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Abstract: Various service life prediction models of organic coatings were analyzed based on the
acquirement of the measurement of Electrochemical Impedance Spectroscopy (EIS) from indoor
accelerated tests. First, some theoretical formulas on corrosion lifetime predictions of coatings were
introduced, followed by the comparative assessment of four practical prediction models in view
of prediction accuracy in application. The prediction from impedance data at single low frequency
|Z| 0.1 Hz, the classical degradation kinetics, and proposed improved degradation kinetics model,
as well as a self-organized neural network prediction based on sample detection, were focused
in this paper. The standard AF1410 plates employed as the metallic substrates were coated with
sprayed zinc layer, epoxy-ester primer and polyurethane enamel layer. The accelerated experiments
which mimicked coastal areas of China were carried out with the specimens after surface treatment.
The assessment of results showed that the proposed improved degradation kinetics model and
neural network classification model based on the full range of frequency data obviously have higher
prediction accuracies than the traditional degradation kinetics model, and the prediction precision
of the sample detection-based neural network classification was the highest among these models.
The study gives some insights for coating degradation lifetime prediction which may be useful and
supportive for practical applications.

Keywords: EIS; service life prediction; degradation kinetics; improved degradation kinetics;
neural networks

1. Introduction

The coatings of warship platforms and ships, as well as carrier structures in the coastal
environment are often subjected to strong ultraviolet exposure, large temperature gradients, high salt
fog, and coupling damage from corrosion and fatigue load. Appropriate surface treatments of alloy or
steel structures is one of the main protective measures to ensure their adaptation to the environment,
and application of organic coatings is one of the most effective surface treatment methods [1]. Until
now, numerous studies on the corrosion of organic coating protection systems have been done [2–4].
In general, conventional atmospheric corrosion research is carried out through atmospheric exposure
tests or in-house simulated accelerated tests [5]. The atmospheric exposure test can accurately and
reliably reflect the actual damage of the protective system materials in the natural environment, but
the test cycle is too long and the cost is very high. Therefore, it is common to rapidly evaluate and
predict the damage behavior of materials by indoor simulated accelerated corrosion tests [6]. In the
indoor simulation acceleration test, electrochemical methods, especially Electrochemical Impedance
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Spectroscopy (EIS), are widely used to study the damage behavior and corrosion protection capability
of the coating systems and a comprehensive review of EIS can be seen in the literature written by
G. Bierwagen [7].

EIS is suitable for the research of polymer-coated metals, which obtains a complete view of the
process of the paint coating degradation and precise quantitative data regarding the behavior of organic
coatings. Furthermore, it is a fast and effective method for classifying the paint coatings. The impedance
measurements need to be carried out in a wide frequency range and the impedance data of the coatings
usually have to be analyzed with equivalent circuits [8]. However, sometimes it is difficult to get
satisfactory models to simulate the degradation behaviors for complicated coating systems. Also,
during the measurements in low frequency range, signal drift and nature of data scattering always
exists [9,10]. What is more, there are a few drawbacks in the application of EIS to study the coating
corrosion. First, a complete transfer function from available studies of reaction mechanisms cannot be
acquired due to the overlapping of time constants. The decision about the selection of appropriate
equivalent circuits can only be made with a knowledge of the processes and with the help of other
techniques. The second drawback is the realistic limitation on the poor reproducibility of the test
data. A variation in magnitude of up to three orders between replicate measurements is reported
as a result of the heterogeneity of the coating [11]. Compared with equivalent circuit models, more
studies for coating systems are needed to reveal the relationships among parameters from impedance
spectroscopy and performance as well as the failure process of coatings. Zuo et al. [12] proposed that
phase angles in the middle and high frequency range can be used as quick measures to assess the
coating performance. Mahdavian and Attar [13] also verified that phase angle at high frequencies
has a very good agreement with impedance data. Mansfeld and Tsai [14] showed that the minimum
phase angle and its frequency are dependent on the delaminated interface between the applied coating
and metals.

At present, there are many research results on the corrosion mechanism of coatings [15,16].
These studies reveal that water vapor in hot and humid environments can penetrate into the interface
between the coating and the substrate by adsorption and diffusion, resulting in bubbling and cracking
or peeling of the coating. In the salt fog environment, Chloride ion induces the corrosion of metal
matrix. The corrosion product causes the coating to deform, bulge, and eventually separate from
the metal matrix. Under the action of ultraviolet light, the functional group of the coating molecule
degrades, or the chain breaks, changing the structural composition of the coating, and finally the
coating performance is degraded. In general, the coating degradation process is decomposed into
three stages, which can be named as early, middle and late stages, respectively. In the early stage,
coatings have good protective properties; while in the middle stage, coatings are permeated by
corrosive medium and the protective performance of the coatings decreases; in the late stage, coatings
completely fail and the substrate is corroded [17]. In recent years, researchers also use artificial
intelligence classification methods to study the coating corrosion process [18,19].

