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Abstract: Microstructural effects become important at regions of stress concentrators such as notches,
cracks and contact surfaces. A multiscale model is presented that efficiently captures microstructural
details at such critical regions. The approach is based on a multiresolution mesh that includes an
explicit microstructure representation at critical regions where stresses are localized. At regions farther
away from the stress concentration, a reduced order model that statistically captures the effect of the
microstructure is employed. The statistical model is based on a finite element representation of the
orientation distribution function (ODF). As an illustrative example, we have applied the multiscaling
method to compute the stress intensity factor K I around the crack tip in a wedge-opening load
specimen. The approach is verified with an analytical solution within linear elasticity approximation
and is then extended to allow modeling of microstructural effects on crack tip plasticity.
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1. Introduction

Efficient micro-scale modeling tools are needed to compute microstructure-dependent properties
of advanced structural alloys used in aerospace, naval and automotive applications [1]. Microstructural
effects become an important consideration in regions of stress concentrations such as notches, cracks
and contact surfaces. While the crystal plasticity finite element (CPFE) method has emerged as an
effective tool for simulating the mechanical response of aggregates of a few hundred metallic crystals,
the simulation of ‘macro-scale’ components that contain millions of grains is a challenging task
even when using current state-of-the-art supercomputers. Multiscale methods developed to address
this problem can be broadly classified into two categories: concurrent and hierarchical methods.
In hierarchical methods, the objective is to obtain material properties of a coarse-scale model by
simulating a fine-scale model that contains features smaller than those allowed by the coarse-scale
mesh resolution. A popular example is the computational homogenization approach [2,3] where
volume averaging schemes are employed to extract macroscale properties.

In concurrent methods, both fine- and coarse-scale problems are solved together in a single
domain using multi-resolution meshes. Most popular among these methods are quasicontinuum
methods, where the resolution of meshes from atomistic to continuum scales has been considered to
study crack propagation [4]. In QC methods, the treatment of interfaces between fine- and coarse-scale
regions becomes problematic when multi-physical domains (e.g., crystal plasticity at the fine scale and
continuum plasticity at the coarse scale) are considered. For example, Dunne et al. (2007) [5] employed
a combined continuum crystal plasticity finite element approach for modeling a three-point bend test.
One of the potential difficulties identified in the model was the inconsistency of yield stress at the
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interface between the domains. To minimize the effect, the choice of the critical resolved shear stress
in the crystal plasticity model was made such that polycrystal yielding occurred at a value close to
the continuum yield stress.

In this paper, the interface problem is solved through the use of a single physical model at both
the fine and coarse scales. This is achieved (i) by explicitly resolving single-crystal deformation at the
fine scale (crack tip) using a crystal plasticity model and (ii) by employing a hierarchical multiscale
model at the coarse scale (far region), where polycrystal aggregates are homogenized using the
same crystal plasticity model. While the method combines the best aspects of both hierarchical and
concurrent methods, it is still computationally expensive to model polycrystalline aggregates at every
coarse-scale material point.

An alternate class of schemes has been developed in recent years that allows the representation of
microstructure using probabilistic descriptors. The simplest of these descriptors is the one-point probability
measure, the orientation distribution function (A(g)), which quantifies the volume fractions of crystals in
the orientation space (g). Under an applied deformation, texturing is simulated by numerically evolving
the orientation distribution function (ODF) (rather than the microstructure itself) using conservation laws
[6]. A variety of ODFs can be represented over a finite element (FE) mesh of the orientation space that has
significantly lower degrees of freedom when compared to a microstructure FE mesh [7–9]. For example,
individual crystals close to the crack tip can be modeled using an ODF that is a delta function in the
orientation space. Farther from the notch tip, smoothly varying ODFs can be modeled over an uniform
grid. The overall multi-scale model is shown in Figure 1. Here, the transition from the microscale to
the macroscale is managed through adaptive meshing methods where element lengths can vary from
micrometers at the critical regions to as large as several centimeters at the scale of the macroscale component.
As an illustrative example, we have applied the multiscaling method to a well-studied problem in fracture
mechanics: the computation of the stress intensity factor KI around the crack tip in a wedge-opening load
specimen [10]. The multiscale model is subsequently used to analyze the effect of the microstructure at
the crack tip when crystal plasticity effects are included. The paper is arranged as follows: In Section 2,
the statistical representation of the microstructure is briefly explained, followed by the single-crystal
constitutive model. In Section 3, the macro-scale finite element solution procedure is explained. In Section 4,
an illustrative example of the approach is provided, followed by conclusions in Section 5.
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Figure 1. The configuration of the multi-scale model. The model is divided into two scales.
The microscale is the critical areas containing crystals with orientations. The macroscale element
has an orientation distribution function (ODF) in each integration point representing hundreds to
thousands of crystals.
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2. Representation of the ODF

