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Abstract: The corrosion behavior of pipeline steel covered by iron oxides (α-FeOOH; Fe3O4 and
Fe2O3) was investigated in simulated district heating water. In potentiodynamic polarization tests;
the corrosion rate of pipeline steel is increased under the iron oxide but the increaseing rate is
different due to the differnet chemical reactions of the covered iron oxides. Pitting corrosion was only
observed on the α-FeOOH-covered specimen; which is caused by the crevice corrosion under the
α-FeOOH. From Mott-Schottky and X-ray diffraction results; the surface reaction and oxide layer
were dependent on the kind of iron oxides. The iron oxides deposit increases the failure risk of the
pipeline and localized corrosion can be occurred under the α-FeOOH-covered region of the pipeline.
Thus, prevention methods for the iron oxide deposit in the district pipeline system such as filtering or
periodic chemical cleaning are needed.
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1. Introduction

A district heating (DH) system provides heat for inhabitants of large cities in an economical
manner. Heat from heat and power generating plants and large heat sources is cheaper than heat
produced in individual, low-power boiler rooms [1]. There are many merits to DH systems, including
increased energy efficiencies, reduced life cycle costs, and elevated control over environmental
impacts [2,3]. Additionally, the high efficiencies of DH systems decrease the emission of combustion
products into the atmosphere. Because of these advantages, many countries such as Denmark, Russia,
Finland, and Canada are developing DH systems, and the market share is reported to be approximately
50% [4,5]. Additionally, a DH system was introduced to Korea in 1987 and applied to various fields.

A DH system becomes more useful with more satellite and planned cities near each megalopolis.
A DH system has a long stagnation period due to the construction of numerous urban housing facilities
and infrastructure. Additionally, maintenance and improvement work are ongoing. During this period,
the pipeline in the distribution part of the DH system is exposed to low temperature (~40 ◦C) water
with little or no flow. The long stagnation condition has problems associated with corrosion such
as deposits from solid particles (sand, debris, and iron oxides), ion conductivity, ferrous ions, and
dissolved oxygen [6–9]. The deposits on the internal surface of a pipeline especially cause serious
localized corrosion (such as pitting corrosion and crevice corrosion), which is identified as under
deposit corrosion (UDC) [10–12].

UDC is unlike other corrosion forms, as the conditions, such as pH and concentration of the
aggressive species, under the deposit are different from the conditions in regions without deposits.
As a result, there will be galvanic corrosion between the areas under the deposit and the areas without
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deposit [13–17]. Because of these properties, UDC is a serious problem in pipeline systems due to
the potential for unexpected failure from localized damage. In order to prevent pipeline failure
from UDC, it is important to investigate the mechanism of UDC. Jeannin et al. determined that the
corrosion process of carbon steel differed according to the type of deposited minerals (silica, kaolinite,
chlorite, and montmirollonite) [11]. Zhang et al. identified galvanic corrosion between the covered
mixed deposit on the carbon steel and bare carbon steel (uncovered mixed deposit) in a gas filled
environment [17]. However, the deposit is composed of not only minerals (clay and sand) but also
corrosion products (iron oxide and carbonate etc.); this is because the corrosion products float in
fluid, combine with each other, and are deposited under stagnant conditions. Therefore, the corrosion
process under different corrosion product deposits is an important study.

The corrosion products can inhibit further corrosion by shielding the metal from the environment.
However, there are cases where corrosion products accelerate corrosion [18]. The corrosion process can
be dependent on the oxide film because the oxide is directly formed in close connection with the crystal
of the metal while the deposit is stacked on the metal [19]. In this work, the corrosion behavior of carbon
steel under different iron oxides, such as α-FeOOH (goethite), Fe3O4 (magnetite), and Fe2O3 (hematite)
was evaluated by electrochemical measurements and surface characterization. These iron oxides are
usually produced on the pipeline surface in the DH system. The formation of these oxides depends on
the presence of the oxygen in the water. The Fe3O4 is generally formed in the de-aerated district water
but α-FeOOH and Fe2O3 are generated in the aeration condition. Also, the damaged surface, which is
mesas formed by corrosion, has been observed under the iron oxide. Thus, in this study, the influence of
each oxide on the corrosion behavior is investigated for clear understanding of the UDC by iron oxides
in the district heating system. Furthermore, the corrosion mechanism under different iron oxides was
investigated to prevent unexpected corrosion and failure in the DH system from UDC.

