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Abstract: The processing map of Ni47Ti44Nb9 (at %) shape memory alloy (SMA), which possesses B2
austenite phases and β-Nb phases at room temperature, is established in order to optimize the hot
working parameters. Based on true stress-strain curves of NiTiNb SMA during uniaxial compression
deformation at the temperatures ranging from 700 to 1000 ◦C and at the strain rates ranging from
0.0005 to 0.5 s−1, according to dynamic material model (DMM) principle, the processing map of
NiTiNb SMA is obtained on the basis of power dissipation map and instability map. The instability
region of NiTiNb SMA increases with increasing the true strain and it mainly focuses on the region
with high strain rate. The workability of NiTiNb SMA becomes worse and worse with increasing
plastic strain, as well as decreasing deformation temperature. There exist two stability zones which
are suitable for hot working of NiTiNb SMA. In one stability region, the deformation temperature
ranges from 750 to 840 ◦C and the strain rate ranges from 0.0003 to 0.001 s−1. In the other stability
region, the deformation temperature ranges from 930 to 1000 ◦C and the strain rate ranges from
0.016 to 0.1 s−1. The severe microstructure defects, such as coarsening grains, band microstructure,
and intercrystalline overfiring appear in the microstructures of NiTiNb SMA which is subjected to
plastic deformation in the instability zone.

Keywords: shape memory alloy; NiTiNb alloy; plastic deformation; processing map

1. Introduction

Binary NiTi shape memory alloy (SMA) has been extensively used in the engineering field due
to its unique phenomena, which include a shape memory effect and superelasticity [1–3]. It is of
great importance to add the third element to the binary NiTi SMA so as to broaden the engineering
application [4–6]. As a typical example, the addition of Nb element to the binary NiTi SMA contributes
to enhancing phase transformation temperature hysteresis [7,8]. In particular, when the soft β-Nb
phase in the NiTiNb SMA suffers from plastic deformation, the relaxation of elastic strain in the
martensite interface contributes to lowering the driving force of reverse martensite transformation and,
hence, facilitating the stability of martensite [9]. Therefore, NiTiNb SMA has been a perfect candidate
for pipe coupling because the large phase transformation temperature hysteresis plays a predominant
role in guaranteeing the reliability of pipe coupling in engineering applications [10–12].

It is well known that hot working, especially high-temperature plastic deformation, is an
indispensable means to manufacture the product of NiTi-based SMAs [13–15]. Furthermore,
it is of great importance in improving the microstructures and the properties of NiTi-based SMAs,
as well [16–18]. Therefore, it is very necessary to explore an effective tool for optimizing the process

Metals 2017, 7, 328; doi:10.3390/met7090328 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://dx.doi.org/10.3390/met7090328
http://www.mdpi.com/journal/metals


Metals 2017, 7, 328 2 of 11

parameters, which are suitable for hot working of NiTi-based SMAs. As we know, the processing
map has been a reliable and effective tool to help optimize the hot working parameters of metal
materials [19–23]. So far, no literature has reported the involved information with respect to
processing maps of NiTiNb SMA. Therefore, in the present study, uniaxial compression deformation of
Ni47Ti44Nb9 (at %) SMA is carried out at the temperatures ranging from 600 to 1000 ◦C and at strain
rates ranging from 0.0005 to 0.5 s−1. The processing map of NiTiNb SMA is established according to
dynamic material model (DMM) theory [24].

2. Materials and Methods

The commercially as-rolled Ni47Ti44Nb9 (at %) SMA bar, which possesses the diameter of 20 mm,
was obtained from Xi’an Saite Metal Materials Development Co., Ltd. (Xi’an, China). The phase
composition of as-rolled NiTiNb SMA was characterized by X-ray diffraction (XRD) testing using a
Philips X’Pert Pro diffractometer (Royal Dutch Philips Electronics Ltd., Amsterdam, The Netherlands)
with CuKα radiation at ambient temperature. The involved sample was scanned on the basis of 2θ
ranging from 20◦ to 90◦ by means of continuous scanning based on a tube voltage of 40 kV and tube
current of 40 mA. Figure 1 shows the XRD diagram of the as-rolled NiTiNb SMA, where NiTiNb SMA
consists of B2 austenite and β-Nb phases.
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of 60% at temperatures ranging from 700 to 1000 °C and at strain rates ranging from 0.0005 to 0.5 s−1.  