On the other hand, studies on the service life prediction models of protective organic coatings are
few. It was reported by the Japanese scholar Yamamoto Takashi that, over 26,838 literatures on coatings
found that there were 90 papers referring to coating life, but only 3 papers involving coating life
prediction equations [20]. The research of life prediction shows that the mechanism of metal materials
and coating damage in long service is very complex, because there are so many factors that affect the
life of coatings, such as temperature, humidity, pH and corrosive media. To date, there is no convincing
method to accurately describe the quantitative relationship between these influencing factors and
protective properties of coatings. In the initial stage of material design, experimental means is still
the most effective research method. It is of great significance to predict the material life using limited
test data. For the prediction method, degradation dynamics model and neural network technology
have been widely studied and applied in recent years. Cai et al. [21] studied the degradation process
of polyamide epoxy varnish for aluminum alloy in UV and salt spray combined environmental test.
Their research suggested that the electrochemical impedance modulus at low frequency is suitable
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to construct degradation kinetics. On the basis of the degradation kinetic equation, Mark Evans [22]
added exponential parameters to improve the prediction accuracy, and the extrapolated distribution
obtained by this new approach was much closer to the distribution for the naturally weathered data.
In 1999, C. C. Lee and F. Mansfield [18] applied Kohonen neural network to analyze experimental
impedance spectra of steel coated with different paints used in naval construction, and they classified
the corrosion process into three stages, namely, ‘good’, ‘intermediate’ and ‘poor’. Zhao Xia et al. [19]
analyzed the electrochemical impedance spectroscopy (EIS) of the wetting-drying cycle in the coating
failure process by self-organizing feature mapping network (SOM), and the coating cycles were also
divided into three categories. Wang et al. [23] applied the BP (Back Propagation) neural network to
predict the atmospheric corrosion process of aluminum alloy, and the relationship between neural
network training accuracy and prediction accuracy was studied. In addition, there is another interesting
approach for ranking and evaluating organic paint coatings via calculating the area ratio surrounded
by the data in the electrochemical impedance spectroscopy [24].

Based on the previous studies, an improved degradation kinetics model was proposed in this
paper and the Kohonen neural network classification model was also established for organic coating
sprayed on AF1410 high strength steel in UV, thermal shock, low temperature fatigue and salt spray
combined environmental tests. The results of the morphological analysis were compared with the
predicted results from these models to prove that both of the models are more accurate than the
traditional degradation model.

2. Materials and Methods

2.1. Preparation of Specimens

The AF1410 high strength steel was used as the test material, and dimensions of the test specimens
are 110 mm × 30 mm × 3 mm, as showed in Figure 1. The number of the specimens were three, which
were labeled Plate 1#, Plate 2# and Plate 3#. These specimens were cut by CNC punching (AECC
Beijing Institute of Aeronautical Materials, Beijing, China). The use of alternative processes to milling
can shorten the time needed to produce the pieces and the specimens have good tensile strength and
elongation hardness [25].
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Figure 1. Pattern of specimens (units: mm).

The specimens were heat treated at (860 ± 10) ◦C for 1 h and then subjected to oil quenching at
−73 ◦C for 1 h. Finally, the specimens were allowed to cure at room temperature and humidity after
(510 ± 5) ◦C tempering for 5 h. The appropriate surface finishing makes the behavior of specimens
good [26]. Shot peening is the first surface treatment. Then, a zinc layer is sprayed with the thickness
of 30–60 µm. The primer type chosen is epoxy-ester H06-076 with the thickness of 10–25 µm and
enamel layer is polyurethane TS70-60 with 40–60 µm.

2.2. Accelerated Corrosion Tests

Accelerated experiments, which mimicked coastal areas of China, were carried out periodically,
and the corrosion process of each cycle is shown in Figure 2.



Metals 2017, 7, 274 4 of 16Metals 2017, 7, 274 4 of 17 

 

 

Figure 2. Acceleration test process. 

First, specimens were subjected to UV radiation for 24 h at 55 °C and the UV intensity was 
controlled in the range of 60 ± 10 W/m2. Second, thermal shock was carried out for 1 h at 149 °C. Then 
a low temperature fatigue test took place at −53 °C, of which the times of application of constant 
amplitude fatigue load was 500 and the frequency was 5 Hz. The maximum stress and the minimum 
stress are 700 MPa and 70 MPa, respectively. Finally, specimens were immersed in a NaCl solution 
salt spray for 85 h at 40 °C. The pH of the solution is 4 and the settlement of salt spray was 1–2 mL/h·80 
cm2. The time of one cycle was about 5 days, and the total number of cycles was eight. EIS 
measurement and morphology record were carried after each cycle. 