2. Materials and Methods

2.1. Materials and Solution Preparation

The material used in this work was a pipeline carbon steel which is the standard material in the
American society of testing and materials (ASTM A135). Table 1 lists the steel composition. Specimens
were machined into 1 cm2 square shapes and sealed with epoxy resin. Before the deposition process,
the specimens were abraded with silicon carbide paper starting from 100- to 600-grit size, and then
rinsed with deionized water and cleaned with ethanol.

Table 1. Chemical composition of tested pipeline steel (wt %).

C Si Mn P S Fe

0.25 0.35 0.50 0.040 0.040 Balance

Table 2 lists the chemical composition of the simulated district heating water, which is based on
actual district heating water over 10 years as measured in its stagnant condition. To adjust the chemical
composition of the test solution, the pH was adjusted with a 0.1 M NaOH solution. Although the
heating water was usually soft and pure, the detection of ferric ions (Fe3+) and chloride ions (Cl−) is
attributed to the long stagnation condition [6]. Prior to testing, the solution was de-aerated by purging
with N2 (99.999%) for 2 h because the DH system is blocked from the outside, i.e., it is a closed system
so that the amount of dissolved oxygen is very low. The temperature is maintained at 40 ◦C using a
constant-temperature water bath.

Table 2. Chemical composition of the simulated district heating water (mg/L).

pH FeCl3 NaNO2 NaNO3 NaCl

9.8 16.25 7.5 0.7 65.2
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2.2. Deposition Process

The three iron oxides (α-FeOOH, Fe3O4 and Fe2O3) used in this study were purchased from
SAMCHUN chemical corporation (Pyeongtaek-si, Korea). The powder X-ray diffraction analysis is
shown in Figure 1 and the iron oxides were confirmed with the diffraction database. Because the
powder-state iron oxides are difficult to deposit on the specimen, ethanol was mixed with the iron
oxides. The specimen was covered with a rubber ‘O’ shaped ring (diameter: 3 cm, height: 3 mm)
and then filled with iron oxide mixed with ethanol, which has the same thickness as the rubber ring,
approximately 3 mm, to simulate the UDC environment. Before immersion in the test solution for
the electrochemical tests, the deposit-covered specimen was dried in air for 30 minutes to vaporize
the ethanol.
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2.3. Electrochemical Measurements

Electrochemical tests were conducted to evaluate the corrosion behavior and properties of the iron
oxide deposits. A three-electrode electrochemical cell was constructed with the SPPS 38 carbon steel
electrode, uncovered and covered with iron oxide deposits as the working electrode (WE), two pure
graphite rods as the counter electrodes (CE), and a saturated calomel electrode (SCE) as the reference
electrode (RE). In potentiodynamic polarization tests, the specimens were fully covered with iron oxide
deposits (1 cm2), and a stainless steel rod covered with glass for preventing contact with the solution
was used for the electric connection with the WE. The dynamic voltage (IR) drop was automatically
compensated in the potentiostat because the simulated district heating water has low conductivity
(347 µS/cm). The schematic of the three-electrode electrochemical cell used in this experiment is shown
in Figure 2. Before potentiodynamic polarization tests, the working electrode was immersed in the test
solution for 6 h until a steady state was reached, and the open-circuit potential (OCP) was obtained.
Potentiodynamic polarization curves were measured by scanning the potential from −250 mV versus
OCP to 400 mVSCE at a sweep rate of 0.166 mV/s. The electrochemical impedance spectroscopy (EIS)
was performed at the OCP with amplitude of 10 mV at frequencies ranging from 10,000 to 0.01 Hz.
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Figure 2. Schematic of three-electrode electrochemical cell used in this study.