The orientation distribution function (ODF, A(g)) gives the probability density of finding an
orientation g in the microstructure. The ODF satisfies the following conservation equations at all times
during deformation: ∫

A(g)dg = 1 (with A(g) ≥ 0) (1)

where dg is a differential volume element (the invariant measure) of the orientation space. In addition
to the above constraints, the orientation space corresponding to all possible g’s must satisfy the
crystallographic symmetries of the chosen system (FCC, HCP, etc.). The complete orientation space of
a polycrystal can be reduced to a smaller subset, called the fundamental region, as a consequence of
crystal symmetries. Within the fundamental region, each crystal orientation is represented uniquely
by the coordinate g, the parametrization for the rotation (e.g., Euler angles, Rodrigues vector etc.).
The ODF (A(g)) can be represented as a probability density function over the fundamental region of
orientation space. In this work, a finite element (FE) mesh is used to model the fundamental region,
and the ODF is defined at the nodal points of this mesh [8,9]. The probability values between nodal
points are obtained as a result of interpolation using finite element shape functions.

2.1. Probability Update in Finite Element Spaces

The probabilities are evolved from time t = 0 from an initial ODF that satisfies the conservation
equations in Equation (1) using a Lagrangian finite element approach [6,7]. The initial orientation go
of a crystal reorients during deformation and maps to a new orientation gt at time t. Simultaneously,
the finite element mesh of fundamental region Mg deforms with nodes located at go moving to new
locations gt. We assume that the mapping from go to gt is invertible.

The ODF A(gt) represents the probability density of crystals with orientation gt at time t.
The evolution of the ODF is given by the conservation Equation (1) as:∫

A(go, t = 0)dgo =
∫
A(gt)dgt = 1 (2)

where dgo represents the volume element in the undeformed (initial) ODF mesh (Mgo ), which becomes
volume element dgt at time t. A Jacobian JF(go, t) = det(G) gives the ratio of elemental volumes

such that dgt = JF(go, t)dgo, where G is the reorientation gradient given as G(go, t) = ∂gt
∂go

. Using the
Jacobian, a map of the current mesh (at time t) to the reference mesh (at t = 0) can be made:∫

(A(go, t = 0)− Â(go, t)JF(go, t))dgo = 0 (3)

The quantity written as Â(go, t) is the volume density A(gt) plotted over the corresponding
orientation (go) in the initial mesh. Thus, Â(go, t) gives the Lagrangian representation of the current
ODF in the initial mesh Mgo . If the integrand is continuous, a localized relationship of the following
form can be used to update the ODF at any time t:

Â(go, t)JF(go, t) = A(go, t = 0) (4)

2.2. ODF for Planar Polycrystals

For simplicity, consider planar polycrystals characterized by a two-dimensional rotation R that
relates the local crystal lattice frame to the reference sample frame. A parametrization of the associated
rotation group is,

R = Icos(g)− Esin(g) (5)
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where g is the angle between the crystal and sample axes, E is the two-dimensional alternator
(E11 = E22 = 0, E12 = −E21 = 1) and I is the identity tensor. A general planar crystal with symmetry
under rotations through π is considered here. Under the symmetry, crystal orientations can be
described uniquely by parameters drawn from a simply connected fundamental region [a, a + π).
Out of convenience, we will restrict the choice of fundamental regions to the interval closest to the
origin (−π/2, π/2). Due to symmetry, the orientation π/2 is exactly the same as orientation −π/2.
The symmetry constraint on the ODF is enforced by using periodic boundary conditions in the finite
element mesh.