2.3. EIS Measurement 

At the end of each cycle, the impedance of each specimen was measured in the frequency range 
0.01–100,000 Hz and then repeat the next cycle. The electrochemical measurements made use of a 
conventional three-electrode arrangement and a PARSTAT 2273 system in the PDL/Y-03 salt fog test 
box (AECC Beijing Institute of Aeronautical Materials, Beijing, China). The reference electrode is glass 
rod and auxiliary electrode is graphite electrode. The experimental data obtained at an open circuit 
using ±10 mV amplitude sinusoidal voltage were plotted in terms of Bode diagrams. 

3. Results 

3.1. Analysis of Morphology Change 

After each test period, the macroscopic morphology of two specimens was recorded. The focal 
point of the observation was the working section in the middle of the specimens. The macro-
morphology images of Plate 1# and Plate 2# at critical time points, which were the end of the 4th, 6th, 
8th cycles, were collected and integrated in Figure 3. At each critical time point, new emerging bulge 
or corrosion products were marked with red circles in Figure 3. It can be observed that the locations 
of the bubbling of the two specimens were different due to the instability of coating preparation. And 
most of the bubble appeared at the edge of the specimens, which suggested that the weak areas of 
the coating were at the edge of the specimens. From the zeroth cycle to the fourth cycle, the coating 
surface of specimens was still relatively complete. After the fifth cycle, there appeared micro porous 
in Plate 2#, but Plate 1# was still in good condition. However, after the sixth cycle, a small bubbling 
defect was observed in the working section of Plate 1#, and the size of bubbling defects of Plate 2# 
were bigger than before. From the seventh cycle to the eighth cycle, the number of the bubbles 
increased and the size of these bubbling defect grew in both specimens. 

The micro-morphology images of Plate 1# and Plate 2# at the end of the 6th and 8th cycles were 
also recorded and integrated in Figure 4. After the 6th cycle, the bubbling defects of Plate 1# was 
inconspicuous and that of Plate 2# was small. After the 8th cycle, the size of the bubbles of Plate 1# 
was significantly bigger than before, and the number of the bubbles of Plate 2# increased and the 
range was larger. 

Figure 2. Acceleration test process.

First, specimens were subjected to UV radiation for 24 h at 55 ◦C and the UV intensity was
controlled in the range of 60 ± 10 W/m2. Second, thermal shock was carried out for 1 h at 149 ◦C.
Then a low temperature fatigue test took place at −53 ◦C, of which the times of application of constant
amplitude fatigue load was 500 and the frequency was 5 Hz. The maximum stress and the minimum
stress are 700 MPa and 70 MPa, respectively. Finally, specimens were immersed in a NaCl solution salt
spray for 85 h at 40 ◦C. The pH of the solution is 4 and the settlement of salt spray was 1–2 mL/h·80 cm2.
The time of one cycle was about 5 days, and the total number of cycles was eight. EIS measurement
and morphology record were carried after each cycle.

2.3. EIS Measurement

At the end of each cycle, the impedance of each specimen was measured in the frequency range
0.01–100,000 Hz and then repeat the next cycle. The electrochemical measurements made use of a
conventional three-electrode arrangement and a PARSTAT 2273 system in the PDL/Y-03 salt fog test
box (AECC Beijing Institute of Aeronautical Materials, Beijing, China). The reference electrode is glass
rod and auxiliary electrode is graphite electrode. The experimental data obtained at an open circuit
using ±10 mV amplitude sinusoidal voltage were plotted in terms of Bode diagrams.

3. Results

3.1. Analysis of Morphology Change

After each test period, the macroscopic morphology of two specimens was recorded.
The focal point of the observation was the working section in the middle of the specimens.
The macro-morphology images of Plate 1# and Plate 2# at critical time points, which were the end
of the 4th, 6th, 8th cycles, were collected and integrated in Figure 3. At each critical time point, new
emerging bulge or corrosion products were marked with red circles in Figure 3. It can be observed
that the locations of the bubbling of the two specimens were different due to the instability of coating
preparation. And most of the bubble appeared at the edge of the specimens, which suggested that the
weak areas of the coating were at the edge of the specimens. From the zeroth cycle to the fourth cycle,
the coating surface of specimens was still relatively complete. After the fifth cycle, there appeared
micro porous in Plate 2#, but Plate 1# was still in good condition. However, after the sixth cycle, a small
bubbling defect was observed in the working section of Plate 1#, and the size of bubbling defects of
Plate 2# were bigger than before. From the seventh cycle to the eighth cycle, the number of the bubbles
increased and the size of these bubbling defect grew in both specimens.

