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Abstract: Cross-sectional deformation of double-ridged rectangular tube (DRRT) inevitably occurs
due to the inhomogeneous deformation induced by external boundary conditions in rotary draw
bending (RDB). Unreasonable factor combination would aggravate the cross-sectional deformation of
DRRT. So, a powerful and efficient method combining Response Surface Methodology (RSM) and
Non-Sorted Genetic Algorithm II (NSGA-II) was proposed to optimize the factors to control the
cross-sectional deformation of DRRT in RDB. Firstly, an orthogonal experiment was used to screen
out the important factors. It was obtained that three factors—clearance between DRRT and mandrel,
clearance between DRRT and bending die, and boosting of pressure die—have an important influence
on the cross-sectional deformation of DRRT. It can also be observed that the variation trend of flange
sagging (FS) is always consistent with that of space deformation between ridges (SDR) with the
changing of factors. RSM based on a Box-Behnken design was then used to establish response surface
models. The proposed response surface models were used to analyze the relationship of the important
parameters to the responses, such as space deformation between ridges, and width deformation of
outer and inner ridge grooves (WDO and WDI). Finally, multi-objective parameter optimization for
the cross-sectional deformation of DRRT in RDB was performed by using the established model and
NSGA-II algorithm. The interaction of responses was revealed and the value range of each response
in the space of Pareto optimal solutions was determined. It can be observed that there is always
an evident conflict between SDR and WDO in the space of Pareto optimal solutions. By using this
optimization method, the absolute values of SDR and WDI were significantly reduced—by 13.17% and
17.97%, respectively—compared with those before optimization, while WDO just increase only a little.

Keywords: multi-objective optimization; response surface methodology; genetic algorithm;
cross-sectional deformation; double-ridged rectangular tube; rotary draw bending

1. Introduction

The bent double-ridged rectangular tube (DRRT) has been widely applied in communication
devices used in aviation, aerospace, radar, and satellite for its advantages of lower cutoff frequency,
wider operation bandwidth, lower characteristic impedance, and smaller loss [1]. In rotary draw
bending (RDB), the cross-sectional deformation of DRRT inevitably occurs due to the inhomogeneous
deformation induced by external boundary conditions [2], such as loading path and process parameter
settings. In particular, unfavorable parameter combinations would aggravate the cross-sectional
deformation of DRRT. Severe cross-sectional deformation brings about a serious loss of microwave
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energy, which restricts the application of bent DRRT for microwave transmission. So, controlling the
cross-sectional deformation of DRRT in RDB is critical for obtaining a sound bent DRRT. Due to the
complicated profile, the cross-sectional deformation of DRRT needs to be characterized by several
quality indexes. However, there are mutual conflicting effects of the several quality indexes; that is to
say, a relative small value of one quality index is obtained by using certain a parameter combination
while others are probably relative large. This makes it difficult to control the cross-sectional deformation
of DRRT. Therefore, considering the interaction of several quality indexes, taking the quality indexes
as objectives and conducting multi-objective parameter optimization is very important to improve the
forming quality of DRRT in RDB.

In the past years, a lot of researchers have paid attention to the optimization of process parameters
with multiple objectives in tube bending. To realize the control of spring back and section deformation,
the sensitivity analysis method was used to obtain the processing parameters that have important
effect on the defects in the bending process of rectangular tubes [3,4]. By developing a wrinkling
energy prediction model, Yang et al. [5] obtained the appropriate forming parameters that guarantee
no excessive thinning, severe flattening and wrinkling in RDB of aluminum alloy thin-walled tubes
with large diameters. Based on an orthogonal experimental design and FEM analysis, Zhao et al. [6]
achieved a reasonable clearance between tube and various dies for avoiding wrinkling and decreasing
cross-sectional deformation in RDB of a rectangular tube. In order to keep wall thinning and flattening
from exceeding certain values, the optimization for RDB of circular tubes was conducted by using the
Response Surface Method (RSM), and the appropriate ranges of relative tube diameter and relative
bending radius were determined [7]. It can be seen from the above reviews that parameter optimization
with multiple objectives in tube bending is usually conducted based on a single method, such as
sensitivity analysis, analytic method, orthogonal experimental design or response surface method.
Furthermore, the interaction of the objectives was not taken into account in these methods. Nowadays,
itis recognized that a single method cannot be used to sufficiently solve complex optimization problems
with multiple objectives, and satisfactory results should be obtained by using hybrid methods [8].
Xiao et al. [9] performed the optimization of processing parameters for DRRT in RDB by combining
an orthogonal test and grey relational analysis with a consideration of the interaction of multiple
objectives. But this method can be only used to analyze the isolated points and cannot give intuitive
graphics describing the relationship between the studied factors and responses. While, by using
RSM combined with a genetic algorithm (NSGA-II), not only the interaction of multiple objectives
are considered, but also the levels of each factor, can be continuously analyzed in the optimization
process and an intuitive graphic can be given. Through the intuitive graphic, the interaction of
factors contributing to the response can be better understood. Moreover, a global optimal solution for
multi-objective optimization is able to be achieved accurately, instead of a local one [10]. Thus, RSM
combined with genetic algorithm (NSGA-II) is increasingly used in multi-objective optimization [11,12].

