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Abstract: Reduction cell operation in primary aluminum production is strongly influenced by the
properties of baked anodes. Producing consistent anode quality is more challenging nowadays
due to the increasing variability of raw materials. Taking timely corrective actions to attenuate the
impact of raw material fluctuations on anode quality is also difficult based on the core sampling
and characterization scheme currently used by most anode manufacturers, because it is applied on
a very small proportion of the anode production (about 1%), and long-time delays are required for
lab characterization. The objective of this work is to develop rapid and non-destructive methods
for the inspection of baked anodes. Previous work has established that sequential excitation of
smaller parts collected from an industrial sized anode using acousto-ultrasonic signals at different
frequencies allowed detecting and discriminating anode defects (pores and cracks). This was
validated qualitatively using X-ray computed tomography. This work improves the method
by using frequency-modulated excitation and building quantitative relationships between the
acousto-ultrasonic signals and defects extracted from tomography images using Wavelet Transforms
and Partial Least Squares (PLS) regression. The new excitation approach was found to provide similar
or better inspection performance compared with sequential excitation, while requiring a shorter
cycle time.

Keywords: baked carbon anode; non-destructive testing; acousto-ultrasonics; primary aluminum
smelting; PCA; PLS

1. Introduction

Most modern primary aluminum smelters use the Hall-Héroult (H-H) electrochemical process to
reduce alumina powder to metal aluminum. To carry out the reaction, prebaked carbon anodes are
utilized in order to distribute the electrical current in the reduction cells, and to supply the carbon
required by the reaction. Hence, the anodes are consumed and need to be replaced according to a
predefined set cycle. The overall performance of the H-H process is strongly influenced by the quality
of the anodes blocks. For instance, a low electrical resistivity is important for maximizing energy
efficiency. A high mechanical strength and density, and low reactivity to air and CO2 are desirable for
minimizing carbon consumption, and for reducing the environmental footprint and greenhouse gas
(GHG) emissions. Any physical defects within the anode blocks, such as pores, cracks or compositional
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heterogeneities, may adversely affect the anode performance, and consequently, the performance of
the reduction cells. Producing high quality anodes consistently is therefore a major concern for the
manufacturers who are currently facing degrading quality, and increasing variability and cost of the
anode raw materials (petroleum coke and coal tar pitch).

The traditional anode quality control scheme used by the industry and consisting of collecting core
samples from the baked anodes and characterizing them in the laboratory is inadequate to address the
current needs. Indeed, core samples are gathered from a very small proportion of the anode production
(often less than 1%) because of the destructive and time/resource consuming nature of the procedures.
Furthermore, the samples themselves represent only 0.1–0.2% of the anode block volume, which has
properties known to be anisotropic. Finally, the core sample properties are typically available only after
a long time delay, which limits the implementation of feedback corrective adjustments to the anode
manufacturing process when deemed necessary. Therefore, alternative rapid and non-destructive
techniques are required to assess the quality of individual baked anodes before they are set in the H-H
reduction cells.

Recent research efforts focused on developing devices for measuring the electrical resistivity of the
individual green [1–3] and baked [4,5] anode blocks using different technologies. These sensors allow
measurement of a very important anode property related with energy efficiency, but their capacity
to detect, locate and diagnose physical defects within the anode blocks has yet to be established.
Alternatively, the performance of acousto-ultrasonic (AU) techniques for detection of various defects
in carbon anodes has been demonstrated in previous work [6] using sequential acoustic excitation
at different frequencies. Sliced anode samples were tested using this approach and their acoustic
responses was analyzed using Principal Component Analysis (PCA). The relationship between the
attenuation of the acoustic signals and the presence of different defects was validated qualitatively
using X-ray images collected from the slices. However, sequential excitation at multiple points on the
material is a lengthy process, and shortening the cycle time of the acoustic inspection scheme is highly
desirable for industrial implementation.