The micro-morphology images of Plate 1# and Plate 2# at the end of the 6th and 8th cycles were
also recorded and integrated in Figure 4. After the 6th cycle, the bubbling defects of Plate 1# was
inconspicuous and that of Plate 2# was small. After the 8th cycle, the size of the bubbles of Plate 1#
was significantly bigger than before, and the number of the bubbles of Plate 2# increased and the range
was larger.
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3.2. Analysis of the Electrochemical Impedance Data

Electrochemical impedance spectroscopy has been in use widely in a semi-quantitative way to
evaluate and predict the service life of protective coatings. The electrochemical impedance data of
Plate 1# and Plate 2# were measured at the end of each cycle. It can be seen obviously in Figure 5
that the impedance data of each cycle were equally spaced on a logarithmic scale for a total of
50 points. After the first cycle, the impedance modulus of the two specimens displayed very high value
(>109 Ω·cm2) at 0.1 Hz, which suggested that the coating can still protect the metal from corrosive
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action. Nevertheless, after the second cycle, the impedance modulus values |Z| at the low-frequency
of both specimens declined sharply to about 106 Ω·cm2. In this stage, the barrier ability of the coating
to water and other particles had been very low. After the third cycle, the order of the impedance
at 0.1 Hz was approximately 105 Ω·cm2, which meant the electrochemical corrosion reaction had
occurred at the interface between coating and metal. After the fourth cycle, the coating impedance
increased slightly which reflected the self-healing behavior of the coating. The mechanism of the
self-healing behavior is that corrosion products jammed the pores of the coating, obstructing the
medium infiltration [27]. From the fifth cycle to the eighth cycle, low-frequency impedance value
was in the range of 104–105 Ω·cm2, indicating that the protective performance of the coating had been
very weak.
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4. Life Prediction

4.1. The Brief of Theoretical Life Prediction Model

At present, there are few studies on the prediction of coating service life. Mayne [28] proposed a
coating life prediction formula (Equation (1)) based on the theory of coating polarization resistance
control, combining Fick’s Law of Diffusion with Electrochemical Studies on Coated Steel Plates:

L = l2/(6D) +φ(ps,σm), (1)

where L is the coating life; l is the thickness of the coating; D is the diffusion coefficient of the coated
ions; φ is a constant; ps is the adhesion of the coating; σm is the pressure applied to the steel surface.

Chuang et al. [29] established a mathematical model based on coating bubbling (Equation (2)).
The bulge growth rate V is regarded as a function of moment, material properties and temperature:σ

Vmin = 1.83
(σf

W

)5/4
[

DbδbΩ
kT

][
Eh3

12(1− ν2)

]1/4

, (2)

where σf is the stratified stress; W is the cross-sectional area of the coating; Dbδb is the interfacial
diffusion rate; Ω, k, T are constants; E and V are the elastic modulus and the Poisson’s ratio of the
coating in the wet state, respectively; h is the total coating thickness.

In addition, some Chinese scholars have proposed a life prediction formula based on corrosive
media penetration [30]:

q/Q < 0.55, q/Q = A
(

Dt/x2
)1/2

, (3)

q/Q > 0.55, m(1− q/Q) = −BDt/x2, (4)
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where q is the infiltration amount of the medium after infinite length of time; Q is the infiltration of
the medium to the organic matter after infinite length of time; x is the coating thickness; A and B are
proportional coefficients; D is the diffusion coefficient; t is the time that the media penetrates through
the organic coating, which is regarded as the service life of the coating.

Geng et al. [31] introduced the gray theory into the failure study of the anti-corrosion coating
of the bridge, and constructed the GM (1, 1) model with the area variation of the coating corrosion
pits. And based on this, the general prediction formula of corrosion ressitance coating life of bridge is
deduced by the following formula.

t =
NA ln(1− ea)

a ln S
+ t0. (5)

Lin [32] proposed a new life formula based on the research of Geng et al. He assumed that the
change in the corrosive area of the coating is developed exponentially, resulting in the protective life of
the coating as follows:

t =
ln(Smax/a)

b
(6)

where A and B are constants; S is the corrosion area; N is the equidistant distance; t0 is the initial time.
Although the above studies established certain specific formulas for coating life, their accuracy is

questionable. Due to the diversity of the coating type and the difference in the corrosive environment,
the effective formula for accurately predicting the service life of the coating has not been found so far.