The complexity of cross section for DRRT leads to the fact that its cross-sectional deformation needs
to be evaluated by several quality indexes. Due to the mutually conflicting effects among the quality
indexes, it is necessary to consider the interaction of them for controlling cross-sectional deformation
of DRRT in the optimization process. Therefore, taking several quality indexes as objectives, a method
combining RSM and NSGA-II is used to optimize the processing parameters for minimizing the
cross-sectional deformation of DRRT in RDB. Firstly, the factors which have an important impact on
the cross-sectional deformation of DRRT in RDB were selected by performing an analysis of variance
(ANOVA) for the orthogonal experimental results. Then, RSM based on a Box-Behnken design was
adopted to establish the response surface models relating the significant factors to each quality index
of cross-sectional deformation of DRRT. By means of these models, the interaction of important factors
on each quality index were evaluated. Finally, the multi-objective optimization for the cross-sectional
deformation of DRRT in RDB was carried out based on the generated response surface models and
NSGA-II algorithm.
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2. The Multi-Objective Optimization Method for the Cross-Sectional Deformation of DRRT
in RDB

2.1. The Rotary Draw Bending of DRRT

The property parameters of DRRT are listed in Table 1. The material is considered to be isotropic
and the power exponent hardening model, o = K(gg + ¢)", is used to express the material hardening
behavior of the tube. For enhancing the computational efficiency and avoiding the phenomenon of
shear locking, the double-ridged waveguide tube is discretized using 4-node doubly curved thin
shell elements S54R; and the dies, including bending die, pressure die, wiper die, clamp die and
mandrel-cores, are defined as discrete rigid bodies which are described by using 4-node 3D bilinear
quadrilateral rigid elements C3D4. Meanwhile, the friction between tube and dies is modeled with
the classical Coulomb friction model. Then, the FE (finite element) model of rotary draw bending of
DRRT was established based on the platform of Abaqus/Explicit, as shown in Figure 1a. The RDB
of DRRT is carried out under the constraint of multiple dies, including mandrel-core die, pressure
die, wiper die, bending die and clamp die. The bending angle and bending radius are 90° and 40 mm,
respectively. The clamp die is used to tightly clamp the tube, so there is no clearance or relative motion
between clamp die and DRRT. Thus, the clearance and friction between DRRT and mandrel-core die
(M clearance and M friction), pressure die (P clearance and P friction), wiper die (W clearance and
W friction) and bending die (B clearance and B friction) are the factors that may have effects on the
cross-sectional deformation of DRRT in RDB. In addition, the boosting of the pressure die also has
an important effect on the cross-sectional deformation of DRRT. The boosting of the pressure die is
denoted as Boosting and expressed in Equation (1),

Boosting = & x 100% @D
woRo '

where V, is the boosting speed of the pressure die, wy is the angular velocity of the bending die and Ry

is the bending radius. Due to the complex profiles, the cross-sectional deformation of DRRT needs to

be characterized by four quality indexes: flange sagging (FS), space deformation between ridges (SDR),

width deformation of outer ridge groove (WDO), and width deformation of inner ridge groove(WDI),

as shown in Equations (2)—(5),

7

FS = —— x 100%, )

SDR = ——— x 100%, (3)

wpo =V _—W 100%, (4)
W

wDI = £~ % 100%, ®)

where &, d, W and w are the values of section height, space between ridges, outer ridge groove width
and inner ridge groove width of DRRT before bending, as shown in Figure 1b. #’, d’, W and w’ are
the corresponding values after bending. The values of the four quality indexes maybe positive or
negative. A positive value represents that the value of the quality index after bending is bigger than
that before bending deformation, while the negative value indicates that the value of the quality index
after bending deformation is smaller than that before bending.

Table 1. Property parameters of double-ridged waveguide H96 tube.