Optical microscopy (OM) observation was used to investigate the microstructures of as-rolled 
and compressed NiTiNb SMA samples by means of an OLYMPUS 311 (Olympus Corporation, Tokyo, 
Japan) optical microscope. The sample for OM observation was etched in a solution of HF:HNO3:H2O 
= 1:3:10. The microstructure of as-rolled NiTiNb SMA is shown in Figure 2. It can be observed that 
the as-rolled NiTiNb SMA exhibits a homogeneous worm-like microstructure. 

Figure 1. XRD map of as-rolled NiTiNb SMA.

Sixteen NiTiNb SMA samples, which possess diameters of 6 mm and heights of 9 mm, were
removed from the as-rolled NiTiNb SMA bar using electro-discharge machining (EDM, DK7725,
Jiangsu Dongqing CNC Machine Tool Co., Ltd., Taizhou, China). The NiTiNb SMA samples
were placed between the top anvil and the bottom one of an INSTRON-5500R equipment (Instron
Corporation, Norwood, MA, USA). Subsequently, they were compressed by the deformation degree of
60% at temperatures ranging from 700 to 1000 ◦C and at strain rates ranging from 0.0005 to 0.5 s−1.

Optical microscopy (OM) observation was used to investigate the microstructures of as-rolled and
compressed NiTiNb SMA samples by means of an OLYMPUS 311 (Olympus Corporation, Tokyo, Japan)
optical microscope. The sample for OM observation was etched in a solution of HF:HNO3:H2O = 1:3:10.
The microstructure of as-rolled NiTiNb SMA is shown in Figure 2. It can be observed that the as-rolled
NiTiNb SMA exhibits a homogeneous worm-like microstructure.
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3. Principle for the Processing Map

A processing map of NiTiNb SMA is established on the basis of dynamic material model (DMM).
According to DMM, when NiTiNb SMA is subjected to plastic deformation at high temperatures,
the dissipation power P is composed of two parts. One part deals with the power (G) consumed due
to plastic deformation and the other part refers to the energy (J) dissipated due to microstructural
evolution. Therefore, the dissipation power P is expressed by [25]:

P = σ· .
ε = G + J =

∫ .
ε

0
σd

.
ε +

∫ σ

0

.
εdσ (1)

where G is defined as the dissipated content and J refers to the dissipated co-content.
When strain ε and temperature T are unchangeable, stress σ is regarded as a function of the strain

rate
.
ε, which is described as a power law relationship [26–28], namely:

σ = K
.
ε

m (2)

where K refers to material coefficient and m stands for strain rate sensitivity. The value of m is expressed as:

m =
dJ
dG

=

.
εdσ

σd
.
ε
=

.
εσd ln σ

σ
.
εd ln

.
ε
≈ ∆lgσ

∆lg
.
ε

(3)

When strain ε and temperature T are constant, the dissipated co-content J is represented by:
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In general, the m value shows a linear dependence on the temperature T and the strain rate
.
ε.

The metal material is considered to be an ideal linear dissipation state if the value of m is taken as 1.
Then, the dissipated co-content J reaches the maximum value Jmax [29], namely:
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σ

.
ε

2
(5)

Consequently, according to Equations (4) and (5), the power dissipation efficiency η is expressed
as follows:

η =
J
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m + 1
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where η depends on temperature T, strain ε and strain rate
.
ε. In the case of a constant strain, the power

dissipation map is established by drawing a contour map of η versus the strain rate
.
ε and temperature T.

The power dissipation map is indicative of the microstructural evolution law resulting from the
dissipated energy of the material. In general, the power dissipation map is of great importance in terms
of determining the workability of metal material. However, the workability of metal material is not
completely dependent on the power dissipation map since there is a larger η value in a region where
the workability of metal material is very poor. Therefore, it is necessary to use a judging criterion
for evaluating the workability of metal material. According to the maximum entropy principle,
the unstable flow occurs during plastic deformation of metal material when the following equation is
satisfied [30], namely:

dD
d

.
ε
<

D
.
ε

(7)

where D is the power dissipation function, which depends on the specific temperature. If the total
power is dissipated, D is identical to P. Based on DMM, if the partition in Equation (1) leads to the
different instability parameters, D is identical to J. As a consequence, Equation (7) is expressed as:
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By combining Equation (9) with Equation (8), the following equation is acquired, namely:

dlgJ
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Then, the substitution of Equation (4) into Equation (10) results in:
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As a result, the criterion judging the unstable flow of metal material during plastic deformation is
expressed as follows [31]:
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where the instability parameter ξ
( .
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)

depends on m and
.
ε. In addition, m relies on T and

.
ε. Accordingly,

ξ
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is dependent upon T and
.
ε. As for a given strain, the instability map is constructed by plotting

a contour map of ξ
( .
ε
)

versus
.
ε and T. In general, ξ

( .
ε
)

is negative in the zone where metal material
presents an unstable flow during plastic deformation. Therefore, the instability region is identified by
means of the instability map. Finally, the processing map is established on the basis of the instability
map and the power dissipation map.

4. Results and Discussion

Figure 3 indicates the true stress-strain curves of NiTiNb SMA undergoing uniaxial compression
at the temperatures ranging from 700–1000 ◦C and at the strain rates ranging from 0.0005–0.5 s−1. It is
evident that flow stress is dependent upon the strain rate and temperature. In the case of a constant
strain rate, the flow stress decreases with increasing temperature. As for a constant temperature,
the flow stress increases with increasing strain rate. According to the various temperatures and strain
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rates, the values of flow stresses, which correspond to the true strains of 0.3, 0.6, and 0.9, respectively,
are extracted from the true stress-strain data, as shown in Table 1.
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.
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.
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ε = 0.05 s−1; and (d)

.
ε = 0.5 s−1.

Table 1. Flow stresses of NiTiNb SMA (MPa).

ε .
ε/s−1 T/◦C

700 800 900 1000

0.3

0.0005 137.8010 80.4978 53.4650 39.7838
0.005 199.2236 128.6067 79.6107 53.3478
0.05 278.4276 182.6738 124.5443 87.1276
0.5 362.9075 254.1071 185.9302 139.1716

0.6

0.0005 138.6029 78.6816 52.6534 40.1727
0.005 199.7022 124.5523 78.5104 53.1897
0.05 272.5415 179.6717 121.7723 85.0241
0.5 328.3940 236.2028 176.2441 130.1123

0.9

0.0005 150.7980 85.8143 59.2176 48.7737
0.005 214.5237 131.7976 85.6582 58.8096
0.05 276.0619 187.4464 129.4072 91.1164
0.5 325.8891 231.8062 177.1036 130.8063

According to the experimental data shown in Table 1, the curve of lgσ versus lg
.
ε can be obtained

by means of the linear fitting method, as shown in Figure 4. It is evident that there is an approximate
linear relationship between lgσ and lg

.
ε. The approximate linear relationship indicates that NiTiNb

SMA satisfies the conditions of DMM during plastic deformation.
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Figure 4. Linear relationship between log σ and log
.
ε based on various strains: (a) ε = 0.3; (b) ε = 0.6;

and (c) ε = 0.9.

By performing cubic-spline fitting based on the aforementioned data, the fitted curves of lgσ

versus lg
.
ε are acquired. Then, according to Equation (3), a series of m values are obtained by identifying

the slopes of these fitted curves. Consequently, according to Equation (6), the power dissipation
efficiency η is calculated at various plastic strains. Furthermore, the power dissipation maps of NiTiNb
SMA based on various strains are obtained, as shown in Figure 5. On the one hand, the power
dissipation maps are able to reflect relative variation rate of internal entropy in the metal material
subjected to hot plastic deformation. On the other hand, the power dissipation maps can be used for
roughly estimating the microstructure change of metal material undergoing plastic deformation at
the various temperatures and strain rates. In general, the higher η values mean that the deformed
microstructures probably possess better performance. It is noted that the value of η approximately
increases with increasing deformation temperature, whereas it decreases with increasing strain rate.
It can be found that, in the whole temperature range, there exist two regions where η possesses a peak
value. One region is involved in the temperature range of 750–840 ◦C, as well as the strain rate range
of 0.0003~0.001 s−1. The other region deals with the temperature range of 930–1000 ◦C as well as the
strain rate range of 0.016–0.1 s−1. In addition, the maximum value of η decreases with increasing true
strain. The phenomenon indicates that the hot workability of NiTiNb SMA becomes worse and worse
along with the increase in plastic strain.
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The values of ξ
( .
ε
)

under the various deformation conditions can be calculated by combining
Equations (3) and (12). As a consequence, the instability maps are established, as shown in Figure 6.
In general, the region where ξ