The aim of this work was to demonstrate that exciting the anode materials using a single frequency
modulated acoustic wave (multi-frequency signal) can lead to similar or better results compared to
sequential excitation, while significantly reducing cycle time. For instance, the sequential excitation
scheme used in previous work to obtain good inspection results consisted of testing the materials
at seven excitation frequencies in the 100–250 kHz range for each measurement point [6]. A single
frequency modulated wave in the same range would reduce cycle time by 7 to 1 for the same number
of data points. A side objective of this work was to validate the proposed approach more quantitatively,
by building empirical regression models between the acoustic response of the materials and the
corresponding Computed Tomography-scan images. These images were used for the sole purpose of
confirming the inspection results, as they would not be available in an industrial implementation.

Under frequency-modulated excitation, the material response signal is more complex as it also
contains multiple frequencies. To quantify the acoustic attenuation at different frequencies, the
signal needs to be first decomposed. One approach consists of using the Fast-Fourier transform
(FFT) [7–10]. However, this method only performs frequency domain decomposition and does not
capture variations in the signal frequency content through time, which may limit performance in defect
detection and identification. An alternative approach is to perform time-frequency decomposition of
the signals using Wavelet Transforms (WT) [11–14], which were shown to be a powerful tool in all
areas dealing with transient signals [15–17]. Qi et al. [18,19] showed the effectiveness of the Discrete
Wavelet Transform (DWT) for processing acousto-ultrasonic signals collected from composite materials.
A similar approach was used in this work.

To quantify defects in tomographic images, texture analysis techniques were used, since the
defects introduce local variations in grey level intensity in the images according to some relatively
well-defined patterns (e.g., round spots for pores and streak lines for cracks). Again here, one could
extract textural features from tomographic images using the two-dimensional Fast Fourier Transform
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(2D-FFT) [20]. The frequency decomposition of the images could be used to determine the severity
of the defects. However, variations in frequency content within the images (i.e., spatial information)
cannot be extracted using this approach. On the other hand, the 2D Discrete Wavelet Transform
(2D-DWT) is effective for extracting both frequency and spatial information [21]. Wavelet texture
analysis has proved a useful tool in several areas dealing with noise and low variation in images.

After applying the WT to both sets of data (acoustic signals and images), wavelet features were
extracted and analyzed using PCA in order to explore the clustering pattern of the various anodes slices.
A regression model was then built between both data sets. The results showed that the attenuated
acoustic response of the materials obtained after frequency-modulated excitation was sensitive to the
presence of cracks within anode samples, and to the density of pores distributed throughout the anode
samples (slices). The performance of this approach was found to be similar to that obtained using
sequential excitation [6], but with a significant reduction in cycle time.

2. Materials and Experimental Data Acquisition

2.1. Baked Anode Samples and X-ray Images

A full-size industrial baked carbon anode was scanned using a Siemens Somatom Sensation
64 tomograph (512 × 512 pixels) (Siemens Healthcare GmbH, Erlangen, Germany). The scanning area
of the X-ray apparatus was limited to objects of less than a 40 × 40 mm2 cross-section. Since the anode
was too large to fit in the scanning area in one piece, it was cut in several slices, as shown in Figure 1.
The cutting was performed with care to avoid altering any anode defects. Furthermore, for a single
CT image reconstruction, a higher image resolution is obtained when the samples are smaller in size
(down to a cross-section of 50 × 50 mm2 where the resolution limit of the tomograph used is reached),
which increases the contrast between defects and the background [22]. The anode was first cut into
26 slices (Figure 1a), and then each of them were cut further in halves along their heights (Figure 1b).
The top and bottom of each half slice was also cut to obtain samples of uniform geometry before
collecting the acoustic response of the material. Note that the following eight slices were selected for
further AU analysis: 2, 3, 5, 7, 11, 15, 24 and 25 (indicated using red numbers in Figure 1a). These slices
spanned a range of internal structures, and were selected from areas which were expected to contain
different types of defects, such as pores and cracks (see [6] for more details).
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Figure 1. The sliced baked anode. (a) the selected 8 slices are identified in red; (b) example of a slice
used for acousto-ultrasonic testing; (c) example X-ray image obtained for slice 7. The corridors are
identified by the red lines and numbered from 1–6. The black region corresponds to one of the anode
slots. Adapted from [6].
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The CT-scan measured the attenuation coefficients of the material for a set of 512 × 512 3D
voxel (volumetric pixel) per scan, which corresponded to the tomograph resolution. Given the slice
dimensions, the voxels had a resolution of 0.7 × 0.6 × 0.7 mm3. The X-ray attenuation coefficients of
the voxels (also called Computed Tomography or CT numbers) were converted to grayscale images
showing spatial variations correlated with the materials density [22,23]. Cracks and pores appear
as groups of dark pixels surrounded by lighter background (carbon material). The high-density
impurities appear as bright pixels inside a darker background. Figure 1c shows an example X-ray
image for one slice.