Elastic Modulus Poisson Yield Stress Hardening Strength Coefficient
E (GPa) Ratio v 092 (MPa) Exponent n k (MPa)

Value 92.81 0.324 70 0.56 588.17

Parameters
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Figure 1. The RDB of DRRT and the description of cross-sectional deformation of DRRT: (a) The sketch
of RDB of DRRT; (b) the description of cross-sectional deformation of DRRT.

In order to verify the reliability of the FE model, a numerical simulation and experiment of RDB
of DRRT were conducted. The experiment was conducted on a W27YPC-63 PLC controlled hydraulic
tube bender (Shanghai Guoqing Machinery Co., Ltd, Shanghai, China). The processing parameters in
the simulation and experiment are listed in Table 2. Based on these conditions, the FE model of RDB
of DRRT was verified by the experiment in Reference [13] and it was concluded that the FE model
is reliable.

Table 2. Forming parameters used in experiment and simulation.

Parameters Experiment Simulation
Bending velocity (rad/s) 0.5 0.5
Bending radius (mm) 40 40
Bending angle (°) 90 90
Boosting velocity (mm/s) 22.6 22.6
Friction between tube and core Hydraulic oil 0.03
Friction between tube and clamp die Dry friction Rough
Friction between tube and other dies Dry friction 0.19
Clearances between tube and core (mm) 0.175 0.175
Clearances between tube and other dies (mm) 0 0

2.2. The Detailed Procedure of Multi-Objective Optimization

Figure 2 shows the detailed procedure of multi-objective optimization for cross-sectional
deformation of DRRT in RDB. There are nine factors—M clearance, P clearance, W clearance, B
clearance, M friction, P friction, W friction, B friction and Boosting—than influence the cross-sectional
deformation of DRRT in RDB. At first, the FE simulations were conducted based on the orthogonal
experimental design by using a reliable FE model of RDB of DRRT developed in a previous study [13].
By performing ANOVA for the simulation results, the factors that have important effects on the
cross-sectional deformation of DRRT were selected from the nine factors.

Then, a Box-Behnken Design (BBD) was used to conduct the design of an experiment for important
factors. Compared to Central Composite Design, BBD just requires that each factor has three levels and
needs the least number of experiments. The FE simulations of RDB of DRRT were conducted according
to BBD, and a response surface model relating important factors to the response was established.
Generally, a quadratic response surface model is adequate, and its polynomial equation is expressed in
Equation (6),

k k k k
Y =B+ Y Bxi+Y Bixi+Y, Y. Bijxixj, (6)

i=1 i=1 i=1 j=i+1
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where Y is the response. B¢, B;, B; and B;; are the coefficients of intercept, linear, quadratic and
interactive terms, respectively. x; and x; are important factors. By means of the model, the interaction
of significant factors on the response can be evaluated.

‘ (1) Screening out important factors ‘ ‘ (2) Establishing response surface models
Conducting the FE simulations of RDB of || | (-oooooo w.o
DRRT based on orthogonal test Constructing the design of experiment
# for important factors Based on BBD

Determining the important factors by ¢
ANOVA for orthogonal test results

Conducting FE simulations of RDB of
DRRT according to design of experiment ||

Selecting a final optimal solution based | | ¢
on TOPSIS decision-maker method || Establishing the response surface model
T relating important factors to each
Obtaining a Pareto frontier of Multi- response by using RSM
objective optimization ¢
T Analyzing the interaction of important
Multi-objective parameter optimization factors on each response

by using NSGA-II and generated models ||  t————————————— | ,,,,,

A
A

‘ (8) Conducting multi-objective optimization

Figure 2. The flow chart of multi-objective optimization for the cross-sectional deformation of DRRT
in RDB.

Finally, taking the quality indexes of cross-sectional deformation as objectives, the multi-objective
parameter optimization for the cross-sectional deformation of DRRT in RDB was performed based on
the generated response surface models and NSGA-II. For a multi-objective optimization problem, it is
impossible to find a unique solution which can optimize all the objectives simultaneously, because the
objectives are usually mutually conflicting. By using NSGA-II, a set of non-dominated solutions termed
as Pareto optimal solutions can be obtained [14]. The set of Pareto optimal solutions is defined as the
Pareto frontier of multi-objective optimization. Thus, a Pareto frontier of multi-objective parameter
optimization for the cross-sectional deformation of DRRT in RDB was obtained by using NSGA-II.
Moreover, in order to meet the requirement of practical operation, a final optimal solution was selected
from the Pareto frontier based on the TOPSIS (Technique for Order Preference by Similarity to an Ideal
Solution) decision-maker method.