To accelerate the corrosion process, potentiostatic tests were performed at an applied potential of
−0.65 mVSCE, slightly greater than the corrosion potential (Ecorr) of each specimen for 20 h. The fully
deposit-covered specimens were evaluated to observe the corrosion process under the deposits.
Additionally, to investigate the difference in corrosion behavior for covered and uncovered deposits,
the deposit was designed to cover only half of the specimen. After potentiostatic tests, the iron oxide
deposits and corrosion products on the carbon steel surface were removed and cleaned for 10 min
in the cleaning solution containing 500 mL HCl (37% concentration), 3.5 g hexamethylenetetramine
(C6H12N4), and distilled water to produce 1000 mL. The specimens were then rinsed in distilled water
and dried with nitrogen gas.
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To analyze the surface properties of uncovered and covered deposit specimens, Mott-Schottky
measurements were performed with a PARSTAT 2263 (Princeton Applied Research, Oak Ridge, TN,
USA). Before the Mott-Schottky measurements, each specimen was immersed in the test solution for
340 h. The Mott-Schottky plots were obtained by sweeping in the positive direction at a frequency of
1 kHz with an amplitude signal of 10 mV, a potential range of −0.7 VSCE to 0.1 VSCE, and a potential
step of 25 mV. All electrochemical tests were performed three times to ensure reproducibility.

2.4. Surface Characterization

After the potentiostatic tests, the morphology (surface and cross-section) of the corroded
specimens was observed using optical microscopy (OM). The specimen after potentiostic test was
cut by micro cutting machine, and then produced epoxy mounting. To clear observation of the
damaged surface, the surface was cleaned by cleaning solution containing 500 mL HCl, 3.5 g
hexamethylenetetramine (C6H12N4) and distilled water to make 1000 mL for 10 min. Additionally,
to investigate the surface condition under the oxide deposits, the specimens were analyzed by X-ray
diffraction (XRD, D8 Advanced, Bruker, Billerica, MA, USA) using Cu-Kα radiation operated at 18 kW
with a scanning speed of 2◦/min after 340 h of immersion. Before the XRD analysis, the deposit on
the specimens was removed by distilled water and dried with N2 gas to prevent additional oxidation.
The XRD patterns were analyzed by the diffraction database.

3. Results

3.1. Potentiodynamic Polarization Tests

Figure 3 shows the polarization curves in the form of I = f (E) and with the extrapolated Tafel
slopes of a bare specimen and different iron oxides (α-FeOOH, Fe3O4, Fe2O3)-covered specimens after
a 6 h immersion in the test solution at 40 ◦C. All of the polarization curves showed active corrosion
behavior. In the Fe3O4 and α-FeOOH cases, the current densities of cathodic and anodic polarization
curves were increased compared to the bare specimen, and the corrosion potentials were negatively
shifted. This indicates that the Fe3O4 and α-FeOOH deposits increased the cathodic and anodic
reactions on the surface. Alternatively, in the case of Fe2O3, only the cathodic current density increased
and the corrosion potential was not shifted.
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the specimens covered with different iron oxides (α-FeOOH, Fe3O4, Fe2O3) and uncovered after 6 h of
immersion in the simulated district heating water at 40 ◦C.

The corresponding kinetic parameters in the polarization curves, such as the corrosion potential
(Ecorr), corrosion current density (icorr), polarization resistance (Rp), and anodic and cathodic Tafel
slopes (βa, βc), are listed in Table 3. The icorr and Ecorr values were different for the iron oxide-covered
specimens, and icorr was related to the corrosion rate according to Faraday’s law:

Corrosionrate (mm/yr) =
3.16× 108 × icorr ×M

z× F× ρ
(1)

where M is the molar mass of the metal (g/mol), z is the number of electrons transferred per metal
atom, F is the Faraday’s constant, and ρ is the density of the metal (g/cm3). Thus, icorr was increased
in all oxide-covered specimens, indicating the deposit state of the iron oxides increased the corrosion
of the steel substrate. Also, the polarization resistance was calculated by the following equation [20]:

Rp =
βa × βc

2.3× icorr × (βa + βc)
(2)

Table 3. Electrochemical parameters of the polarization curves of the bare specimen and iron oxides
(α-FeOOH, Fe3O4, Fe2O3)-covered specimens in the simulated district heating water at 40 ◦C.