2.2. Acousto-Ultrasonic (AU) Signal Acquisition

The acousto-ultrasonic inspection system used in this work was described in detail in [6].
It consisted of a multi-channel acousto-ultrasonic apparatus using two acoustic sensors (an emitter and
a receiver), a pre-amplifier, and a software for controlling the excitation and recording the emission
signals. After testing several sets of sensors, it was found that using transducers having a resonant
frequency at 55 kHz provided the best results for the tested materials. The sensors were mounted
on both ends of the anode slices (one on top and the other on the bottom surface) using mechanical
clamps. Coupling gel was applied on the anode surfaces before the sensors were put into contact with
the materials. This was made to ensure good contact between the sensors and the anode samples,
which typically have rough surfaces. The sensors were placed vis-à-vis each other, and moved together
along the anode width to measure the AU response of the materials included in the six so-called
corridors (identified by white chalk in Figure 1b, and by red lines in Figure 1c). The material structure
clearly changed from the center of the anodes to the external surface (corridor 1 and 6 in Figure 1c,
respectively), as shown by variations in material density (i.e., gray level) and the presence of pores
and cracks. As mentioned in the previous section, such variations in the material structure are also
expected along the length of the anode (i.e., various slices).

The excitation signal was specified as a modulated frequency signal between 100 and 300 kHz
as shown in Figure 2. This range was selected based on previous work [6]. The AU measurements
were made using a pre-amplification gain of 40 dB, and sampling rate of 1000 kHz. The selected
sampling rate is sufficiently fast to avoid aliasing at frequencies lower than 300 kHz. This procedure
was repeated for all six corridors (Figure 1b,c) in each of the selected anode slices. Note that the type
of transducer and measurement settings may need to be slightly adjusted if the system is to be used
for inspecting anodes from different manufacturers.
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3. Extraction of Features from Acoustic Signals and X-ray Images

3.1. Acousto-Ultrasonic Signals

The majority of the acousto-ultrasonic signals propagating through the porous anode materials
are in the frequency range of 100–300 kHz. Dividing this range into a set of consecutive frequency
bands may help relate different time-frequency features of AU signals to various anodes defects.
The wavelet transforms were used to decompose the signals and extract meaningful time-frequency
domain features from them.

The decomposition of a continuous 1D signal x(t) using a specific scaled or dilated mother wavelet
Ψ (t,a,b) is obtained by the convolution of both the signal and the wavelet function as follows [21]:

da,b =
1√
a

+∞∫
−∞

x(t)Ψ

(
t− b

a

)
dt (1)