Figure 2 gives an idea of how the approach works for a one-dimensional fundamental region that is
represented using two-noded finite elements with linear interpolation. Here, the Jacobian is simply the
ratio of element lengths, i.e., current length divided by the initial length. If the element length decreases
over time, the probability density has to increase based on Equation (4) to maintain normalization of
the ODF. Note that the integrand in Equation (3) needs to be continuous for the localization relationship
to be valid. Thus, it is implied that JF(go, t) needs to be continuous. For computing JF(go, t),

a reorientation velocity v =
∂gt
∂t is calculated from the elasto-plastic constitutive model (described

next). At time t during deformation, the new positions (gt) of nodes in the fundamental region mesh
are computed using the reorientation velocities v from the constitutive model. The expression for v is
obtained by taking a derivative of relation Equation (5):

v =
1
2

E ·Ω (6)

where Ω is the spin tensor defined as Ω = ṘeReT . Here, Re is evaluated through the polar
decomposition of the elastic part of deformation gradient (Fe = ReUe) as computed from the

constitutive model (described in Section 2.3). The reorientation velocity v =
∂gt
∂t is computed at each

nodal point in the mesh and the change in orientation ∆g
′
= g

′
t − g

′
o is then calculated and stored

at the nodal points in the fundamental region. The Jacobian (JF(go, t)) is then computed using finite
element shape functions.

The average stress for the microstructure is obtained by averaging the single crystal stresses σ

over the ODF as follows:

< σ >=
∫

σ(gt)A(gt)dgt =
∫

σ̂(go, t)A(go, t = 0)dgo (7)

where σ̂(go, t) is the stress (σ(gt) = σ(go + ∆g)) plotted over the corresponding orientation (go) in
the initial ODF mesh.
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Figure 2. Probability update scheme in finite element (FE) space: During deformation, the nodal
points (g) of the FE mesh are moved to reflect the reorientation (∆g) of crystals. The new ODF is
obtained using Equation (4), which ensures that the normalization constraint (Equation (2)) is met in
the reoriented mesh.

2.3. Constitutive Modeling

We employ the classical single-crystal plasticity theory [11] based on the notion that plastic flow
takes place through slip on prescribed slip systems. For a material with α = 1, . . . , N slip systems
defined by ortho-normal vector pairs (mα

0 , nα
0) denoting the slip direction and slip plane normal

respectively at time t = 0, the constitutive equations relate the following basic fields (all quantities
expressed in crystal lattice coordinate frame): the deformation gradient F defined with respect to the
initial undeformed crystal, which can be decomposed into elastic and plastic parts as F = Fe F p (with
det (F p) = 1), the Cauchy stress σ and the slip resistances sα > 0. In the constitutive equations to be
defined below, the Green elastic strain measure Ee = 1

2

(
FeT Fe − I

)
is defined on the intermediate

configuration (plastically deformed, unstressed configuration) utilized. The conjugate stress measure
is then defined as T = detFe(Fe)−1σ(Fe)−T .

The constitutive relation, for stress, is given by T = Le [Ee] where Le is the fourth-order
anisotropic elasticity tensor. It is assumed that deformation takes place through dislocation glide,
and the evolution of the plastic velocity gradient is given by:

Lp = Ḟ p(F p)−1 = ∑
α

γ̇αSα
0sign(τα) (8)

where Sα
0 = mα

0 ⊗ nα
0 is the Schmid tensor and γ̇α is the plastic shearing rate on the α-th slip system.

The resolved stress on the α-th slip system is given by τα = T · Sα
0 . The evolution of slip system

resistance is given by the following expression:

ṡα(t) = ∑
β

hαβγ̇β(t), with sα(0) = τα
0 (9)

where, hαβ = hβ
o (q + (1− q)δαβ)(1− sβ(t)

sβ
s

)a (no sum on β) (10)

Here, the slip system hardening term (hαβ) includes latent hardening through parameter q. In this
term, hβ

o is the hardening coefficient of slip system β, and sβ
s is the saturation resistance of slip system β.
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The resolved shear stress τα = T · Sα
0 is taken to attain a critical value sα on the systems where slip

occurs with the plastic shearing rate on the α-th slip system γ̇α > 0. Further, the resolved shear stress
does not exceed sα on the inactive systems with γ̇α = 0. A potentially active set PA of slip systems
can be identified initially based on the trial resolved stress as the systems with |τα

tr| − sα > 0, where
τα

tr = Le [Ee
tr] · Sα

0 with Ee
tr =

1
2
(
(Fe

tr)
T Fe

tr − I
)

and Fe
tr = FF p−1

n , where F p
n is the plastic deformation

gradient at the previous time step.
During plastic flow, the active systems are assumed to follow the consistency condition: |τα| = sα.