4.2. Prediction from |Z| Data at Low Frequency

As Lee and Mansfield [18] have proposed, polymer coating quality can be classified into three
stages, which are defined as ‘good’, ‘intermediate’ and ‘poor’. For the ‘good’ coating of which the
thickness is range from 50 µm to 250 µm, the impedance modulus values in 0.1 Hz are greater than
109 Ω·cm2 and the plots approximate a tilt straight line, while for the ‘intermediate’ coating the data
curves maintain a level of straight for a short distance then decline sharply, and the impedance modulus
values in 0.1 Hz are in the range of 106–108 Ω·cm2. For the ‘poor’ coating the data is about 106 Ω·cm2.
Based on the |Z| data at low frequency, the service life of coatings can be predicted approximately.
According to this method, the failure criterion of coatings can be expressed by Equation (7).

|Z(t)|lowfreq ≤ |Z|poor, (7)

where |Z(t)|lowfreq is the coating impedance at low frequency corresponding to the aging time t;
|Z|poor is the coating impedance corresponding to the ‘poor’ stage at low frequency. In addition,
Cai et al. [21] also proposed a failure criterion, which is similar to Equation (7):

|Z(t)|0.01 Hz
|Z|m

≤ 10. (8)

For Plate 1# and Plate 2#, the failure criterion can be written by Equation (2). So it can be easily
obtained that the failure cycle of both specimens is the 3th cycle by |Z| data at 0.01 Hz.

However, according to the analysis of morphology in Section 3.1, in the 3rd cycle, the coating of
the two specimens was still in good condition. Hence, it is not accurate enough to predict the coating
lifetime by using impedance at low frequency.

4.3. Degradation Kinetics Model

Bierwagen et al. [7] proposed that the low-frequency impedance is very sensitive to the coating
degradation process, and the impedance of the coating at low frequency is in accordance with
Equations (9) and (10).
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|Z|t = |Z|m + (|Z|0 − |Z|m) exp
(
− t
θ

)
, (9)

ln
|Z|t − |Z|m
|Z|0 − |Z|m

= − t
θ

, (10)

where t is coating aging time; |Z|t and |Z|0 is the coating impedance magnitude at 0.1 Hz
corresponding to the aging time t and 0, respectively; |Z|m is the impedance of metal substrates and
θ is reaction constant. The smaller the θ in the same environment, the more sensitive the coating is to
the environment, which means that the more easily the coating is corroded. Based on the experimental
data, θwas fitted to obtain the degradation kinetics equation of the coating in the specific environment.
The life of the coating can be predicted from the degradation equation:

Tfail = θ

[
ln
(
|Z|0 − |Z|m
|Z|fail − |Z|m

)]
, (11)

where Tfail is the failure time, and |Z|fail is the failure modulus of the coating.
According to the experimental results, the impedance data at 0.1 Hz of Plate 1# and Plate 2# were

fitted with the degradation kinetic model using Equation (4). The fitting result is shown in Figure 6.
It can be seen from the figure, the fitting lines of the two specimens almost coincides, because the two
groups of test data are similar.
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Then, the forecast cycles of Plate 1# and Plate 2# were predicted by the aging slash obtained by
the fitting of Plate 2# and Plate 1# data, respectively. However, the results solved by the linear fitting
are not integers. The final forecast cycles can be gotten by rounding the computational forecast cycles.
And negative results were considered as invalid prediction. The prediction results are shown in Table 1.
As can be seen from Table 1, the maximum prediction error of both specimens is 3 cycles corresponding
to the 3rd cycle, and others are less than 2 cycles. The average error of the effective prediction is 1.36.

The failure impedance modulus of Plate1# and Plate 2# can be taken as 106 Ω·cm2. Hence, the
failure cycle of the specimens can be obtained by Equation (5), and the results is the 4th cycle, which is
one cycle later than the forecast cycle judged by |Z| data at low frequency in Section 4.2.

However, in the process of using the degradation kinetics model, the experimental data were not
fully utilized and there is a relatively large error in the cycle prediction. This method as coating failure
criterion needs to be further improved.
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Table 1. Prediction results of degradation kinetics model.

Real Cycle
Plate 1# Plate 2#

Computational
Forecast Cycle

Rounding
Forecast Cycle

Prediction
Cycle Error

Computational
Forecast Cycle

Rounding
Forecast Cycle

Prediction
Cycle Error

0 −1.56 / / −1.15 / /
1 −1.85 / / −1.96 / /
2 4.04 4 2 3.70 4 2
3 6.08 6 3 5.51 6 3
4 4.77 5 1 4.89 5 1
5 6.32 6 1 5.81 6 1
6 6.22 6 0 6.39 6 0
7 5.95 6 1 5.90 6 1
8 6.49 6 2 6.53 7 1

4.4. Improved Degradation Kinetics Model

It was found that the degradation kinetics model is not suitable for the case when the damage of
the coating is serious. In addition, only a single frequency impedance is adopted in the degradation
kinetics model, so the accidental error is relatively large. Based on the experimental results, the
influence of the matrix impedance on the impedance of the coating is negligible and impedances at
different frequencies are sensitive to the corrosion process more or less. Hence, different degradation
equations can be obtained by the |Z|t, |Z|0 at different frequencies.