( .
ε
)

possesses negative values in the instability maps is defined as the
instability region where metal material exhibits an unstable flow during plastic deformation. In a
similar manner, the region where ξ

( .
ε
)

possesses positive values in the instability maps is defined
as the stability region where metal material shows a stable flow during plastic deformation. It is
observed from Figure 6 that the unstable flow mainly appears in the zone possessing high strain rate.
Furthermore, the instability region increases with increasing true strain.
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The processing map is established on the basis of the power dissipation map and the instability
map, as illustrated in Figure 7. In Figure 7, the instability zone is designated in blue, but the stability
zone is represented in white. It can be observed that the instability region of NiTiNb SMA increases
with increasing true strain. The phenomenon further demonstrates that the workability of NiTiNb
SMA becomes worse and worse along with increasing deformation extent. In addition, the instability
zone of NiTiNb SMA mainly focuses on the region with high strain rate. In particular, as for the true
strain of 0.9, the instability zone of NiTiNb SMA is mainly concentrated on the region with high strain
rate. Furthermore, the strain rate range, which represents the stability zone, decreases with decreasing
deformation temperature. This indicates that the lower deformation temperature leads to the poorer
workability of NiTiNb SMA. However, the stability zone is not completely suitable for hot working
of NiTiNb SMA, as well. In general, the high value of η in the stable working zone indicates that the
larger fraction of energy is dissipated during microstructural evolution of NiTiNb SMA subjected to
plastic deformation at high temperatures, such as dynamic recrystallization, dynamic recovery and
phase transformation. Therefore, the higher η value is more suitable for hot working. In addition,
it can be found from Figure 7c that the higher η value, which represents the stability zone, is located in
two regions. One region means that NiTiNb SMA experiences hot working in the temperature range
of 750–840 ◦C, as well as at the strain rate range of 0.0003–0.001 s−1. The other region indicates that
NiTiNb SMA is subjected to hot working in the temperature range of 930–1000 ◦C, as well as at the
strain rate range of 0.016–0.1 s−1. As a consequence, the aforementioned high η value in the stability
zone is considered to represent the optimum hot working zone of NiTiNb SMA. In addition, there
exist some zones, which possess very low η value in the stability region. The phenomenon indicates
that when NiTiNb SMA is subjected to hot working in the regions with very low η values, although
the severe working defects should not be formed, the inhomogeneous microstructure defects can be
induced. Therefore, it is more appropriate for NiTiNb SMA not to be subjected to hot working in the
stability regions with very low η value. In particular, when NiTiNb SMA is subjected to hot working
in the instability regions, the severe microstructure defects are induced, as shown in Figure 8. It is
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obviously observed from Figure 8 that coarsening grains, band microstructure, and intercrystalline
overfiring appear in the microstructures of the deformed NiTiNb SMA. These microstructure defects
have an adverse impact on the properties of NiTiNb SMA.
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5. Conclusions

Based on true stress-strain curves of NiTiNb SMA during uniaxial compression deformation at
temperatures ranging from 700 to 1000 ◦C, and at strain rates ranging from 0.0005 to 0.5 s−1, according
to the values of flow stresses corresponding to true strains of 0.3, 0.6, and 0.9, a processing map of
NiTiNb SMA is established based on the dynamic material model (DMM) principle. As a consequence,
the following conclusions are drawn:
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(1) Flow stress of NiTiNb SMA is dependent upon the strain rate and temperature. In the case of a
constant strain rate, flow stress decreases with increasing temperature. In the case of a constant
temperature, flow stress increases with the increasing strain rate. The instability region of NiTiNb
SMA increases with the increasing true strain and it mainly focuses on the region with high strain
rate. The workability of NiTiNb SMA becomes worse and worse with increasing plastic strain,
as well as decreasing the deformation temperature.

(2) There exist two stability zones which are suitable for hot working of NiTiNb SMA. One is the
region where NiTiNb SMA experiences hot working in the temperature range of 750–840 ◦C,
as well as at the strain rate range of 0.0003–0.001 s−1. The other is the region where NiTiNb SMA
is subjected to hot working in the temperature range of 930–1000 ◦C, as well as at the strain rate
range of 0.016–0.1 s−1. The processing map lays the foundation for optimizing the hot working
parameters of NiTiNb SMA.
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