes and showed a more compact structure.
B-type holes formed by B-type discharge events increased and the MAO coatings became more compact
with the increase in cathode current density. Moreover, B-type discharge events penetrated through
the entire MAO coating resulting in the formation of a new oxide. B-type discharge events and the
quantity of the formed molten oxide magma on the coatings/substrates interface increased with the
increase in cathode current density. The molten oxide magma was ejected from discharge channels and
the defects and micropores in the MAO coatings were filled with the molten oxide magma. The molten
oxide magma rapidly solidified and formed increasingly more compact MAO coatings.

The thickness of microarc oxidation ceramic coatings is shown in Figure 6. The thickness of
MAO ceramic coatings increased with an increase in cathode current density. As shown in Figure 3,
the foam-like structures decreased in size and quantity with the increase in cathode current density,
which decreased the growth rates of MAO coatings. The B-type discharge events, B-type discharge
intensity, the non-uniformity of B-type discharge events on the surface of the MAO coatings, the
quantity of the molten oxide magma formed on the coatings/substrates interface, the pressure in
the discharge channels and the ejected height of the molten oxide magma increased along with the
cathode current density. This increased the growth rates and the non-uniformity of the thickness of the
MAO coatings.

The surface morphologies of microarc oxidation self-lubricating composite coatings are shown in
Figure 7. The micropores and microcracks on the surface of MAO ceramic coatings were filled with the
PTFE dispersion.

3.2. Effect of Cathode Current Density on Phase Structure of MAO Ceramic Coatings

The phase structure of microarc oxidation ceramic coatings is shown in Figure 8. XRD analysis
results revealed that the MAO ceramic coatings were made up of γ-Al2O3, and a small amount of
α-Al2O3 and mullite. The intensity of three typical γ-Al2O3 peaks is listed in Table 2. The intensity
of γ-Al2O3 peaks increased with the increase in the cathode current density. B-type discharge events
penetrated through the entire MAO coating and can promote the formation of the new molten oxide
magma on the interface of coatings/substrates. Moreover, the B-type discharge events, the B-type
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discharge intensity, the quantity of the formed molten oxide magma on the coatings/substrates
interface, the pressure in the discharge channels and the ejected height of the molten oxide magma
increased along with the cathode current density. This increased the growth rates, the thickness and
the compactness of the MAO coatings.Metals 2017, 7, 127  7 of 16 
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Table 2. The intensity of γ-Al2O3 peaks in microarc oxidation (MAO) coatings formed on aluminum
alloy at different cathode current densities.

Labels
Intensity (a.u.)

a b c d

1 1765 1917 1992 2101
2 3206 3458 3809 3921
3 3143 3345 3698 3759

3.3. Effect of Cathode Current Density on Adhesion Strength of MAO Ceramic Coatings

Figures 9 and 10 shows the SEM morphologies and supplementary data graphics of scratches
on microarc oxidation coatings, respectively. The critical loads at which the acoustic emission and
friction coefficient increased sharply are indicated on the graphs. The corresponding critical load
values are summarized in Table 3. An increase in cathode current density creates corresponding
critical load values in the microarc oxidation coatings. Tekin [24] suggests that the bonding strength
between coatings and substrates, and the cohesion of inter-particles can be improved by decreasing
micropores size and porosity on the surface of microarc oxidation coatings. The compactness of
microarc oxidation coatings, the bonding strength between coatings and substrates, as well as the
cohesion of inter-particles increased with the increase in cathode current density.
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Table 3. Critical load values of MAO coatings formed on aluminum alloy at different cathode
current densities.

Coatings Lc (N)

A (Figure 6a) 6.17
B (Figure 6b) 7.33
C (Figure 6c) 9.83
D (Figure 6d) 15.00

3.4. Effect of Cathode Current Density on Wear Resistance of MAO Ceramic Coatings

The hardness of microarc oxidation ceramic coatings is shown in Figure 11. With the increase
in cathode current density, the hardness of MAO ceramic coatings increased significantly. B-type
discharge events increased with the increase in cathode current density, which improved the
compactness and the hardness of microarc oxidation coatings.

Figure 12 shows the friction coefficient of microarc oxidation coatings against WC balls at room
temperature during wear testing. It was discovered that wave peaks existed on the surface of MAO
ceramic coatings, and the friction coefficient rose rapidly in the initial stages of the friction test.
After 500 s, the wave peaks were smoothed flat and the friction coefficient stabilized. The friction
coefficient of MAO ceramic coatings ranged 0.65–0.8, determined by the performance of the ceramic
itself. Moreover, the friction coefficient was significantly affected by the cracks and pores on the MAO
coatings. The wave peaks on the surface of the WC balls were easy to penetrate into the surface of the
MAO coatings due to the high porosity of the MAO coatings. This increased the contact area between
WC balls and MAO coatings as well as the friction coefficient. The uneven distribution of the cracks
and pores on the surface of the MAO coatings increased the fluctuation range of the friction coefficient.
Easy of penetration by wave peaks on the surface of the WC balls created serious abrasive wear and
produced a significant quantity of wear debris during wear testing. The microcracks on the MAO
coatings were easy to expand and form exfoliation under periodically applied load during wear testing.
The wear debris and exfoliation were involved in the friction process, which significantly affected the
friction coefficient.
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Figure 13 shows the morphologies of wear tracks for microarc oxidation coatings against WC balls
at room temperature after wear testing. The morphologies of wear tracks for MAO coatings exhibited
furrows and a wide range of exfoliation. This revealed that the dominant wear mechanism of microarc
oxidation ceramic coatings was abrasive and fatigue wear. Moreover, the furrows and the region of
exfoliation reduced in size with the increase in cathode current density. The hardness of porous MAO
coatings was low and the microbulges on the surface of the WC balls were easy to penetrate into the
surface of MAO coatings and formed furrows during wear testing. As shown in Figure 5I, the defects
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and micropores in MAO coatings formed crack sources that expanded and created exfoliation under
periodically applied load during wear testing. The compactness and hardness of the MAO coatings
increased, the porosity and defects in the MAO coatings decreased, and the furrows and region of
exfoliation decreased in size with the increase in cathode current density.
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Table 4 shows the wear rates of MAO coatings. The wear rates of MAO coatings reduced
significantly with the increase in cathode current density. As shown in Figures 3 and 5, the porosity and
defects of the MAO coatings decreased with the increase in cathode current density, which significantly
decreased the furrows, exfoliation and the wear rates of the MAO coatings during wear testing.
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Table 4. Wear rates of MAO coatings formed on aluminum alloy at different cathode current densities.