Specimen βa
(mV/Decade)

βc
(mV/Decade)

Ecorr
(mVSCE)

icorr
(µA/cm2)

Rp
(Ω·cm2)

Corrosion
Rate

(mm/Year)

Bare 102 ± 3 −246 ± 12 −741 ± 5 3.876 ± 0.05 8088 0.045
α-FeOOH 122 ± 6 −215 ± 5 −775 ± 6 9.123 ± 0.03 3323 0.106

Fe3O4 99 ± 12 −202 ± 9 −786 ± 21 8.692 ± 0.1 3709 0.101
Fe2O3 105 ± 5 −265 ± 15 −735 ± 11 5.311 ± 0.09 6156 0.061

The icorr and Rp are related to the corrosion resistance of the materials, and these were increased or
decreased by the covered iron oxide, respectively. Consequently, it means that the corrosion reactions
were affected by Fe3O4 and α-FeOOH deposits and the three iron oxide deposits (α-FeOOH, Fe3O4

and Fe2O3) affected the cathodic reactions [21–23]. The βa and βc were changed according to the kind
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of covered iron oxides. In the case of α-FeOOH, the βa was increased while the βc was decreased in
comparison with the bare specimen. It indicates that the α-FeOOH influenced the anodic and cathodic
reactions on the steel surface. On the other hand, the βa was not significantly changed and βc was
changed in the cases of Fe3O4 and Fe2O3, meaning that the Fe3O4 and Fe2O3, mainly had an effect on
the cathodic reaction than anodic reaction.

3.2. Electrochemical Impedance Spectroscopy (EIS)

Figure 4 presents the EIS results in the form of the Bode phase and impedance plots for specimens
covered with different iron oxides (α-FeOOH, Fe3O4, and Fe2O3) and uncovered after 6 h immersion
in the simulated district heating water at 40 ◦C. The Bode plot produces a more detailed explanation
of the electrochemical frequency-dependent property than the Nyquist plot [24]. The high frequency
spectra indicated local surface defect, whereas the low frequency spectra indicated the process within
the film and at the metal/film interface [25]. The absolute impedance value of the specimen covered
by iron oxides is less than that of the bare specimen. The absolute impedance value decreases in the
following order: α-FeOOH > Fe3O4 > Fe2O3 > bare, which is the same trend as the corrosion current
density in the potentiodynamic polarization tests. Additionally, the phase angle maximum decreased
in the same order: α-FeOOH > Fe3O4 > Fe2O3> bare, and the shoulder on the phase angle curve of
the bare pipe shifted to a lower frequency. The results were due to inhomogeneity or porosity in the
surface film [26], indicating that the surface film deteriorates after being covered with iron oxides,
especially in the case of the α-FeOOH-covered specimen.
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Figure 5 shows the equivalent circuit to fit the results of the EIS tests. In this equivalent circuit,
the Rs is the solution resistance, CPE1 (CPE: constant phase element) is the dielectric property of the
film and water absorbed on the film, Rfilm is the electrical resistance resulting from the ionic path of the
pores in the film, CPE2 is the capacitance generated by metal dissolution and the electric double layer,
and Rct is the resistance associated with metal dissolution. The CPE is applied in this equivalent circuit
instead of a perfect capacitor to produce a more accurate fit and interpretation [27,28]. The impedance
of CPE is expressed as:

ZCPE =
1

Y0(jw)n (3)

where Y0 is the magnitude of CPE, j is the imaginary unit (j2 = −1), α is the phase angle of CPE,
and n = α/(π/2). The parameter n typically lies between 0.50 and 1.0, and CPE expresses an ideal
capacitor at n = 1. The parameter n is often referred to as the frequency dispersion due to surface states
like inhomogeneity [29,30] and roughness [31].
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Figure 5. Equivalent circuit to fit the electrochemical impedance spectroscopy (EIS) data.

Some parameters extracted from the EIS data are listed in Table 4. To calculate the double layer
capacitance (Cdl), the following equation was used:

Cdl = Y0(2π fmax)
n−1 (4)

In Equation (4), Cdl is the double layer capacitance and f max is the frequency at which the imaginary
component of the impedance reaches the maximum value. The ZSimpwin program (v3.2, Princeton
Applied Research, Oak Ridge, TN, USA) was used to fit the EIS data, which is presented in Table 4.
Figure 6 shows the Rfilm and Rct of the specimens. Rfilm and Rct decreased for the iron oxide-covered
specimens in the following order: α-FeOOH > Fe3O4 > Fe2O3 > bare. The covered iron oxides had the
lower corrosion resistance than bare specimen. Additionally, the n value in the case of α-FeOOH was
the lowest, indicating an unstable surface film due to pores and defects on the surface.