In the above Equation, Ψ (t) is the mother wavelet function, which corresponds to a wave
of finite length and having a particular shape. Several types of mother wavelets exist (e.g., Haar,
Daubechies, Coiflet, Symlet, Mexican Hat, etc.), and they mainly differ by their shape (frequency
content). The type of mother wavelet is typically selected to match the shape of the signal x(t) the best
possible. The Daubechies wavelet (Db5) was selected in this work. This choice came after selecting the
best results from trying several different mother wavelets. Parameters a and b are called the scaling
and the translation parameters, respectively. The former stretches the mother wavelet and changes
its frequency content, while the latter performs a translation of the wavelet over time. The result
of the convolution is a scalar quantity da,b, called the wavelet detail coefficient. It represents how
well the signal x(t) matches the dilated mother wavelet at scale a and time point b. Changing the
scaling coefficient a from a small to a large value progressively dilates the wavelet and therefore
allows extracting information about signal x(t) from high to low frequency. Translating the wavelet
using parameter b from the beginning to the end of the x(t) signal allows information to be captured
at different time points. Hence, changing a and b in a nested fashion performs a spatial-frequency
decomposition of signal x(t), and how well the signal matches the wavelet at scale a and time point b is
quantified by the detail coefficient da,b. Note that the acoustic signals analyzed in this work are discrete
(i.e., sampled at a given frequency). A discrete version of Equation (1) exists for discrete signals as
well. This leads to the so-called Discrete Wavelet Transform (DWT). Values taken by parameters a and
b are constrained for computing efficiency and to avoid signal aliasing. For more details on the DWT,
the reader is referred to [21].

After performing the wavelet decomposition of the discrete signal x(i), a set of vectors of detail
coefficients da(i) were obtained, one for each scale a. Each vector contained the detail coefficient at a
given scale but for all time points. In other words, the original signal x(i) was decomposed into a set
of detail signals da(i), each containing information in a certain frequency band. Three time domain
features were then calculated from each time series da(i), i = 1, 2, . . . , N, N being the number of samples
in the time series. These features are the maximum (MAX), the root mean square (RMS) and the time
of flight, or arrival time (AT). These features are calculated as follows:

MAXa = maxN
i=1 da(i) (2)

RMSa =

√
1
N ∑N

i=1[da(i)]
2 (3)

ATa = i when da(i) ≥ 0.15×max(da(i)) (4)

The acoustic response of the materials x(i) was decomposed up to level 4 (four different discrete
values of a) and the MAX and RMS features were calculated from each of them as well as the arrival



Metals 2017, 7, 305 6 of 15

time. Figure 3 provides an example of a raw acoustic signal decomposed into 4 frequency bands
(details 1–4), and also shows the residual signal after four decomposition levels (called approximation).Metals 2017, 7, 305  6 of 15 
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The data were then collected in a (48 × 15) dimensional matrix X. The 15 columns correspond to
the three features computed from the four wavelet detail signals, as well as the approximation for all
of the 48 samples (six corridors × eight anode slices). Signal and image processing were performed
using Matlab version R2014a (MathWorks, Natick, MA, USA).

3.2. X-ray Image Texture Analysis

The texture of X-ray images was analyzed using a very similar approach as for the acoustic signals.
The tomography data were first converted to grayscale images. The Discrete Wavelet Transform was
then applied to them. The main difference in the application of wavelets to images and acoustic
signals is that images were 2D signals. An image is a matrix of data I(nX,nY) where nX and nY are
the number of pixels in the horizontal and vertical directions in the images and the elements of that
matrix correspond to the X-ray attenuation coefficients converted to grayscale values. The convolution
between a mother wavelet and the image signals (i.e., discretized version of Equation (1)) is performed
along each row and each column of the image (horizontally and vertically) as well as diagonally using
a filter bank [21]. Wavelet detail coefficients were obtained for each pixel of the images at each scale
and for each of the three directions. These were collected into matrices Dj

k where j corresponds to the
scale, k to each direction (h, v, d), and each element of these matrices match the detail coefficient at a
certain pixel location (nX, nY). These matrices can also be displayed as images for visual interpretation,
and are typically called wavelet detail sub-images (Dj

h, Dj
v, Dj

d). At the first scale, high frequency
information is captured from the images in all three directions, and these are associated with small
objects or patterns in the image. As the scale increases, lower frequency information introduced by
larger objects or patterns is extracted. The 5th order Daubechies wavelet (Db5) wavelet was selected
for extracting textural information from the X-ray images.