The increment in shearing rates ∆γβ at each time step is obtained by solving the following equation:

|τα| = sα = |τα
tr| −

1
2 ∑

β

sign(τα
tr)sign(τβ

tr)∆γβLe
[

Bβ
]
· Sα

0 (11)

where, α, β ∈ PA, Bβ = (Sβ
0 )

T(Fe
tr)

T Fe
tr + (Fe

tr)
T Fe

trSβ
0 .

A system of equations is obtained of the following form,

∑
β∈PA

Aαβ∆γβ = bα (12)

where,

Aαβ = hαβ +
1
2

sign(τα
tr)sign(τβ

tr)L
e
[

Bβ
]
· Sα

0

bα = |τα
tr| − sα

Following this step, the plastic and elastic parts of the deformation gradient are updated for each
orientation. The slip resistances are also updated at the end of the time step.

3. Finite Element Algorithm

The equilibrium equation is expressed in the Lagrangian framework as:

∇0 · 〈P〉+ f = 0 (13)

where ∇0 is the divergence described in the initial reference configuration (t = 0) and f denotes the
body forces. The polycrystal Piola–Kirchhoff-I stress, 〈P〉, is defined as:

〈P〉 = detF〈σ〉F−T (14)

For any kinematically admissible test function ũ, the weak form of the virtual work equation with
applied surface traction λ can be written as:

G(un+1, ũ) ≡
∫
B0

〈P〉 · ∇0ũdV −
∫

∂B0

λ · ũdA−
∫
B0

f · ũdV = 0 (15)

The Newton–Raphson iterative scheme with a line search procedure is employed to solve the
weak form while using a formulation that uses a combination of triangle and quadrilateral elements:

∂G(un, ũ)
∂un

∆u =
∫
B0

∂〈P〉
∂F

∂F
∂un
· ∇0ũdV∆u = G(un, ũ) (16)

The linearization process of PK-I stress is given by:

δ〈P〉 = detF
(

tr(δFF−1)〈σ〉 − 〈σ〉(δFF−1)T + 〈δσ〉
)

F−T (17)
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δσ can be expressed as:

δσ = δ

(
− 1

detFe FeT(Fe)T
)

= −tr(Fe−1δFe)σ + δFe(Fe)−Tσ + σ(Fe)−1δ(Fe)T +
1

detFe FeδT(Fe)T
(18)

where δFe is obtained as:

δ(Fe) = δF(F p)−1 − Fe
tr ∑

β

sign(τβ
tr)δ(∆γβ)Sβ

0 (19)

Here, δT can be obtained as:

δT = Le [δEe
tr]−

1
2 ∑

β

sign(τβ
tr)δ(∆γβ)Le

[
Bβ
]

−∑
β

sign(τβ
tr)∆γβLe

[
SβT

0 δEe
tr + δEe

trSβ
0

] (20)

where, Bβ = (Sβ
0 )

T(Fe
tr)

T Fe
tr + (Fe

tr)
T Fe

trSβ
0 .

This computation of δT requires the evaluation of δ(∆γβ), obtained by linearization given by:

δ(∆γβ) = (Aαβ)−1(δbα − δAαβ∆γβ) (21)

δbα = sign(τα
tr)Le [δEe

tr] · Sα
0 (22)

δAαβ = sign(τα
tr)sign(τβ

tr)S
α
0 ·Le

[
Sβ

0
T

δEe
tr + δEe

trSβ
0

]
(23)

Using the definition of δEe
tr = sym(FeT

trδFF p−1), the above set of equations yield an implicit form
δ(∆γβ) = mβ · δF for use in Equation (20). Next, δFe is obtained from:

δ(Fe) = δF(F p)−1 − Fe
tr ∑

β

sign(τβ
tr)δ(∆γβ)Sβ

0 (24)

The average stress and tangent modulus at the macro-scale level are obtained by averaging over
the ODF as given in Equation (7). At the micro-scale, the tangent modulus and stress are exactly
computed in the elements within individual crystals.