According to the above-mentioned viewpoints, with the help of the degradation kinetics model,
it can be proposed that the impedance magnitude accords with Equation (12):

Zt=AT− Z0, (12)

where Zt, T and Z0 are column vectors, and the elements of these vectors are denoted by Zti, Ti and
Z0i. Among them, Zti and Z0i are the fitting results of lg|Z|t and lg|Z|0 at frequency fi, respectively.
A is a diagonal matrix and the diagonal elements Aii are the fitting results given by Equation (13).

ln
Zti
Z0i

= Aiit. (13)

After getting the diagonal matrix A, the time vector T can be solved by Equation (14) using
experimental data |Z|t of the specimen to be predicted. The prediction period Tp satisfies the
minimum mean square error:

min∑
(
Ti − Tp

)2. (14)

If the coating failure impedance at each frequency Tfi is known, a failure time vector Tf can be
solved by Equation (15). The final predicted failure time can be obtained by finding the minimum
mean square error of Tfi, which is the same as solving the Tp.

Tf = A−1(Zf + Z0). (15)

Then, the cross validation method is used to apply this model to the experimental data. The fitting
straight lines of Plate 1# and Plate 2# at multiple frequencies gotten by Equation (7) are shown in
Figure 7. The selection range of frequency points is from 0.01 Hz to 100,000 Hz, of which the total
number is 49. It can be seen from the figure that as the frequency increases, the slope of the fitting line
decreases, which illustrates that in the corrosion process, the higher the frequency is, the smaller the
change in the measured impedance modulus is.
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Figure 7. The fitting results of the two specimens using improved degradation kinetic model:
(a) Plate 1#; (b) Plate 2#.

The results of the prediction time at each frequency Ti obtained by Equation (15) is shown in
Figure 8. The predicted values of each cycle at low frequency are relatively stable, while the predicted
values at high frequency have a large deviation. It may be due to the fact that the impedance values
at high frequencies are more sensitive to the coating degradation than that at low frequencies, which
plays a role in correcting the calculation of the final forecast results.

Metals 2017, 7, 274 10 of 17 

 

line decreases, which illustrates that in the corrosion process, the higher the frequency is, the smaller 
the change in the measured impedance modulus is. 

(a) (b)

Figure 7. The fitting results of the two specimens using improved degradation kinetic model: (a) Plate 
1#; (b) Plate 2#. 

The results of the prediction time at each frequency Ti obtained by Equation (15) is shown in 
Figure 8. The predicted values of each cycle at low frequency are relatively stable, while the predicted 
values at high frequency have a large deviation. It may be due to the fact that the impedance values 
at high frequencies are more sensitive to the coating degradation than that at low frequencies, which 
plays a role in correcting the calculation of the final forecast results. 

(a) (b)

Figure 8. Results of Ti: (a) Plate 1#; (b) Plate 2#. 

Finally, the prediction cycles of improved degradation kinetics model obtained by Equation (14) 
are listed in Table 2. The final forecast cycles were also obtained by rounding the computational 
forecast cycles and negative results were considered as invalid prediction. The average error of the 
effective prediction is 0.87, of which the accuracy is increased by about 36% compared to the average 
error of traditional degradation kinetics model. 

The low-frequency failure impedance of the coating is about 106 Ω·cm2, but there is no basis for 
the determination of the non-low-frequency failure impedance. Therefore, the failure cycle can be 
predicted by the experimental data at the frequencies range from 0.01 Hz to 1 Hz. The final results 
are the 4th cycle, which is the same as the failure cycle of traditional degradation kinetics model. 

Compared with the traditional degradation kinetics model, the improved model performs better 
in predicting cycles. However, the coating was still judged prematurely to be ineffective. According 
to the analysis of morphology in Section 3.1, the true failure cycle of the two specimens should be the 
5th cycle. What is more, this improved model fails to reflect the detail of the coating degradation 
process. 

Figure 8. Results of Ti: (a) Plate 1#; (b) Plate 2#.

Finally, the prediction cycles of improved degradation kinetics model obtained by Equation (14)
are listed in Table 2. The final forecast cycles were also obtained by rounding the computational
forecast cycles and negative results were considered as invalid prediction. The average error of the
effective prediction is 0.87, of which the accuracy is increased by about 36% compared to the average
error of traditional degradation kinetics model.

The low-frequency failure impedance of the coating is about 106 Ω·cm2, but there is no basis for
the determination of the non-low-frequency failure impedance. Therefore, the failure cycle can be
predicted by the experimental data at the frequencies range from 0.01 Hz to 1 Hz. The final results are
the 4th cycle, which is the same as the failure cycle of traditional degradation kinetics model.