3. Results and Discussion
3.1. The Determination of Significant Factors and Responses

3.1.1. Selection of Significant Factors Based on Orthogonal Experiment

Before conducting the optimization process, the orthogonal experiment was initially adopted to
select the important factors from the nine factors shown in Table 3, and each factor was assigned three
levels (—1, 0, +1).

Based on the orthogonal experiment design, 27 FE simulations with different factor combinations
were conducted. An analysis of variance (ANOVA) for the simulation results was performed and the
F-values (Fischer variation ratio) presenting the importance of factors were obtained, as shown in
Table 4. In order to more clearly determine the importance of one factor, the ANOVA for the simulation
results were also presented in bar chart form, as shown in Figure 3. It can be seen that the three factors



Metals 2017, 7, 206

6 of 15

M clearance, B clearance and Boosting have important effects on cross-sectional deformation of DRRT

in RDB.

Table 3. Levels of factors in the orthogonal experiment.

Factors Low (—1) Middle (0) High (+1)
M clearance (mm) 0.1 0.2 0.3
P clearance (mm) 0.1 0.2 0.3
W clearance (mm) 0.1 0.2 0.3
B clearance (mm) 0.1 0.2 0.3
M friction 0.02 0.08 0.14
P friction 0.14 0.22 0.30
W friction 0.06 0.14 0.22
B friction 0.06 0.14 0.22
Boosting (%) 80 90 100
Table 4. The ANOVA for the orthogonal experiment.
F-Value Remarks
Factors Critical Value
FS SDR WDO WDI FS SDR WDO WDI
M clearance 66.81 65.23 5.71 9.82 e e > ek
P clearance 0.11 0.27 0.46 1.68 Fo01(2,8) =8.65
W clearance 0.09 0.06 0.34 1.87
B clearance 36.64 23.29 3.08 63.60 e e ek
M friction 0.41 0.99 1.04 1.21 Fo05(2,8) =4.46
P friction 0.27 0.23 0.43 0.24
W friction 0.59 0.17 1.99 0.66
B friction 1.14 2.29 3.04 0.84 Fp1(2,8)=3.11
Boosting 7.78 8.82 0.96 3.59 * ek *

*** indicates that the factor has a highly important impact on response and F > Fy o1; ** indicates that the factor has
an important impact on response and F 1 > F > Fg5; * indicates that the factor has an impact on response and
Foos5 > F > Fy. “Blank” indicates that the factor has little impact on response.

Responses of cross section deformation of DRRT

WDI

WDO

SDR

ES

I M_clearance [ M_Friction
I P_clearance [ P_Friction
[ ] W _clearance ] W_Friction
I B_clearance [ B_Friction

] Boosting

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70
F-value

Figure 3. The importance of one factor to one response.

3.1.2. The Determination of Responses in RSM

In the process of multi-objective parameter optimization for the cross-sectional deformation of
DRRT in RDB, the four quality indexes of cross-sectional deformation—FS, SDR, WDO and WDI—are
probably used as responses in the establishment of response surface models. However, as can be seen
from Figure 4a, which shows the distribution of four quality indexes obtained from FE simulations
based on the orthogonal experiment, the variation of FS is always consistent with that of SDR with
the changing of factors. That is to say that the influence laws of factors on FS and SDR are completely
the same. So, taking only one of them as the study objective is enough. Whereas, the variation trend
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of WDO is quite different from that of WDI, as shown in Figure 4b. Thus, in order to simplify the
optimization process, SDR, WDO and WDI were selected as the responses in RSM.

0 20
104 4a A
10+ \“ ‘\kk‘k‘i"x/ \“—A;ﬁ _AA
20 |
301 0 | —4-WDO
| —o— WDI
-40 -10-

-50 4

oV S

-60 4 N\ e

I IV AT

Cross sectional deformation of DRRT (%) ‘&
B R
Cross sectional deformation of DRRT (%) i

\ —eo— SDR
.70 > ‘
80 . . —t . . -40 T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Run order of orthogonal experiment Run order of orthogonal experiment

Figure 4. The cross-sectional deformation of DRRT obtained from FE simulations based on the
orthogonal experiment: (a) FS and SDR; (b) WDO and WDL

3.2. Design of the Experiment according to BBD

After the determination of important factors, a BBD in which each important factor has three
levels (—1, 0, +1) was used to perform the design of the experiment for establishing a response surface
model, while the unimportant factors in Table 3 were kept constant at the middle level. So, a total of
15 FE simulations needed to be performed according to BBD in this study, as shown in Table 3. Design
Expert 8.0.6 was used to conduct the design of experiment and establish the response surface models.
The simulation results of SDR, WDO and WDI are also recorded in Table 5.