Several scalar textural descriptors or textural features can be calculated from the wavelet detail
sub-images, the most popular being the energy, variance, entropy, and the mean [24,25]. Our results
showed that the energy is sufficient to extract information related with anode defects (pores and cracks)
within the X-ray images. The energy is calculated as follows from the wavelet detail sub-images at
each scale and for the three directions:

Ek
j =

nX
∑

m=1

nY
∑

n=1

∣∣∣Dk
j (m, n)

∣∣∣2
nXnY

(5)
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where Dj
k is the detail coefficient for pixel located at the (nX, nY) position within an image in the kth

direction (k = h, v, d) and at the jth scale. The total number of pixels within the images (nX × nY) was
used to normalize the energy values. The X-ray images were decomposed up to scale 4. This yielded
12 energy values per anode corridor (four scales × three directions). These values were collected for
the 48 corridors and stored in matrix Y of dimensions (48 × 12).

The application of wavelet decomposition to one such X-ray image is shown in Figure 4.
It displays the original image as well as the detail sub-images for each of the four scales and directions.
The sub-images are identified by the direction first (h, v, d) and then by the scale number (1,2,3,4).
For instance, sub-images v3 display the information extracted from the image by the wavelet in the
vertical direction at scale 3. The vertical and diagonal sub-images at scales 2–4 clearly capture the
profile line of the vertical and diagonal cracks in the image. This information was regressed against
the acoustic signals in order to link the acoustic attenuation to anode defects quantitatively.
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4. Multivariate Statistical Methods for Analysis of the Acousto-Ultrasonic Signal and
Image Features

Multivariate statistical methods were used to analyze the large data matrices obtained in this
study. First, PCA was used to cluster the X-ray images based on their texture (Y data). Then, Partial
Least Squares (PLS) regression was utilized to build relationships between the acoustic attenuation
data (X) and then image textural features (Y). These methods are briefly described below.

4.1. Principal Component Analysis

Data clustering in the latent variable space using methods such as PCA is widely used for the
analysis of large datasets containing noisy and highly collinear data. PCA summarizes the variations
contained in a large set of J variables X = [x1, x2, . . . , xJ] by a much smaller number of orthogonal
latent variables (or scores) T = [t1, t2, . . . , tA] (A << J) together capturing the dominant sources of
variations in the data. The scores are obtained by an eigenvector-eigenvalue bilinear decomposition of
the X matrix and is mathematically expressed as follows [26,27]:

X =
A

∑
a=1

ta pT
a + E = TPT + E (6)

where the orthogonal vectors ta are the latent variables (called scores) providing the coordinates of
each sample in the low dimensional subspace (plane or hyperplane) after projection. The subspace
itself is defined by the A orthonormal loading vectors pa, which are linear combinations of the original
variables (i.e., ta = X pa). The projection residuals are collected in the residual matrix E. The loading
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vectors are calculated in such a way that t1 explains the greatest amount of variance in X, t2 the second
greatest amount of variance not explained by the first component, and so on. Plots of the score values
are used to visualize the clustering pattern of the data while the loadings allow interpretation of the
patterns by the changes in the variables. The reader is referred to [27] for more details on PCA.

4.2. Partial Least Squares Regression

The PLS regression method was used here to correlate the acousto-ultrasonic features of the anode
corridors gathered in the X matrix with corresponding image textural features collected in Y. Similar
as for PCA, this regression method has an advantage of overcoming the strong correlation between
features in both data blocks. Each PLS latent variable is calculated in such a way as to maximize the
covariance in both data matrices and the following model structure is obtained [28,29]:

X = TPT + E (7)

Y = TCT + F (8)

T = XW* = XW(PTW)
−1

(9)

where the latent variable space of both X and Y corresponds to the scores T (orthogonal PLS
components) which relate X to Y. The sub-spaces of X and Y are modeled by the loading matrices
P and C, respectively, while the corresponding residuals are stored in E and F. Finally, the so-called
weight vectors W* contain the linear combinations that express T in terms of X and predictions of Y to
be made.