Coatings Wear Time
(s)

Wear Track Width
(µm)

Wear Track Depth
(µm)

Wear Rate
(mm3·N−1·m−1)

a 1200 630.84 4.79 0.20 × 10−5

b 1200 584.11 4.43 0.18 × 10−5

c 1200 537.38 4.08 0.17 × 10−5

d 1200 443.93 3.37 0.14 × 10−5

3.5. Proposed Wear Mechanism of MAO Ceramic Coatings

Based on the friction behavior of microarc oxidation coatings, the wear mechanism of microarc
oxidation coatings was as follows.

As shown in Figure 3, the hardness of porous MAO coatings formed by A-type discharge events
and C-type discharge events was low due to high porosity of MAO coatings. The microbulges on the
surface of the WC balls were easy to penetrate into the surface of MAO coatings, which formed serious
abrasive wear during wear testing. B-type discharge events increased with the increase in cathode
current density, improving the compactness and hardness of MAO coatings. This could make the
microbulges on the surface of the WC balls penetrate into the surface of MAO coatings more difficult,
and reduced the abrasive wear during wear testing.

As shown in Figure 3, some microcracks existed on the surface of MAO coatings and these
microcracks were easy to expand and form exfoliation under periodically applied load during
wear testing.

As shown in Figure 5I, many micropores and other defects on MAO coatings contributed to the
formation of crack sources. These crack sources expand and create exfoliation under periodically
applied load during wear testing. B-type discharge events increased with the increase in cathode
current density, which decreased the porosity and defects in MAO coatings and improved the
compactness of MAO coatings. This decreased the formation of crack sources and exfoliation during
wear testing.

3.6. Tribological Properties of MAO Self-Lubricating Composite Coatings

Figure 14 shows the friction coefficient of MAO self-lubricating composite coatings against WC
balls at room temperature during wear testing. Compared to MAO coatings, MAO self-lubricating
composite coatings exhibited a lower friction coefficient of 0.09–0.15.

Figure 15 shows the morphologies of wear tracks for MAO self-lubricating composite coatings
against WC balls at room temperature after wear testing. The morphologies of wear tracks for MAO
coatings did not exhibit a significant quantity of furrows or exfoliation. It can be inferred that the
dominant wear mechanism of microarc oxidation ceramic coatings was mild abrasive wear.

Table 5 shows the wear rates of MAO self-lubricating composite coatings. As shown in Figure 16,
a comparison between the wear rates of MAO coatings and the wear rates of MAO self-lubricating
composite coatings found that MAO self-lubricating composite coatings exhibited lower wear rates.

Table 5. Wear rates of MAO self-lubricating composite coatings formed on aluminum alloy at different
cathode current densities.

Coatings Wear
Time/s

Wear Track
Width (µm)

Wear Track
Depth (µm)

Wear Rate
(mm3·N−1·m−1)

a1 1200 518.69 3.94 0.16 × 10−5

b1 1200 364.48 2.77 0.11 × 10−5

c1 1200 303.74 2.31 0.96 × 10−6

d1 1200 238.32 1.81 0.75 × 10−6
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Figure 16. The wear rates of MAO coatings and MAO self-lubricating composite coatings formed
on aluminum alloy at different cathode current densities. (a/a1) 9 A/dm2; (b/b1) 18 A/dm2;
(c/c1) 27 A/dm2; (d/d1) 37 A/dm2.

4. Conclusions

2024-T4 aluminum alloy was treated by microarc oxidation in the silicate system electrolyte
using pulsed bipolar power supply at different cathode current densities. The microarc oxidation
self-lubricating composite coatings were prepared by depositing the PTFE in the micropores and
microcracks on the surface of MAO ceramic coatings.

The compactness and hardness of the MAO coatings and the bonding strength between MAO
coatings and substrates increased as the cathode current density increased. The surface roughness and
the thickness of MAO coatings increased as the cathode current density increased. The wear rates of
MAO ceramic coatings decreased significantly with the increase in cathode current density.

The microarc oxidation self-lubricating composite coatings, which integrated the advantages of
MAO coatings’ wear resistance and a low friction coefficient of PTFE, possessed superior tribological
properties. Compared to MAO coatings, MAO self-lubricating composite coatings exhibited lower
friction coefficient and lower wear rates.
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