Compared with the traditional degradation kinetics model, the improved model performs better
in predicting cycles. However, the coating was still judged prematurely to be ineffective. According to
the analysis of morphology in Section 3.1, the true failure cycle of the two specimens should be the 5th
cycle. What is more, this improved model fails to reflect the detail of the coating degradation process.
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Table 2. Prediction results of improved degradation kinetics model.

Real Cycle
Plate 1# Plate 2#

Computational
Forecast Cycle

Rounding
Forecast Cycle

Prediction
Cycle Error

Computational
Forecast Cycle

Rounding
Forecast Cycle

Prediction
Cycle Error

0 −0.52 / / −0.31 0 0
1 −1.36 / / −1.34 / /
2 2.90 3 1 2.52 3 1
3 6.03 6 3 5.15 5 2
4 3.88 4 0 4.00 4 0
5 6.39 6 1 5.42 5 0
6 6.38 6 0 6.59 7 1
7 6.21 6 1 5.96 6 1
8 7.04 7 1 7.07 7 1

4.5. Neural Network Classification Model Based on Sample Detection

Specific artificial networks and impedance spectrum analysis were combined to establish the
neural network classification model. This model applies Kohonen neural networks to analyze the
impedance spectrum directly, which avoids the choice of equivalent circuit. The topology structure of
the SOM adopted to predict the service life of the coating is showed in Figure 9. The network consists
of two layers of neurons ordered in a low-dimensional map, a linear array of artificial neurons. In the
second layer, three neurons represent the three stages of the coating degradation process [18], of which
corresponding impedance at low frequency and characteristics are shown in Figure 10. In the first
stage, the coating has good protective properties and has little change compared with the state before
corrosion; in the second stage, there appears micro porous and small bubbling defect and it tends to
peel off in coatings; and in the third stage, coating shows big flaws and is completely ineffective.
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The essence of the SOM network is that neurons in the competition layer compete with each other
in order to get an opportunity to respond to the input sample. The result of the competition is that
only one neuron can become the winner, which responds to the corresponding input according to its
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weight. In the process of competition, the adjustment of weights is based on the input sample, so the
role of the sample is important. We can set up a mechanism to select excellent samples automatically,
and remove some noise samples. In this way, the weight adjustment is better.

Therefore, the dispersion criterion is used to improve the training of neural networks. In the
feature space, the classification is easier to implement while the intra-class pattern distribution is
dense and the distance between the different model features is far away. Dispersion is a criterion
function that can reflect the distance between classes and interclass distances. In the process of network
competition, screening samples can dynamically reduce the dispersion within the group to improve
the final recognition of the network performance. The process of predicting the experimental data
period using the neural network model based on sample detection is divided into four steps as follows.

Step 1: Build the SOM-A network. Train the network through sample input. After the training,
the basic classification of the samples can be judged based on the winning neurons. During the
training process, each input data xs is presented to the neural network. Only the neuron whose weight
vector is most similar to the input vector xs is stimulated and this process is so called competitive
learning. In more mathematical terms, the winning neuron stimulated by the input is selected as the
one providing the minimal Euclidean distance to the xs:

Ed = min
j

{
49

∑
i=1

(
xsi −ωji

)2
}

, j = 1, 2, · · · , 8, (16)

where xsi and ωji are the ith coordinate of the input data xs and the ith weight of neuron j in the
second layer, respectively. After the winning neuron is selected, the weightsωji of each neuron j are
updated on the basis of the difference between their old value and the magnitude of the input data xsi.
This correction is scaled according to the distance from the winner dr.

ωij(t + 1) = ωij(t) + η
(

1− dr

dmax + 1

)[
xsi −ωij(t)

]
, dr = 0, 1, · · · , dmax, (17)

where η is the learning rate; ωij(t) is the numerical value of the weight ωij at the previous iteration.
The size of dmax, which at the beginning of learning covers the whole neural network, decreases during
the training process and finally the value is zero. The learning rate η is one of important parameters
and is also changing during the training by Equation (18):

η = (ηinitial − ηfinal)

(
1−

nprevious

ntotal

)
+ ηfinal, (18)

where ηinitial and ηfinal are the initial value and the final value of the learning rate constant η,
respectively; nprevious and ntotal are the previous iteration and the entire number of the iteration,
respectively. When the neural network training is completed, the data to be predicted will be input
to the network, then the corresponding classification results can be obtained, which is so called
network testing.

Comparing the Euclidean distance between the test data and the training data. In the classifying
step, the Euclidean distance corresponding to the neuron stimulated by the test data is obtained from
the neural network. The Euclidean distances of each set of training data are also obtained. The training
data with the shortest distance from the test data will be the winner, of which the corresponding period
is the forecast period of the test data.

