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Abstract: Investigating the separation of the primary silicon phase in Al-Si hypereutectic alloys
is of high importance for the production of solar grade silicon. The present paper focuses on the
effect of growth velocity on the electric current pulse (ECP)-induced separation of primary silicon
in a directionally solidified Al-20.5 wt % Si hypereutectic alloy. Experimental results show that
lower growth velocity promotes the enrichment tendency of primary silicon at the bottom region of
the sample. The maximum measured area percentage of segregated primary silicon in the sample
solidified at the growth velocity of 4 µm/s is as high as 82.6%, whereas the corresponding value is
only 59% in the sample solidified at the growth velocity of 24 µm/s. This is attributed to the fact that
the stronger forced flow is generated to promote the precipitation of primary silicon accompanied
by a higher concentration of electric current in the mushy zone under the application of a slower
growth velocity.

Keywords: Al-Si hypereutectic alloy; growth velocity; separation of primary silicon; solidification;
electric current pulse

1. Introduction

The production of solar grade silicon (SOG-Si) is of high commercial importance for the development
of the silicon solar cell industry. The conventional process to manufacture SOG-Si is with modified
Siemens technology. However, it is an expensive and pollution-heavy chemical process, although the
quality of the manufactured SOG-Si is high. In order to overcome the cost and pollution issues, more
efficient and low-cost metallurgical processes are employed to achieve SOG-Si from metallurgical grade
silicon (MG-Si), such as vacuum refining [1], slag refining [2,3], directional solidification [4,5], plasma
refining [6], electron beam melting [7,8], solvent refining [9], and so on.

Recently, Al-Si solvent refining has been intensively studied on account of the fact that the
target silicon is purified more economically and efficiently [9,10]. It has been demonstrated that the
precipitated primary silicon can be significantly purified as the melted Al-Si hypereutectic alloys solidify,
because the segregation coefficient of most impurities can be dramatically decreased in Al-Si melt rather
than in Si melt. The purified primary silicon as well as the target silicon is selectively collected via
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acid leaching [10]. However, the acid leaching procedure results in considerable consumptions of Al in
addition to the acid solution. Hence, in order to reduce these consumptions, it is important to develop
methods to separate primary silicon from Al-Si melt or to allow the primary silicon to segregate at some
special position within sample.

Electromagnetic fields present a strong ability to influence the solidification process of
alloys [11,12], and have shown the potential to efficiently separate primary silicon from Al-Si melt
during the solidification process, through methods such as electromagnetic stirring [13,14] and electric
currents [15,16]. Jie et al. [13] showed that a rotating magnetic field can efficiently congregate the
primary silicon to 65–69.8 wt % in hypereutectic Al-30 wt % Si alloy. Moreover, our results showed that
the primary silicon phase also can be intensely separated by solely applying an electric current [16].
The area percentage of the aggregated primary silicon can be as high as 62.7% in Al-20.5 wt % Si alloy
under the application of an electric current. The similar separation mechanism of primary silicon
was proposed for Al-Si alloys influenced by electromagnetic stirring or electric currents. The Si-rich
melt transferred by the magnetic or current-induced forced flow promotes the growth of the firstly
precipitated primary silicon phase, while the rejected aluminum was relatively delivered to the
bulk melt.

According to the proposed separation mechanism of primary silicon, the growth velocity of
samples would be a crucial factor to influence the separation efficiency of primary silicon under
the application of electric currents. Unfortunately, little attention has been paid to this parameter
in previous research. One of the possible reasons for this is that the growth velocity is gradually
varied in the case of traditional mold casting. In the present paper, the separation of primary
silicon caused by a pulsed electric current is investigated under different growth velocities. In order
to achieve a controllable growth velocity, the Bridgman furnace is employed to solidify the Al-Si
hypereutectic alloy.

2. Materials and Methods

A schematic view of the experimental setup is shown in Figure 1. The Al-20.5 wt % Si hypereutectic
alloy (nominal composition) was prepared by melting pure Al (99.9 wt %) and Si (99.9 wt %). In order
to homogenize the solute elements, the melt was mechanically stirred and then sucked into a quartz
tube (inner diameter in 4 mm) and cooled in ambient air. The melt in the quartz tube can be rapidly
solidified because the diameter is only 4 mm. Hence, the homogeneity of solute elements in the sample
scale is guaranteed. Then, the preparatory sample was embedded into an alumina crucible (420 mm in
length and 4 mm in inner-diameter), and was vertically positioned at the central axis of the cylindrical
Bridgman furnace (see Figure 1). The bottom end of the sample was connected to the downward
pulling rod (stainless steel). The top end of the sample and pulling rod were respectively linked by two
cables (copper) to conduct the electric current through the sample. After that, the furnace was heated
up to 1173 K, and then held for 20 min to sufficiently remelt the middle part of sample. In view of the
fact that the bottom part of the sample was immersed into the coolant (GaInSn liquid metal), a positive
temperature gradient (about 35 K/mm) was constantly produced in the sample along the vertical
direction. In the final step, the sample was pulled downwards at a speed of 4 and 24 µm/s, respectively.
Meanwhile, a damping electric current pulse was initiated. The applied electric current intensity (Ip),
frequency (f ) and pulse length (tp) were 400 A, 200 Hz and 0.5 ms, respectively. The waveform of the
ECP is shown in Figure 2. The solidified sample was quenched into the coolant until the sample was
solidified at the length of 8.5 cm.