Table 5. Three factorial Box-Behnken design and the results.

Factors Low (—1) Middle (0) High (+1)
M clearance (mm) 0.1 0.2 0.3
B clearance (mm) 0.1 0.2 0.3
Boosting (%) 80 90 100
No M clearance B clearance Boosting SDR (%) WDO (%) WDI (%)

1 0.2 0.1 80 —25.93 7.95 —22.15

2 0.1 0.2 80 —25.99 14.18 —17.47

3 0.2 0.1 100 —21.98 7.421 —22.58

4 0.3 0.1 90 —27.20 5.70 —22.46

5 0.2 0.2 90 —25.17 7.55 —18.23

6 0.2 0.3 100 —21.34 7.32 —19.54

7 0.3 0.3 90 —26.82 5.69 —19.21

8 0.3 0.2 80 —27.13 5.42 —18.94

9 0.2 0.2 90 —25.25 7.45 —18.13

10 0.3 0.2 100 —24.66 6.68 —19.45

11 0.2 0.2 90 —25.05 7.65 —18.33

12 0.1 0.2 100 —19.31 13.68 —18.445

13 0.2 0.3 80 —26.97 7.90 —17.79

14 0.1 0.3 90 —23.83 13.99 —17.56

15 0.1 0.1 90 —24.07 14.02 —21.98

3.3. Establishment of Response Surface Models and Analysis of Factor Interaction
3.3.1. Establishment of Response Surface Models and Their Evaluation

(1) Establishing the response surface models by analysis of variance

An analysis of variance (ANOVA) on the simulation results in Table 5 was performed to estimate
the coefficients of the polynomial equation in Equation (6). The ANOVA results for the responses SDR,
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WDO and WDI are shown in Tables 6-8, respectively. Statistical significance was checked by F-value
and p-value (significant probability value). Terms whose p-value is less than 0.05 have a significant
effect on the response [11]. Based on the ANOVA results, the equations of the response surface models,
which relate the significant factors (M clearance, B clearance and Boosting, which are marked as A, B
and C, respectively) to responses, were obtained, as shown in Equations (7)—(9),

SDR =38.18 + 89.86 x A —37.51 x B—1.72 x C — 1.05 x A x C+0.42 x B x C — 26.96 x A% +0.01 x C?, (7)
WDO =33.29 — 17272 x A — 0.09 x C+0.44 x A x C +231.57 x Az, 8)

WDI = —53.98 + 0.11 x A +134.26 x B+0.51 x C —29.34 x A x B—0.33 x B x C —199.95 x B%, (9)

Table 6. ANOVA for SDR.

Source Sum of Squares df Mean Square F-Value  p-Value (Prob > F) Significance
Model 74.32 7 10.62 367.27 <0.0001 significant
M clearance (A) 19.88 1 19.88 687.6 <0.0001 -
B clearance (B) 5.84 x 1073 1 5.84 x 1073 0.2 0.6666 -
Boosting (C) 43.84 1 43.84 1516.59 <0.0001 -
AxC 4.44 1 4.44 154 <0.0001 -
B xC 0.71 1 0.71 24.39 0.0017 -
A? 0.27 1 0.27 9.32 0.0185 -
C? 4.98 1 4.98 172.42 <0.0001 -
Residual 0.2 7 2,90 x 1072 - - -
Lack of Fit 0.18 5 0.036 3.62 0.2305 not significant
Pure Error 0.02 2 0.01 - - -
Cor Total 74.52 14 - - - -
R? 0.9973 - - - -

Table 7. ANOVA for WDO.

Source Sum of Squares df Mean Square F-Value  p-Value (Prob > F) Significance
Model 151.88 4 37.97 619.71 <0.0001 significant

M clearance (A) 131.06 1 131.06 2139.18 <0.0001 -
Boosting (C) 1.60 x 1072 1 1.60 x 1072 0.26 0.621 -
AxC 0.77 1 0.77 12.65 0.0052 -
A? 20 1 20 327 <0.0001 -
Residual 0.61 10 0.061 - - -

Lack of Fit 0.59 8 7.40 x 1072 7.41 0.1243 not significant
Pure Error 0.02 2 0.01 - - -
Cor Total 152 14 - - - -
R? 0.9960 - - - - -

Table 8. ANOVA for WDI.