Step 2: Calculate the average mi of each class sample according to the classification results.
The dispersion of each sample with mi can be obtained using Equation (19).

Si
e = (X−mi)(X−mi)

T . (19)
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Step 3: Determine the distance threshold according to the dispersion and select the sample within
the distance to obtain a set of samples with smaller dispersion value.

Step 4: Build the SOM-B network. Train the network through the selected sample input.
The process is the same as the first step.

Compared with other EIS parameters, the changing rate in impedance which satisfies Equation (20)
can reflect the changing process of the impedance more sensitively in the entire frequency range and
can help to recognize the features of deterioration process more clearly. The changing rate in impedance
expressed in differential form can probably intensify the characteristics of each stage in the frequency
range. So the changing rate of impedance of each cycle can be took as an input sample for network
training. Therefore, for the classification purpose, the failure stages of the coating can be distinguished
effectively which does not require to build EC (Equivalent Circuit) and analyze other parameters.

k =
d log(|Z|)
d log(| f |) , (20)

Actually, in practical applications, the changing rate k can be applied in the discrete form as given
by Equation (21).

k =
log|Z| f(i+1)

− log|Z| fi

log
∣∣∣ f(i+1)

∣∣∣− log| fi|
(21)

In the following, the process and results of applying the neural network model to analyze the
impedance data of Plate 1#, 2# and 3# will be described. There are some erroneous experimental data
in the Plate 3# data, which are introduced here to verify the validity of the sample detection. It took the
changing rate in impedance as the input sample of the Kohonen network, and the parameters k of these
three plates are shown in Figure 11. The classification results of the specimens are shown in Figure 12.
It is obvious that the cycle classification results of Plate 1# is the same as that of Plate 2#. It appears
jump phenomenon in the 4th cycle because of self-healing behavior occurring when corrosion happens.
Corrosion products jammed the pores of the coating, obstructing the medium infiltration [27]. During
the sample detection process, the data in the red circle are deleted. It is obvious that the data at the
fifth cycle of Plate #3 is included, which is caused by the experimental measurement error.
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The cross-validation is also used in here. The cycle forecast of Plate 1# was obtained using the
network trained by the impedance data of Plate 2#, and the cycle forecast of Plate 2# was gotten by the
network trained by the data of Plate 1#. The Euclidean distance between the cycles of testing sample
and the training sample was calculated, and the cycle of training sample whose Euclidean distance
with the predicted cycle was minimum was selected as the forecast cycle of the test cycle.

The final cycle prediction results are incorporated into Table 3. Compared with the previous two
models, the prediction cycle error of the neural networks model is greatly reduced. Most of the forecast
cycles are the same as the corresponding real cycles. The average error is 0.22, and the accuracy is
increased by about 84% compared to the traditional degradation kinetics model and 75% compared to
the improved degradation kinetics model. The reason why the errors of the two degradation kinetics
models are large is that they cannot reflect the process of coating self-healing behavior. However, the
classification results of SOM is a perfect simulation of this phenomenon.

Table 3. Prediction results of neural network model.

Real Cycle
Plate 1# Plate 2#

Forecast Cycle Prediction Cycle Error Forecast Cycle Prediction Cycle Error

0 0 0 0 0
1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 4 0
5 6 1 6 1
6 5 1 5 1
7 7 0 7 0
8 8 0 8 0
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For the determination of the failure cycle, it can be considered that the third stage of coating
corrosion is the failure stage. So the failure cycle of the two specimens is the 5th cycle according to the
classification results of SOM, which is in agreement with the results of morphological analysis. As can
be seen from Table 4, the failure criterion of neural network model is the best.

Table 4. The failure cycle determined by different analytical methods and models.

Analytical Methods or Models The Failure Cycle

Morphological analysis 5
Analysis of |Z| data at low frequency 3

Degradation kinetics model 4
Improved degradation kinetics model 4

Neural network model 5

5. Conclusions

Applicability of the improved degradation kinetics model and the neural network classification
model in life prediction of coatings is discussed. Compared with the degradation kinetics model, the
improved degradation kinetics model ignores the influence caused by the impedance of the matrix
and applies multi-frequency impedance of specimens in order to reduce the accidental error. As a
result, the prediction accuracy can be improved by 36%, approximately.

The neural network classification model not only avoids the problem that the equivalent circuit
is difficult to select, but also takes into account the change of impedance modulus and impedance at
multiple frequencies. The prediction cycle error is significantly reduced compared to the other two
models. The classification results reflect the coating self-healing behavior accurately and the failure
cycle judged by neural network model coincides with the results of morphological analysis.
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