Directionally solidified samples were cut along the longitudinal and transverse sections for
metallographic examination. Selected sections were ground on SiC paper and then polished from
6 µm to 1 µm gradually. The as-polished samples were directly examined using optical microscopy.
In order to quantify the distribution of primary silicon, the area percentage of the primary silicon in the
transversal section was measured by using the software package ANALYSIS FIVE (Olympus Europe,
Hamburg, Germany).
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3. Results

The homogeneity of solute elements in the original sample was examined firstly. Figure 3 shows
micrographs in the longitudinal section of the original sucked samples. It can be seen that the
structures of the original Al-Si hypereutectic alloys consist of randomly distributed primary silicon
and a eutectic structure.
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Figure 4 displays the solidified structure in the transversal section of the samples directionally
solidified at the growth velocity of 4 µm/s and 24 µm/s, respectively. The primary silicon distribution
is reflected by the quantity evolution of the primary silicon phase in a series of transversal sections at
the growth length of 1 cm, 2 cm, 4 cm, 6 cm and 8 cm. The distinct segregation of primary silicon at the
bottom region can be observed no matter which growth velocity is applied. In addition, the quantity
of primary silicon shows a slight increase tendency among the following growth regions of 4 cm–8 cm.
However, the quantity of primary silicon in this region is far less than that in the segregated region.
This indicates that most of the primary silicon can be selectively collected from the bottom segregated
region of the sample.
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However, the quantity of the segregated primary silicon phase is significantly influenced by the
employed growth velocity. As the solidified structures show in Figure 4, it is most likely that the
segregation tendency of the primary silicon at the bottom region is remarkably reduced in the sample
with higher growth velocity. The phase fraction can be achieved by using X-ray diffraction to identify
the phase distribution [17,18]. However, the primary silicon phase and eutectic silicon phase cannot be
classified. Hence, the area percentage of the primary silicon phase was measured to quantitatively
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show the distribution of the primary silicon phase. Figure 5 presents the measured area percentage of
primary silicon in the corresponding transversal sections. The value of the area percentage of primary
silicon in sample solidified at the growth velocity of 4 µm/s is as high as 82.6% at the growth length of
1 cm, whereas the value at the same growth length is decreased to 59% for the sample solidified at the
growth velocity of 24 µm/s. When the growth length increases to 2 cm, the quantity of primary silicon
is only 0.7% at the growth velocity of 4 µm/s. Yet, the area percentage of 23.8% still can be observed in
the sample solidified at the growth velocity of 24 µm/s. This means that more primary silicon can be
expected to congregate at the bottom region with the shorter length, when a slower growth velocity
is employed.
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Figure 5. Measured area percentage of primary silicon in transversal sections of Al-Si hypereutectic
alloy solidified at growth velocities of 4 µm/s and 24 µm/s.

4. Discussion

A mechanism has been proposed to understand the occurrence of the intensely aggregated
primary silicon phase in the initial growth region under the application of an ECP [16]. The primary
silicon phase is firstly precipitated in the mushy zone during the directional solidification of Al-Si
hypereutectic alloy. Since the electric conductivity of primary silicon is far less than that of the
surrounding melt, the higher electric current intensity will result in the melt when the ECP is flowing
through the mushy zone. The non-homogeneous distribution of electric currents can cause a strong
forced flow inside the bulk melt due to the concentration of the electromagnetic force in the mushy
zone among the primary silicon mushy zone. The forced flow can efficiently replace the depletion zone
(Al-rich) surrounding the primary silicon by the Si-rich melt to cause the precipitation and segregation
of primary silicon in the initial growth region. Moreover, the contribution of buoyancy forces to the
segregation of primary silicon can be excluded, because the silicon particles should float upward and
segregate at the top region rather than the observed bottom region under the influence of buoyancy
forces, on account of the fact that silicon particles show less density than the bulk melt.

According to this mechanism, the quantity of the aggregated primary silicon can be influenced by
the growth velocity. The lower growth velocity means that the electric current-induced forced flow will
have more time to transport and exchange the silicon element to support the primary silicon growth.
In addition, since the electric conductivity of the silicon phase is far less than that of the aluminum
phase, the formed primary silicon with higher quantity at the lower growth velocity will generate
a higher electric current intensity inside the melt among the primary silicon phase, which will give
rise to a higher flow intensity, as schematically shown in Figure 6. The stronger forced flow enhances
the silicon element exchange between the mushy zone and the bulk melt, which will further promote
the segregation of the primary silicon (see Figure 6c,d). This is the reason why the primary silicon is
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aggregated in a shorter region with an area percentage as high as 82.6% when the lower growth rate of
4 µm/s is applied.Metals 2017, 7, 184  6 of 8 
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Figure 6. Schematic view of the primary silicon segregation mechanism under different growth
velocities: (a) electric current density (J) distribution; (b) induced magnetic intensity (B) and Lorentz
force (F); (c) forced flow inside melt (T: temperature); (d) silicon element transportation for primary
silicon precipitation.

The present paper shows that the segregation quantity of the primary silicon phase can be
profoundly influenced by solely varying the growth velocity. This implies that the growth velocity is
a crucial factor to control the segregation of primary silicon under the application of the electric current.
Moreover, it should be noted that although the directional solidification is employed in our present
research, the achieved results are also representative of other solidification configurations. In addition,
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the gained knowledge provides more insight into controlling the production of solar grade silicon
under the influence of electric currents or magnetic fields. The optimized production of solar grade
silicon should consider and couple both the influences of the parameters of solidification and applied
electromagnetic fields.

5. Conclusions

This work investigates the influence of growth velocities on the separation of primary silicon in
the directionally solidified Al-Si hypereutectic alloy under the application of a pulsed electric current
(ECP). The severe segregation of primary silicon at the bottom region can be caused by an ECP in
samples solidified at different growth velocities. However, the segregation tendency is significantly
enhanced when a slower growth velocity is employed. This is because the slower growth velocity
allows for the formation of more primary silicon phase, which can result in a forced flow with a higher
intensity to promote the segregation of the primary silicon.
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