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F) Significance
Model 48.41 7 6.92 281.63 <0.0001 significant
M clearance (A) 2.65 1 2.65 107.93 <0.0001 -
B clearance (B) 28.4 1 28.4 1156.63 <0.0001 -
Boosting (C) 1.67 1 1.67 67.94 <0.0001 -
AXB 0.34 1 0.34 14.02 0.0072 -
B xC 0.43 1 0.43 17.59 0.0041 -
B? 14.85 1 14.85 604.75 <0.0001 -
C? 0.28 1 0.28 11.27 0.0121 -
Residual 0.17 7 0.025 - - -
Lack of Fit 0.15 5 0.03 3.04 0.266 not significant
Pure Error 0.02 2 0.01 - - -
Cor Total 48.58 14 - - - -

R? 0.9965
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(2) Evaluation of the response surface models

The quality of fit of the polynomial model was evaluated by Lack of Fit and determination
coefficient R?. Lack of Fit is a statistical test that gives information on the adequacy of the model fit
under consideration. If the model does not fit the experimental data of design points well, this will
be significant. As shown in Tables 6-8, for the models of SDR, WDO and WD, the Lack of Fit is not
significant, indicating a good fit to the models. The determination coefficients R? for SDR, WDO and
WDI are all close to 1, which implies that the models are adequate for representing the relationship
between the factors and each response. In order to further estimate the adequacy of the models, the
predicted values of the design points in Table 5 obtained by the generated models were compared
with the simulation values, as shown in Figure 5. It can be seen that the points of predicted values
versus simulation values all fall near the 45° lines, with some deviation in an acceptable range of
error. From the discussion above, it can be concluded that the established response surface models are
reliable, and capable of expressing the relationship between important factors and response accurately.

18 16
< 14
S 20 S
- <
: g 12
= 22 =1
=
> T 10
>
e
D 244 8
° 5 8
ol —
L 26 8 6 =
—
~ &~
-28 4
T T T T T T T T T T T T T
-28 26 -24 -22 -20 -18 4 6 8 10 12 14 16

Simulation values (%) Simulation values (%)

() (b)

Predicted values (%)
8
|

ST
W N
I I

T T T T T T T
-23 -22 -21 -20 -19 -18 -17

Simulation Values (%)

(c)

Figure 5. Predicted values versus simulation values for three responses: (a) SDR; (b) WDO; (c¢) WDL

3.3.2. Interaction of Important Factors on SDR

From Equation (7), it can be observed that the interaction of Boosting and M clearance, and
of Boosting and B clearance, have a significant impact on SDR; and the response surface 3D plots
presenting the interactions are drawn based on Equation (7), as shown in Figure 6. From Figure 6a,
it can be observed that increasing Boosting and decreasing M clearance led to a decrease in the absolute
value of SDR. When the value of Boosting is small, the absolute value of SDR decreases as M clearance
decreases, but it decreases very little; just about 1%. When the value of Boosting is large, the decrease of
the absolute value of SDR becomes large—about 5%—with the decreasing of M clearance. This means
that with the increase of Boosting, the effect of M clearance on SDR becomes more important. As shown
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in Figure 6b, the simultaneous increase of Boosting and B clearance reduce the absolute value of SDR.
This indicates that the interaction of Boosting and B clearance has a positive effect on SDR. Different
from M clearance, the effect of B clearance on SDR is always small with the increase of Boosting.

100

90

015 Boosting

85
M clearance

80 0.1

15
80 0.1 B clearance

(a) (b)

Figure 6. The response surface 3D plots of interaction of important factors on SDR: (a) interaction of
Boosting and M clearance; (b) interaction of Boosting and B clearance.

3.3.3. Interaction of Important Factors on WDO

From Equation (8), it can be found that only the interaction of Boosting and M clearance has
a significant influence on WDO. The response surface 3D plot expressing the interaction was drawn
according to Equation (8), as shown in Figure 7. It can be seen that the minimum of WDO can be
reached in the range of small Boosting and large M clearance. With an increase of Boosting while
M clearance remains constant, WDO decreases, but only a little, while WDO decreases greatly with
the increasing of M clearance. It can be concluded that M clearance has a more important effect on

WDO than Boosting. Increasing M clearance is the most efficient way to decrease WDO. But when M
clearance is larger than 0.25 mm, WDO changes little.

90.00
95.00
100.00 0.30

Boosting

0.25 M clearance

Figure 7. The response surface 3D plots expressing the interaction of Boosting and M clearance
on WDO.