4. Numerical Results

A specific crystal geometry with two slip systems at orientation −π/6 and +π/6 is
considered [12]. In the 2-D elastic stiffness matrix, c11 = 2 GPa and c12 = c44 = 1 GPa. The calculation
is done under plane stress conditions. The parameters in the hardening law are taken to be as follows:
τα

0 = 10 MPa, hα
o = 10 MPa, sα

s = 200 MPa, q = 1.4 and a = 2.
The single edge notch configuration (also called the wedge-opening load (WOL) specimen) is

depicted in Figure 3. The calculation is only performed using one half of the model for simplicity.
A 5000 N shear force p is applied on the left edge. Specific dimensions are a/w = 0.5 and h/w = 0.6,
as shown in Figure 1. All of the figures are plotted using non-dimensional variables, KI b

√
w

p and r/w.
a is the notch length; w is the width; 2h is the height of the specimen; b is unit thickness; for the plane
stress problem, b = 1 m. The solution leads to a stress singularity at the notch tip. There is a wealth
of literature on the use of special elements to capture this crack tip singularity, the most popular of
which are the quarter point elements that capture the 1/

√
r dependence of the crack tip singularity

in linear elasticity or the 1/r dependence in perfect plasticity. However, the singularity of the crack
tip solution in crystal plasticity is not known analytically, which makes the design of such elements
non-trivial. For simplicity, conventional finite elements (the combination of three-noded triangular
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and four-noded rectangular elements) are employed in these simulations. Meaningful values of crack
tip stress intensity factors can be obtained using this approach with the computational procedures
demonstrated in Chan (1970) [10].

a

r

p

p

w

2h

Figure 3. The single-edge notch configuration with width w, height 2h and shear force p is applied on
the left edge. Only the upper half is modeled.

We only consider the Mode I crack in our paper. The stress intensity factor calculation follows
Chan’s paper [10]. Stress intensity K∗I from the displacement-based method:

K∗I =

[
2π

r

] 1
2 Gv∗

f (θ, ν)
(25)

f (θ, ν) = sin( θ
2 )
[
2− 2ν− cos2 θ

2

]
, v∗ is the computed nodal displacement in the y direction. The K∗I is

obtained by substituting a calculated nodal point displacement v∗ at point (r, θ). If the v∗ were the
exact theoretical value, then the value of K∗I will also be exact. The above equation is for the plane
strain situation; for plane stress cases, just replace ν with ν/(1 + ν) for f (θ, ν).

The stress intensity factor K∗I from the stress-based method was also used for comparison:

K∗I =
(2πr)

1
2 σ∗yy(r, θ)

fyy(θ)
(26)

fyy(θ) = cos(θ/2) [1 + sin(θ/2) sin(3θ/2)]. This theoretical result is obtained from the collocation
method described in [13].

The J integral is calculated as:

J =
∫

Γ

(
Wdy− T · ∂u

∂x
ds
)

(27)

The Γ is an arbitrary curve surrounding the crack tip. W is the strain energy density, while T is
the traction vector defined by the out normal along Γ, Ti = σijnj, and u is the displacement vector.
The integral is evaluated counterclockwise around the crack tip. The reported J value is twice the
half plane’s J value. Strain energy density W is found from PK-I stress and deformation gradient F,
W =

∫
Ω0

P : δFdV. The shear force on the left boundary of the model is applied over 20 steps to get
the value of p.
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4.1. Linear Elastic Simulations

The first few tests were performed by setting the plastic shearing strain to zero ∆γ = 0 which leads
to a fully-elastic model. In the convergence results shown below, the displacement on the crack surface
(θ = π) and stress σyy on the θ = 0 plane (away from the crack in the positive xdirection) are shown.
First, a convergence test is performed on different meshes by progressively refining the element size in
the microstructure; see Figure 4. In this simulation, a fully-isotropic model is employed without any
microstructure. The test shows good convergence with the increasing number of elements, as shown in
Figure 5, and the results are similar to those reported in the finite element model of [10]. The analytical
result is from [13].