The PLS method also performs clustering of samples vector in the latent variable subspace
according to the Y data. The clustering patterns can be visualized using scatter plots of the scores
(t’s). The differences between the clusters can be interpreted using the loading weight vectors (w*’s).
The reader is referred to Wold et al. [29] for more details about these methods. The ProMV software
version 15.08 (ProSensus, Ancaster, ON, Canada) was used to build PCA and PLS models.

5. Results and Discussion

The X-ray image textural features (Y data) were analyzed first using PCA in order to associate
them with anode defects (voids such as pores and cracks). A PLS regression model was then built using
both the acoustic and image textural features in order to correlate them. This provided a quantitative
validation of the impact of anode defects on the acousto-ultrasonic features.

5.1. Texture Analysis of X-ray Images

Using the cross-validation procedure [30], two PCA components (or latent variables) were
found to be significant, and together explained most of the variations in the image textural features.
The cumulative sum of squares explained (R2) and predicted (Q2) by the first two PCA components
are provided in Table 1. The first two components were found to be sufficient to discriminate the
corridors based on their textural features since they explained over 83% of variance in the textural
features stored in Y (Q2 = 83.21% in Table 1).

Table 1. Percent cumulative sum of squares explained (R2) and predicted (Q2) by the Principal
Component Analysis (PCA) model built on textural features (Y data) collected from X-ray images of
anode slices.

Component R2 (%) Q2 (%)

1 60.3 58.7
2 84.0 83.2
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The main variability directions in the image dataset captured by the two PCA components are
presented in the t1–t2 score plot shown in Figure 5. Each marker in this plot represents a summary of
the textural features of one particular corridor. These are identified by the slice number followed by
the corridor number. Corridors having similar textural features cluster close to each other, while those
having different features cluster in different locations in the latent variable space. It was observed
that the corridors located in the same position within the slices cluster together (see markers of the
same color in Figure 5). Furthermore, each group was discriminated from the others along both PCA
components, except those of slice number 25. This slice was located close to the corner of the anode
block, and contained larger pores and cracks, which made them similar to either corridors #1–2, which
typically contained several cracks, or to corridors #6 that contained many pores. This explained why
the corridors of slice #25 clustered close to corridors #1–2 or #6.
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Figure 5. Score plot of the PCA model (t1–t2) showing the clustering pattern of the corridors in each
slice based on their textural features extracted from X-ray images. Observations are identified by the
slice number (red numbers in Figure 1) followed by the corridor number (1–6). Different colors are
used to distinguish the corridors as shown in the anode slice image included in the figure.

The clustering pattern in the score space can be interpreted based on changes in the textural
features by examining the p1–p2 loading plot shown in Figure 6. Each point in the loading plot
corresponds to one textural feature calculated from the image of each corridor. They are labeled
according to the feature name followed by the wavelet decomposition level. The loading values define
the weight of each textural features in each component. The higher the absolute value of the loadings
the more important the features are in a given component. The signs of the loadings indicates the
sign of their correlation. Features having loading values of the same sign are positively correlated,
and those having opposite signs are negatively correlated. The loading plot reveals that the first
component is driven by the features in most wavelet decomposition levels, and all of them have
loading values of the same sign (i.e., they vary all together in the same direction). This component
seems to explain variations in density and/or the total volume of voids (i.e., defect severity) across
the X-ray images. A denser region is characterized by higher CT numbers, and hence by higher grey
levels in the image. This typically leads to higher energy values as calculated from the wavelet texture
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analysis. Since corridors 3–4 (and 5 to some extent) were known to be denser, it was expected that
these corridors would fall in the positive t1 region (see Figure 5) because the energies at all scales and
directions would be higher. On the contrary, corridors 1–2 and 6 typically contained more defects
(cracks and pores), and therefore are were less dense, with lower CT numbers, grey level intensities
and energies. Thus, it was expected that these would fall in the negative t1 region of the score plot.
This clustering pattern along t1 is indeed observed in Figure 5.
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The second component, however, was driven by a contrast between the energies at scales 1–2 vs.
3–4, since these two groups have loading values of opposite signs. This component seemed to capture
textural variation that corresponded to defects size. Corridors containing larger defects (e.g., cracks)
should be characterized by higher energies at lower frequencies (scales 3–4) and lower energy at higher
frequencies (scales 1–2) since the lower frequency bands are associated with larger objects or patterns.
Since corridors 1–2 typically contained more cracks, they fell in the positive t2 region (higher energies at
scales 3–4 and lower at scales 1–2). The situation was the opposite with corridor 6 typically containing
pores (clusters in negative t2 region). Hence, the second PCA component seemed to discriminate the
types of defects in the anode samples (i.e., pores vs. cracks).