3.3.4. Interaction of Important Factors on WDI

From Equation (9), it can be seen that the interaction of M clearance and B clearance and that of B
clearance and Boosting have an important impact on WDI; and the response surface 3D plot presenting
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the interactions are drawn based on Equation (9), as shown in Figure 8. Figure 8a, it can be seen that
the minimum of the absolute value of WDI can be obtained when M clearance reduces from 0.3 mm to
0.1 mm and B clearance increases from 0.1 mm to 0.25 mm. But increasing B clearance continuously
will increase the absolute value of WDI. As shown in Figure 8b, with the decrease of Boosting and
increase of M clearance, the absolute value of WDI is reduced. But when B clearance increases to
near 0.25 mm and Boosting is at a minimum, the minimum of the absolute value of WDI is obtained.
Increasing B clearance continuously will make the absolute value of WDI increase.

WDI
|'s'
N

WDI

Y
0.2 03
M clearance 025 )

Figure 8. The response surface 3D plots expressing the interaction of factors on WDI: (a) interaction of
M clearance and B clearance; (b) interaction of Boosting and B clearance.

3.4. Multi-Objective Optimization Using NSGA-II

Based on the generated response surface models for SDR, WDO and WDI expressed in
Equations (7)—(9), respectively, the multi-objective optimization for cross-sectional deformation of
DRRT in RDB was conducted by using NSGA-II. The values of SDR and WDI are negative, so the
absolute values of SDR and WDI were adopted to represent their deformation magnitude in order
to perform the optimization process conveniently. Minimizing the cross-sectional deformation of
DRRT requires the minimization of WDO and the absolute values of SDR and WDI, simultaneously.
WDO and WDI have the same impact on the microwave transmission performance of DRRT, so the
sum of WDO and absolute value of WDI can be seen as one objective. Eventually, the tri-objective
optimization problem was converted into a dual-objective optimization problem. The two objective
functions are given below:

Objective 1 = |SDR|, (10)

Objective 2 = WDO + |WDI]|, (11)

Figure 9 shows the Pareto frontier of dual-objective optimization by using NSGA-IL. In the figure,
each point located on the Pareto frontier is potentially an optimum solution of the dual-objective
optimization problem. The Pareto frontier illustrates an evident conflict between the two objectives.
That is to say that the decrease of one objective leads to the increase of another objective in the space of
Pareto optimal solutions. The points A and B are the optimal solution of single-objective optimization
when one of the two objectives was selected as the objective, respectively. From the set of Pareto
optimal solutions in Figure 9, the corresponding values of WDO and WDI in the space of Pareto
optimal solutions can be obtained. Figure 10a shows the Pareto frontier of WDO and SDR, from which
it can be observed that there is an evident conflict between SDR and WDO. Decreasing the absolute
value of SDR from 27.2% to 22.8% does not significantly increase WDO. When the absolute value of
SDR decreases from 22.8% to 18.9%, WDO increases sharply. The Pareto frontier of SDR and WDI is
shown in Figure 10b and it was found that when the absolute value of SDR decreases from 27.2% to
22.8%, the absolute value of WDI increases almost linearly and this illustrates that there is an evident
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conflict between SDR and WDI. But decreasing SDR continually from 22.8% would lead to a decrease
in the absolute value of WDI, which indicates that there is no conflict between them in this range.

Non-Ideal Solution 1

Selected by TOPSIS
Decision-making Method!

NN
©
1

WDO+WDI| (%)

4] (ldealSolution i T

; B (27.2,238
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Figure 9. Pareto frontier of dual-objective optimization.

@,, (®) 4q2
@A,(18.9, 13.48) D228, 1901)
Qg - -0,
131 & 19.04-------------
124
1] 1881 ¢ 211, 186708
S 10] & 1864
S 91 § 2 18.4-
= ogloooo . QC.(21.1,8.03) 3 ‘ :
<% 1821 @° ! ‘
7 D R D (22.8,6.4) A (189, 18.29) '
s ol BT 18.0 1 1 B,(27.2,18.03
' ' ' ' o
i i B,(27.2,5.83) ' '
5 T T L7 T f T T 17.8 T T ——T T ,0(26;9’ 17}85)®
18 19 20 21 22 23 24 25 26 27 28 18 19 20 21 22 23 24 25 26 27 28
[SDR| (%) [SDR| (%)

Figure 10. Pareto frontier obtained from dual-optimization: (a) the Pareto frontier of WDO and absolute
value of SDR; (b) the Pareto frontier of the absolute values of WDI and SDR.