A similar convergence test was performed by altering the number of grains in the vicinity of the crack
tip (and 835 elements in each case; see Figure 6). The zero grain case corresponds to the isotropic elastic
case (with a fully-random ODF). This corresponds to an isotropic stiffness matrix with c11 = 2.25 GPa,
c12 = 0.75 GPa and c44 = 0.75 GPa. The grain convergence study allows one to choose the size of the
critical region that needs to be modeled using microstructural grids. From the results shown in Figure 7,
there is a trend towards convergence with the increasing number of grains. As the number of grains
increases from 42 to 62, little additional accuracy is realized. This implies that a 42-grain case is sufficient
to address this particular problem. Beyond this point, the ODF model may be employed. Further, a quick
comparison of the zero grain case (isotropic solution) with the 62 grain case result in Figure 7 clearly
depicts the role of the microstructure in determining the stress concentration at the crack tip. When
r/w is smaller than 6× 10−3, stress concentrations deviate from the isotropic case. While r/w is larger
than 6× 10−3, the microstructure does not play a significant role, and the result converges back to the
isotropic solution.

Subsequently, three models are compared: (i) a model with isotropic properties; (ii) a model with
every element having an underlying ODF (called an ‘all-ODF’ model) with no explicit microstructure;
(iii) a multiscale model with explicitly-modeled crystal orientations (called ‘Elastic-Ot’model) near the
crack tip and ODF representation at the far field. The detailed comparison between these models is
shown in Figure 8. Firstly, the all-ODF model (with the initial random ODF) has the exact same result as
the isotropic elastic model as expected. The model with the explicit microstructure has larger variations
in stress concentration near the crack tip. Figure 9 additionally depicts the resolved shear stress in the
two slip systems for the elastic model as overlaid on the grains showing significant variability in stresses
from grain to grain, stressing the need for a microstructure model at critical regions.

530 elements 835 elements

1033 elements 1225 elements

Figure 4. Grids of 530, 835, 1033 and 1225 elements discretizing 62 grains.
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Figure 5. Grid convergence test with 530 elements, 835 elements, 1033 elements and 1225 elements
of 62 grains on the elastic all-ODF model. The analytical line is from the collocation method.
(a) Non-dimensional KI from the displacement method; (b) non-dimensional KI from the stress method.
Both results show convergence at 835 elements.
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Figure 6. Grids with increasing number of grains near the crack tip (22, 42 and 62 grains) with
835 elements. Different numbers of grains are used to test the critical area that needs to be covered
by crystals.
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Figure 7. Size convergence test with 0, 22, 42 and 62 grains. (a) Non-dimensional KI from the
displacement method; (b) non-dimensional KI from the stress method. The results show that
convergence can be achieved by more than 42 grains.
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Figure 8. Normalized stress intensity factor plotted as a function of the distance from the crack tip for
different models. (a) displacement-based method and (b) stress-based method.
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Figure 9. Resolved shear stress (all units in MPa) results in (a) slip system 1 and (b) slip system 2,
for the multiscale model with orientations. The maximum shear stresses reach as high as 85 MPa.
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4.2. Elasto-Plastic Simulations

In subsequent simulations, notch tip plasticity is turned on. All test cases are based on meshes
with 835 elements and 62 grains cover the notch tip area. The inclusion of notch tip plasticity leads
to a larger displacement at the crack tip (and also smaller stress near the crack tip). This is seen in
Figure 10 where the displacements and stresses are directly compared to the elastic case. These results
are subsequently shown in terms of the non-dimensional stress intensity factor in Figure 11. Note that
on the θ = π plane, the stress intensity factor Equation (25) as computed from the elasticity-based
formula will be larger in the plastic case due to larger displacements. On the other hand, the smaller
stress σyy on the θ = 0 plane will lead to a smaller K I value based on Equation (26). These are simply
artifacts of using an elasticity-based analytical solution to calculate the stress intensity factor. Due to
the larger displacement and smaller stresses around crack tips, elasto-plastic results show altogether
different K I trends when compared to the fully-elastic case in Figure 8.