To conclude this section, the textural features extracted from the X-ray images appeared to capture
relevant information about the type of the defects present in the anode slices and their severity. Thus,
they can be used to perform supervised clustering of the AU signals collected from the corridors, and
allow for a quantitative assessment of the sensitivity of AU signal features to anode defects.

5.2. Regression of X-ray Image Textural Features on Acousto-Ultrasonic Features

Five PLS components were found to be statistically significant by a standard cross-validation
procedure [30], and together explained about 40% of the variance of the image features (Y data).
The goal here was to use the Y data to perform a kind of supervised clustering of the AU signals
based on defects found in the X-ray images, and not to predict the image features (i.e., energies) with
high accuracy. The first two PLS components were found to be sufficient to discriminate the samples
based on their acousto-ultrasonic features, and therefore, only these components will be discussed in
this section.

The latent variable score space for the first two components of the PLS model is displayed in
Figure 7. Each marker in the plot corresponds to the acousto-ultrasonic response of one corridor,
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which are identified as described in the previous section. The clustering pattern in the t1–t2 score
space reveals that corridors 1–2, 3–5 and 6 of any slice cluster in three groups (black, orange and blue
markers, respectively). At this point, it is important to note that corridor #1 was located at the center of
the anode, and corridor #6 at the outer surface.

The first component (t1) in Figure 7 seemed to capture the types of defects in the materials,
since the corridors where most of the cracks were found (1–2) were located in the negative t1 region.
Those characterized by a high concentration of pores (corridor 6) are located in the positive t1 region,
and corridors 3–5 containing a mixture of both fall in between the two. The w1

*-c1–w2
*-c2 loadings

bi-plot presented in Figure 8 confirms this interpretation. The signs of X-loadings and Y-loadings (w*’s
and c’s or black and red markers in Figure 8) indicate the sign of the correlation between pairs of
features whereas their absolute values is proportional to their importance in a given component. Note
that comparing the black or the red loading values allows interpretation of the correlation between
the acoustic or the image textural features, whereas comparing the black against the red loadings
provides information about the cross-correlation between the acoustic and the textural features, and
the relationship between both the X and Y datasets. Clearly, the first PLS component captured a similar
contrast in the energies at scales 3–4 vs. 1–2 as the second PCA component discussed in the previous
section. The variations in the acoustic features (black markers in Figure 8) were also consistent with
those in the X-ray image textural features (red markers in Figure 8). When the materials mainly
contain cracks, especially when oriented perpendicular to the wave propagation direction, arrival
times should be longer, the signals more attenuated (lower MAX and RMS features), and the energies
in lower frequency range (scales 3–4) should be higher compared to scales 1–2. Hence, those corridors
containing more cracks should fall into the negative t1 region, and those having a higher concentration
of pores (and less cracks) should fall in the positive region. This was consistent with the clustering
pattern shown in Figure 7. The X-ray images of selected corridors were also shown in Figure 9. Slices
5_1 and 7_1 both had similar t2 values but extremely different t1 scores compared to corridors 5_6 and
7_6. Their X-ray images clearly showed that the former two corridors contained several transversal
cracks and some pores, whereas the latter two mostly contains pores, which were also larger.
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Figure 7. Score plot of the Partial Least Squares (PLS) model (t1–t2) between acoustic attenuation and
X-ray image textural features. Observations are identified by the slice number (red numbers in Figure 1)
followed by the corridor number (1–6). Different colors are used to distinguish the different corridors
as shown in the anode slice image included in the figure.