Table 4. Impedance parameters of bare specimen and iron oxides (α-FeOOH, Fe3O4 and Fe2O3)
-covered specimens in the simulated district heating water at 40 ◦C.

Specimen Rs
(Ω·cm2)

Rfilm

(Ω·cm2)
n

Cfilm

(µF·sn−1/ cm2)
Rct

(Ω·cm2) n Cdl
(µF·sn−1/ cm2)

Bare 2653 ± 158 1427 ± 52 0.98 ± 0.01 53 ± 5 6237 ± 236 0.88 ± 0.01 582.2 ± 22
α-FeOOH 2712 ± 72 648 ± 23 0.72 ± 0.05 19 ± 3 1485 ± 118 0.83 ± 0.01 621.8 ± 8

Fe3O4 2759 ± 123 709 ± 11 0.78 ± 0.02 220 ± 6 1582 ± 85 0.83 ± 0.02 889.6 ± 56
Fe2O3 2788 ± 201 1071 ± 105 0.84 ± 0.01 151 ± 11 2730 ± 351 0.86 ± 0.02 782.5 ± 78
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Figure 6. Rfilm and Rct of the specimens covered with different iron oxides (α-FeOOH, Fe3O4, Fe2O3) 
and uncovered after 6 h immersion in the simulated district heating water at 40 °C. 
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3.3. Potentiostatic Tests

Potentiostatic tests were conducted to investigate the corrosion behavior of the iron oxide-covered
specimens. Additionally, to identify galvanic corrosion between covered and uncovered specimens,
half of the specimen was covered with deposit. Figure 7 shows the specimen covered iron oxides after
potentiostatic tests under −650 mVSCE for 20 h in the test solution at 40 ◦C. As shown in Figure 7a,
significant pitting was observed on the α-FeOOH-covered specimen and the size of the pits ranged
from 150 to 300 µm. However, as shown in Figure 7b,c, pitting was not observed on the Fe3O4 and
Fe2O3-covered specimens. Figure 8 shows the cross section of the α-FeOOH-covered specimen after
the potentiostatic test. As shown in Figure 8, pitting was observed on the α-FeOOH-covered specimen
and the depth of the pitting was approximately 170 µm. This indicates that the corrosion behavior was
different in the α-FeOOH, Fe3O4, and Fe2O3 cases.

Figure 9 shows the boundary of the specimens with covered (left side) and uncovered (right side)
deposits after potentiostatic tests under−650 mVSCE for 20 h at 40 ◦C. In Figure 9a,b, the corrosion was
accelerated at the boundary of the α-FeOOH and Fe3O4-covered specimens, which was caused by more
negative corrosion potential than the bare specimen, i.e., a galvanic effect. Alternatively, the boundary
between the Fe2O3-covered and uncovered did not show accelerating corrosion behavior as shown in
Figure 9c, which could be due to the absence of the corrosion potential difference [17,32–34]. In the
cross-sectional view of the α-FeOOH and Fe3O4-covered specimens in Figure 10, obvious corrosion
acceleration was observed. These results indicate that the α-FeOOH and Fe3O4 deposits can cause
galvanic corrosion under stagnant conditions, while the Fe2O3 deposit did not cause a galvanic effect.

3.4. Surface Characterization

Figure 11 shows the XRD results for the iron oxide-covered and uncovered specimens in the
test solution for 340 h at 40 ◦C. In the Fe3O4-covered specimen, Fe and a few Fe3O4 peaks were
observed. Similarly, in the case of the Fe2O3-covered specimen, Fe, Fe2O3, and a few Fe3O4 peaks were
observed. The Fe3O4 and Fe2O3 deposits did not influence the formation of a thick surface film on
the steel substrate. Even though the Fe3O4 peaks were observed in the Fe2O3 case, the Fe3O4 peaks
overlapped with the Fe2O3-peaks and the intensity was insignificant. Thus, Fe3O4 was formed under
the Fe2O3-covered state but the formation and reaction activities were too small. However, in the
cases of α-FeOOH-covered and bare specimens, Fe3O4 diffraction peaks were observed. These results
indicate that Fe3O4 is the main surface film on the bare state in the test environment, and α-FeOOH
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influences the formation of the Fe3O4 surface film on the steel substrate compared to the Fe2O3 and
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where ε denotes the relative dielectric constant of the layer, ε0 is the permittivity of a vacuum (8.8542 
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Figure 11. X-ray diffraction (XRD) spectra for the specimens covered with iron oxides and uncovered
which were immersed in the simulated district heating water for 340 h at 40 ◦C (H: goethite, α-FeOOH;
u: iron, Fe; #: magnetite, Fe3O4; F: hematite; Fe2O3).