Next, comparing an all-ODF model with plasticity (zero grains) and one with the microstructure
explicitly modeled, the differences between these two cases (shown in Figure 11) are much more
pronounced than the fully-elastic case (that did a similar comparison between no grains and the
62-grain case; see Figure 7). The inclusion of the microstructure significantly affects the calculated
stress intensity factor, which is important during the assessment of safety factors during component
design. Figure 12a,b additionally depicts the resolved shear stress in the two slip systems for the
elasto-plastic model as overlaid on the grains. This again shows significant variability in stresses
from grain to grain, but stresses are smaller than the fully-elastic case shown in Figure 9 as expected.
As addressed in McMeeking [14] and Rice and Johnson [15], the crack tip plastic blunting can also be
explained by exploiting the crack tip opening stresses. However, instead of using the analytical method,
we will employ the J-integral approach next to more reliably compare the elastic and elastoplastic cases.
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Figure 10. Comparison between elastic and elastoplastic models. (a) y-displacements; (b) σyy. Inclusion
of the microstructure leads to larger variability in values.
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Figure 11. Comparison of stress intensity factors for elastic and elastoplastic models when using an
elasticity-based analytical solution. K I calculated from plastic models returns a different trend when
compared to elastic models. (a) displacement-based method and (b) stress-based method.
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Figure 12. Resolved shear stress (all units in MPa) results in two slip systems for the plastic model with
the explicitly-modeled microstructure.

4.3. J Integral Calculation

In order to numerically evaluate the J integral, several loops are drawn around the crack tip
as shown in Figure 13. The inner-most curve is within only one grain, while the outmost curve
circumscribes the entire microstructure. The results of the J integral calculations are shown in Figure 14.
The J integrals of multiscale models (with microstructure) are normalized with respect to that of a
fully-homogenized model (with no grains). The x-coordinate is the mean distance values of points on
different integral curves. Figure 14a shows the J values of the elastic model. The elastic model with
the microstructure has lower J values at the crack tip, but converges to a homogenized model at the
far field. Figure 14b shows the J integral of the elastoplastic model. This model also converges to the
homogenized model result at the far field; however, the near field J values oscillate because of the
microstructural influence. This trend is similar to those shown in Figures 8 and 11 in that the model
with the microstructure has more prominent oscillation of stress intensities around the crack tip in the
case of an elastoplastic model.



Metals 2017, 7, 345 14 of 16

In the elastic case, the ODF does not evolve with deformation. However, in the elastoplastic case,
the texture evolves close to the crack tip with the specimen deformation. Texture evolves in the region
modeled explicitly with the microstructure, at the same time, and Figure 15 shows the case of ODF
evolution in the homogenized region.

X

0.1 0.05 0 0.05 0.1

Figure 13. J integral curves around the crack tip: the red lines are curves; blue lines are crystals;
and black ones are FE elements. The innermost curve is only within one crystal. Other curves cover
larger areas than the first one. Each edge of the curve is divided into 10 parts. This means that if the
curve has five edges, and there are 50 points to be integrated for the J integral. All distances are in mm.
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Figure 14. J integral comparison. (a) Normalized J values of the elastic model with the microstructure.
The elastic model with the microstructure has lower J values at first, but converges to the isotropic
model at the far field. (b) Normalized J values of the plastic model with the microstructure. The near
field plastic J values oscillate due to the influence of the microstructure.
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Figure 15. The final texture returned by in the plastic model at the macro-scale elements. The final
ODFs at different integration points are different from each other; while for the elastic result, the final
ODFs at differentintegration points are the same.

5. Conclusions

The proposed multi-scale model combines the computational efficiency of statistical approaches
with the accuracy of CPFEat critical regions. The approach can provide detailed stress and displacement
results around critical regions such as crack tips and localized loads (e.g., indentation tests) while also
providing good estimates of far field stresses. As an illustrative example, we applied the multiscaling
method to compute the stress intensity factor K I around the crack tip in a wedge-opening load
specimen [10]. The approach was verified with an analytical solution within linear elasticity and has
been extended to allow the modeling of crack tip plasticity. We are currently extending this framework
to allow modeling of arbitrary crack paths at critical regions within the multiscale approach.
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