For multi-objective optimization problems, all the solutions in the Pareto frontier are
non-dominated and can be chosen as the optimal solution. However, only one optimal solution needs
to be finally determined in practical operations [15]. There are many methods in the decision-maker
process to find the final optimal solution from a Pareto frontier. Before selecting a decision-maker
method, the optimal solution set of multi-objective optimization should be non-dimensionalized.
The Euclidian method [16] is utilized to conduct the non-dimensionalization procedure according to
Equation (12),

eo— i

NN

where Fj; is the value of ith design point in the Pareto frontier for jth objective and Fi’]? is the
corresponding non-dimensionalization value. After the Pareto optimal solutions were converted
into a non-dimensional format, the corresponding Pareto frontier is demonstrated in Figure 11. Then,
the decision-maker method, TOPSIS, is used to select the final optimal solution. In this method,
the ideal solution and Non-ideal solution need to be determined first. The ideal solution is the one
where the optimal solution of single-objective optimization can be obtained for each objective, while
the Non-ideal solution is the combination of the worst values of all objectives in the Pareto frontier.
The principle of TOPSIS decision-maker method is to find a solution in the Pareto frontier that is closest
to the ideal solution and furthest from the Non-ideal solution [17]. For each solution in the Pareto
frontier, the distances from the ideal solution D;; and Non-ideal solution D;_ are calculated according
to Equations (13) and (14), respectively,

(12)
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i 2
Diy = \/ Y (Fj— Fee)”, (13)

i 2
Di- = \/ Yy (Fy — Frenideal)’, (14)

Then, the closeness coefficient Y; for each solution in the Pareto frontier is derived from
Equation (15),

D;_

Y=,
! Di+ + D;_

(15)

The solution with the maximum value of closeness coefficient Y; is selected as the final optimal
solution. By using this method, the final solution was determined and defined as point C, as shown in
Figure 11. Its corresponding values in Figures 9 and 10 are denoted as points Cq, C; and C3. The final
optimal solution of the dual-objective optimization is that SDR, WDO and WDI are —21.1%, 8.03% and
—18.67%, respectively. The optimal parameter combination is that M clearance is 0.19 mm, B clearance
is 0.26 mm and Boosting of pressure is 100%.

0.100

Non-Ideal Solution

0.095 + i Q

0.090
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. .

o : Selected by TOPSIS :
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2 0.085- . ,
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Figure 11. The final optimal non-dimensional solution of dual-objective optimization by using TOPSIS
decision-maker method.

After the multi-objective optimization was finished and the optimal results were obtained,
a confirmation simulation test was performed using the optimized factors while the other factors were
kept constant. The results of the confirmation simulation test are listed in Table 9. It can be seen that the
predicted values are highly consistent with the simulation ones for the observed results. This indicates
that the proposed method combining RSM and NSGA-II is reliable, and adequate for finding the
optimal conditions under which a sound bent DRRT can be obtained in real rotary draw bending.
Then, a comparison between the responses before optimization (obtained from the simulation using
the parameters shown in Reference [13]) and those after optimization were conducted, as shown in
Table 9. It can be seen that the absolute values of SDR and WDI after optimization are 13.17% and
17.97% lower, respectively, than those before optimization, while WDO is just 3.08% higher.

Table 9. Comparison between the responses before optimization and those after optimization.

Responses ISDRI (%) WDO (%) IWDII (%)
After optimization Predicted —-21.73 8.06 —18.81
P Simulation —21.50 8.03 —18.67
Before optimization 24.30 7.79 22.76

Ratio of optimization -13.17 3.08 -17.97
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4. Conclusions

1. By using the orthogonal test design, it was obtained that M clearance, B clearance, and Boosting
have an important influence on the cross-sectional deformation of DRRT in RDB. It can also be
observed that the variation trend of flange sagging FS is always consistent with that of space
deformation between ridges with the changing of factors.

2. The proposed response surface models were used to analyze the relationship of the important
parameters to the responses such as space deformation between ridges SDR and width
deformation of outer and inner ridge grooves WDO and WDI. Moreover, the interaction of
important factors on each response was also better understood.

3.  The interaction of responses was revealed and the value range of each response in the space of
Pareto optimal solutions was determined by using NSGA-II and the response surface models.
It can be observed that there is always an evident conflict between SDR and WDO in the space of
Pareto optimal solutions.

4. By using the optimization method of combining RSM and NSGA-II, the absolute values of SDR
and WDI were significantly reduced—by 13.17% and 17.97%, respectively—compared with those
before optimization, while WDO was increased a little. This confirms that the optimization
method is effective for optimizing the processing parameters for reducing cross-sectional
deformation of DRRT in RDB.
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