3.5. Mott-Schottky Tests

It is well known that there is a relationship between the surface film properties related to
the semiconducting behavior of a surface film and the corrosion behavior of materials [35,36].
These properties and behavior can be investigated by analyzing the curves of a Mott-Schottky plot.
Thus, the surface film properties of a steel substrate under iron oxide deposits (α-FeOOH, Fe3O4, Fe2O3)
were investigated using a Mott-Schottky plot based on measurements of the electrode capacitance as a
function of the electrode potential (E). It was assumed that the capacitance of the space-charge was
much less than that of the Helmholtz layer, and thus the electrode capacitance was equal to C.
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According to Mott-Schottky theory, the space-charge capacitance and n-type and p-type
semi-conductors are given by Equations (5) and (6), respectively:

1
C2 =

2
εε0eND

(
E− EFB −

kT
e

)
(5)

1
C2 = − 2

εε0eNA

(
E− EFB −

kT
e

)
(6)

where ε denotes the relative dielectric constant of the layer, ε0 is the permittivity of a vacuum
(8.8542 × 10-14 F/cm), e is the absolute value of the electron charge (1.6029 × 10−19 C), k is the
Boltzmann constant (1.389 × 10−23 J/K), T is the absolute temperature, EFB is the flat band potential
that can be obtained from the extrapolation of 1/C2 to 0 VSCE, and ND and NA are the donor and
acceptor densities, respectively, which can be determined from the slope of the experimental 1/C2

versus applied potential [37–39].
Figure 12 shows the Mott-Schottky plots for the iron oxide-covered and uncovered specimens

immersed in the test solution for 340 h at 40 ◦C. The slope of the Mott-Schottky diagram is negative,
indicating p-type semiconducting behavior of the surface films in all conditions. In the iron oxides,
the Fe2O3 and α-FeOOH indicate the n-type property whereas the Fe3O4 has p-type property [35].
It means that the Fe3O4 is mainly formed on the surface in all conditions. According to Equation (3),
acceptor density (NA) can be determined from the slope of the experimental 1/C2 versus E plots,
i.e., more negative slope in Mott-Schottky plot suggests the decrease of acceptor density. Thus, the
decrease of NA was observed according to the following order: α-FeOOH < bare < Fe2O3 < Fe3O4.
The donor and acceptors in oxide layers are defects consisted of cation vacancies, anion vacancies
and cation interstitials. Cation vacancies yielding p-type character acts as the doping element which
prevents migration of cation from the metal surface and penetration of harmful anions such as Cl−, F−

and SO4
2− [36,40]. Thus, the semi-conductive properties of the oxide layer depend on the kind of oxide

and the concentration of cation or anion vacancies. Although the increase of the NA is related to the
more disordered oxide layer and susceptible to corrosion in the passivity materials, this interpretation
is not adequate in this study because the oxide layer was almost not formed on the Fe2O3 and Fe3O4

as shown in XRD results, and localized corrosion was only observed in the case of α-FeOOH-covered
specimen. It is therefore the α-FeOOH on the surface and Fe3O4 formed beneath the α-FeOOH have
an effect on the pitting corrosion.
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In this equation, Ef is the film formation potential, and the other parameters have the same 
meanings as those in Equation (5). The film thickness (W) of space-charge layer is proportional to 
1/C2 according to the following equation, obtained using Equations (6) and (7): 
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The thickness (W) of the space-charge layer, which is the surface film at a film formation potential,
can be calculated by [41]:

W =

(
2εε0

eNA

) 1
2
(

E f − EFB −
kT
e

) 1
2

(7)

In this equation, Ef is the film formation potential, and the other parameters have the same
meanings as those in Equation (5). The film thickness (W) of space-charge layer is proportional to 1/C2

according to the following equation, obtained using Equations (6) and (7):

W = εε0

(
1

C2

) 1
2

(8)

Thus, W is increased in the following order: α-FeOOH > bare > Fe2O3 > Fe3O4. This indicates
that the iron oxide deposits are not considered a surface film.