The second component did not segregate the corridors as much as t1 did, as most of them spanned
the t2 range. Since it was orthogonal to the first component, the second component captured a different
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source of covariation between the acoustic and textural features. The loading plot (Figure 8) shows that
all features had the same sign in the t2 component (all positive), although the energies in scales 1–2 and
most of the MAX and RMS features (except RMSD4) contributed less in this component. The same sign
for these loadings means that they all varied together in the same direction. This was consistent with
the first component of the PCA model presented in the previous section, which was associated with
variations in material density and/or total volume of voids. Indeed, corridors containing more and
larger voids (cracks and/or pores) would lead to longer arrival times, and more energy at scales 3–4
(lower frequencies). Hence, they would project in the positive t2 range compared with corridors
containing fewer and smaller voids, which would fall in the negative t2 area. The X-ray images for
corridors 3_3 and 15_3 had similar t1 values, but very different t2 scores compared with corridors 5_5
and 24_5. The images in Figure 9 clearly showed that the former two projecting in the high t2 region
contain more and larger voids (or defects), compared with the latter two falling in the lower t2 region.
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6. Conclusions

Baked carbon anodes are used in the Hall-Héroult aluminum reduction process to distribute the
electrical current throughout the cells, and to provide the source of carbon required by the electrolytic
reaction. However, poor quality anodes containing structural defects such as cracks, and a high
concentration of pores, can deteriorate the reduction cell performance by reducing energy efficiency
and increasing carbon consumption. The current quality control scheme based on collecting core
samples from a small proportion of the anode production and characterizing them in the laboratory
is not adequate for detecting pores and cracks in a rapid and non-destructive fashion. Research
efforts are currently being focused on developing new sensors for inspecting individual anode blocks
non-intrusively, at a speed compatible with industrial requirements.

Past work have demonstrated the potential of acousto-ultrasonic techniques (AU) to detect pores
and cracks in anode samples by using sequential excitation at different frequencies [6]. However, this
approach require long cycle times to collect all measurements. The present work aims at reducing cycle
times by 7 to 1 using a single frequency-modulated excitation, and showing that such an approach leads
to similar inspection results as those obtained with sequential excitation. A quantitative validation
of the inspection results is also proposed using X-ray images collected from each sample used in
this study.

A full size baked carbon anode was cut into 26 slices of equal thickness. A total of eight
slices distributed along the anode length and showing different internal structures were selected
for this work. After collecting X-ray images of the samples using a CT-Scan, they were excited by a
frequency-modulated wave at 6 different points along the slice width. The AU signal received after the
wave propagated through the material at each location (so-called corridors) was recorded. The Discrete
Wavelet Transform (DTW) was used to decompose the AU signals into different frequency bands,
and to perform texture analysis of the X-ray images. A number of scalar features were subsequently
calculated from the wavelet sub-signals and images. Multivariate latent variable methods, such as
PCA and PLS regression, were then used to cluster the corridors in each slice according to their internal
structure. A regression model was also built between the AU signals and the X-ray images in order to
relate variations in the acoustic signals with the presence of defects in the material.

The results showed that the textural features extracted from the X-ray images efficiently detected
the voids in the anode samples, and allowed the discrimination of pores from cracks, and captured the
severity of those defects. The PLS regression model built between the X-ray image textural and the AU
signal features for each corridor clearly showed that variations in the acoustic response of the samples
also allowed the detection and discrimination of both types of defects, and assessment of their severity.
Furthermore, the inspection results obtained with frequency-modulated excitation led to the same
conclusions as those obtained with sequential excitation [6], with a significantly shorter cycle time.

The proposed non-destructive acousto-ultrasonic inspection approach appeared to be very
promising for a real-time quality control of industrial scale pre-baked carbon anodes. Future work will
investigate the application of the inspection scheme to full size anodes collected from an industrial
manufacturing plant. A threshold will then need to be established for AU signals, and will serve
as a statistical control limit to determine whether an anode poses a higher risk of deteriorating the
reduction cell performance.
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