4. Discussion

4.1. Surface Reaction under the Iron Oxide Deposits

The potentiodynamic polarization curves indicated a negative shift in the corrosion potential and
an increase in the cathodic and anodic reactions on the iron oxide-covered specimens. The negative shift
in the corrosion potential in the α-FeOOH and Fe3O4-covered specimens means that the increase in the
anodic reaction area was due to the surface reaction from the Fe3O4 and α-FeOOH [42]. Additionally,
the cathodic and anodic reactions for the α-FeOOH and Fe3O4-covered specimens increased. Therefore,
the oxide deposit does not act as a surface barrier of the substrate, which is due to the porous properties
of iron oxide particles [43].

The following anodic and cathodic reactions occur on the steel substrate under the test solution
conditions (de-aeration and pH 10). Equation (9) is the anodic dissolution and Equation (10) is the
cathodic reaction in an alkaline solution under the de-aeration condition [44]:

Fe→ Fe2+ + 2e− (9)

2H2O + 2e− → H2 + 2OH− (10)

Additionally, the Fe3O4 formation reactions occurred as shown in the XRD results according to
the following Equations [45,46]:

Fe2+ + 2OH− ↔ Fe(OH)2 (s) (11)

3Fe(OH)2 (s)→ Fe3O4 + H2 + 2H2O (12)

However, these surface film formation reactions are affected by the iron oxide deposits (α-FeOOH,
Fe2O3, Fe3O4) on the substrate. Under the α-FeOOH and Fe3O4-covered specimens, the following
cathodic and anodic reactions can occur. Under the α-FeOOH deposit, the following reactions occurred
on the steel substrate [47–50]:

2FeOOH + Fe2+ → Fe3O4 + 2H+ (13)

Fe2+ + 8FeOOH + 2e− → 3Fe3O4 + 4H2O (14)

The reduction reaction of α-FeOOH occurred and due to these reduction reactions, the cathodic
reaction was increased as shown by the polarization curve. In addition, with the increase in α-FeOOH
reduction reactions, more Fe2+ ions were required to satisfy the equilibrium of Equations (13) and
(14) such that the anodic dissolution of Equation (9) was increased simultaneously, as shown by the
increase in the anodic reaction in the polarization curve. Based on these reactions, the formation of
Fe3O4 can occur under the α-FeOOH deposit.
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Under the Fe3O4 deposit, the following reactions can occur on the substrate [44,50,51]:

Fe3O4 + 5H2O→ 3Fe(OH)3 (s) + H+ + e− (15)

Fe3O4 + 4H2O + OH− + 2e− → 3Fe(OH)3
− (16)

Equations (15) and (16) indicate the oxidation and reduction of Fe3O4 with water and hydroxide
ions in the test solution, respectively. These oxidation and reduction reactions of Fe3O4 are indicated
by the increase in anodic and cathodic reactions in the polarization curve. Additionally, the Fe3O4

formation reaction on the substrate was obstructed because the Fe3O4 deposit existed on the substrate,
which restricts the formation of Fe3O4 as a surface film on the substrate.

Under the Fe2O3 deposit, the following reaction occurs on the substrate [51,52]:

Fe(OH)4
− + e− → Fe(OH)3

− + OH− (17)

Fe2O3 + Fe(OH)3
− → Fe3O4 + H2O + OH− (18)

Hematite, Fe2O3, is the final oxidation product among the iron oxides [53]. Thus, reduction
reaction, Equation (17), occurs; this increases only cathodic reaction of the Fe2O3-covered specimen,
as indicated in the polarization curve. The formation of Fe3O4 under the Fe2O3 deposit can be induced
by Equation (18), but the reaction is limited due to the multiple reaction steps of Fe(OH)3

–. Thus, the
formation of Fe3O4 under the Fe2O3 deposit is difficult.

The above reaction results were confirmed by Mott-Schottky and XRD analysis. In the
Mott-Schottky results, the p-type semiconducting property and film thickness increased in the following
order: α-FeOOH > bare> Fe2O3 > Fe3O4. Additionally, Fe3O4, which has p-type semiconducting
properties [54], was primarily formed on the α-FeOOH-covered and bare specimens, as shown in the
XRD analysis results. The results indicate that different reactions on the surface caused by iron oxide
deposits affect the formation of Fe3O4 on the surface. In addition, the semiconducting property of
the iron oxide deposits, which means α-FeOOH and Fe2O3 are n-type and Fe3O4 is p-type, was not
observed in the Mott-Schottky results [36,55]. This implies that the iron oxide deposit on the specimen
could not be analyzed by the Mott-Schottky measurement because the iron oxide deposits did not act
as a surface film or barrier but rather as a reactant similar to a catalyst on the surface.

4.2. Mechanism of Different Corrosion Behavior under the Iron Oxide Deposits

In the potentiostatic tests, uniform corrosion behavior was indicated in all conditions, except the
α-FeOOH-covered specimen. Pitting corrosion only occurred under the α-FeOOH-covered specimen.
Uniform corrosion under the iron oxide deposits occurs due to the diffusion of external factors such
as water and anions in the test solution, which were associated with porous properties of iron oxides
that were revealed by the EIS and Mott-Schottky tests [56]. Under the α-FeOOH, pitting corrosion was
observed, indicating that the cathode and anode areas were separated on the substrate.

Localized corrosion of steel can occur due to rust on the steel surface [18]. Two types of localized
corrosion such as the UDC and the crevice corrosion were observed in this study. The rust on the steel
and iron at the initial stage of corrosion is generally composed of Fe(OH)3, α-FeOOH, and Fe3O4 from
each transformation. The rust is visualized schematically in Figure 13. Fe(OH)3 was transformed into
α-FeOOH and then α-FeOOH was transformed into Fe3O4, as described by Equations (11) and (12).
Based on these reactions, porous defects such as cracks and voids were developed in the rust layer,
and the outside environment reaches the metal. The corrosion in these defects initiates a reaction,
but the Fe2+ and OH– ions cannot react directly because the remaining α-FeOOH rust obstructs their
direct reaction. Due to these separated reactions, FeCl2 and NaOH are formed in the anode and
cathode regions, respectively. Acidification occurs due to the FeCl2 in the anode region when the
anode dissolution is accelerated. This corrosion under the thick rust layer can be considered crevice
corrosion [19]. Figure 14 shows the crevice corrosion process under the α-FeOOH rust layer. Localized



Metals 2017, 7, 182 16 of 19

corrosion occurred under the α-FeOOH-covered specimen, even though the passive behavior was not
observed on the polarization curve.
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5. Conclusions

(1) In the potentiodynamic polarization results, icorr increased in all deposit-covered specimens,
which means that the corrosion reaction increased due to the deposit. The α-FeOOH and Fe3O4-covered
specimens demonstrate a negative shift in the corrosion potential and an increase in the number of
anodic and cathodic reactions, and the Fe2O3-covered specimen only increased the cathodic reaction.

(2) Pitting corrosion was only observed on the α-FeOOH-covered specimen, while uniform
corrosion was observed on the others. This occurs due to a crevice corrosion phenomenon, which
occurs via localized corrosion under the α-FeOOH rust layer on the steel substrate. Additionally,
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the corrosion at the boundary between deposit-covered and uncovered pipe was observed on the
α-FeOOH and Fe3O4 due to the galvanic effect.

(3) The Mott-Schottky and XRD analyses revealed that surface reactions differ according to the
kind of iron oxide deposited, which influences the formation of surface film and the reaction rate of
anode and cathode sites.

Based on this study, the iron oxides covered as a deposit on the steel substrate had a negative
effect on the corrosion in district heating water. α-FeOOH can lead to localized corrosion, which
causes failure in the early stage. Thus, stagnant condition prevention and floating matter filtration are
important tasks for maintaining the pipeline. It would be helpful to purge with nitrogen to maintain a
minimum flow rate rather than to fill the pipe with water during long downtimes.
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