

Correction

Correction: Liss, K.-D., et al. Hydrostatic Compression Behavior and High-Pressure Stabilized β -Phase in γ -Based Titanium Aluminide Intermetallics. *Metals* 2016, 6, 165

Klaus-Dieter Liss ^{1,2,3,*} ^(b), Ken-Ichi Funakoshi ⁴, Rian Johannes Dippenaar ³, Yuji Higo ⁵, Ayumi Shiro ^{6,†}, Mark Reid ^{2,3}, Hiroshi Suzuki ^{1,‡}, Takahisa Shobu ^{6,‡} and Koichi Akita ^{1,‡}

- ¹ Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan; suzuki.hiroshi07@jaea.go.jp (H.S.); akita.koichi@jaea.go.jp (K.A.)
- ² Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, Australia; mark.reid@ansto.gov.au
- ³ School of Mechanical, Materials & Mechatronic Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Avenue, Wollongong 2522, Australia; rian@uow.edu.au
- ⁴ Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS-Tokai), Tokai, Ibaraki 319-1106, Japan; k_funakoshi@cross.or.jp
- ⁵ SPring-8, Japan Synchrotron Radiation Research Institute, Kouto, Sayo, Hyogo 679-5198, Japan; higo@spring8.or.jp
- ⁶ Quantum Beam Science Center, Japan Atomic Energy Agency, Kouto, Sayo, Hyogo 679-5148, Japan; shiro.ayumi@qst.go.jp (A.S.); shobu@sp8sun.spring8.or.jp (T.S.)
- * Correspondence: kdl@ansto.gov.au or liss@kdliss.de; Tel.: +61-2-9717-9479
- + Present Address: Quantum Beam Science Research Directorate, National Institute for Quantum and Radiological Science and Technology, Kouto, Sayo, Hyogo 679-5148, Japan.
- ‡ Present Address: Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan and Kouto, Sayo, Hyogo 679-5148, Japan.

Academic Editor: Hugo F. Lopez

Received: 15 August 2017; Accepted: 22 August 2017; Published: 7 September 2017

The authors would like to apologize for any inconvenience regarding misleading errors and inconsistencies in some of the units and one number, and wish to make the following corrections to this paper [1]:

Page 11: unit should be GPa in "... up to 200 GPa [71] ... " (not MPa).

Page 12: unit should be GPa in " ... lying around 146 GPa ... " (not MPa).

Figure 9: units should be GPa for K_0 in all four occurrences (not MPa).

Table 1: add to caption: "*a*, *c* in (Å); *V* in (Å³); K_0 in (GPa)."

Table 1: correct value for K_0 for α_2 to be "126" (not 116).

Page 16: unit should be GPa in "With values around 146 GPa ... " (not MPa).

Figure 9. Atomic volumetric compression behavior of the investigated composition Ti-45Al-7.5Nb-0.25C with Birch–Murnaghan fits (experimental dots with continuous lines), as compared to α_2 -single-phase compression, and α - and ω -titanium, reported by Dubrovinskaia [59] and Errandonea [48], respectively.

Table 1. Compilation of experimental lattice parameters a_0 and c_0 under ambient conditions, as well as the derived quantities; their axis ratios and volume per atom V_A , compression parameters K_0 , K_0' (first three rows) and data from the literature. The α -phase lattice is given in α_2 cell notation, and therefore, 2c/a is noted. The first VA column is computed from a_0 and c_0 , while the second results are from the fit of pressure data to Equation (6). The original data of Yeoh's publication [31] has been re-visited to extract the listed values at 300 K. Literature values are reported from their experimental findings, in addition to Ghosh's first-principles study [61]. Further listed references are Dubrovinskaia [59], Errandonea [48], Asta [60], Zhang [55], JCPDS [56], and Menon [78]. a, c in (Å); V in (Å3); K_0 in (GPa).

Phase	a_0	<i>c</i> ₀	Axis Ratio	VA	VA	K ₀	<i>K</i> ₀ ′	Reference
γ	4.01867	4.06542	1.0116332	16.4138371	16.414	146.34	0.52399	this work
α/α_2	5.76803	4.64241	1.60970383	16.7201111	16.72	145.84	0.55046	this work
total				16.4720291	16.472	147.01	0.66622	this work
α_2 -Ti-33.3Al	5.7763	4.6348	1.6047643	16.7406041	16.74	125	4.4	Dubrovinskaia
α_2 -Ti-28.4Al	5.7829	4.6388	1.60431617	16.7933623	16.79375	131	3.6	Dubrovinskaia
α_2 -Ti-24.0Al	5.8083	4.6563	1.60332627	17.0051191	17.005	133	2.6	Dubrovinskaia
α-Ti			1.583		17.7013462	117	3.9	Errandonea
ω-Ti			0.609		17.4024491	138	3.8	Errandonea
γ			1.012			128		Asta
α_2			1.698			126		Asta
γ	3.9814	4.0803	1.02484051	16.1697657	16.181	112.1	3.91	Ghosh
α2	5.7372	4.6825	1.63232936	16.6847003	16.584	111.9	3.83	Ghosh
α-Ti			1.5868			114	4	Zhang
α-Ti	5.901	4.6826	1.58705304	17.651391				JCPDS
γ-Ti-50Al	3.9973	4.0809	1.02091412	16.3015706				Menon
γ-Ti-45Al-7.5Nb-0.5C	4.02421	4.07335	1.01221109	16.4912285				Yeoh
α ₂ -Ti-45Al-7.5Nb-0.5C	5.77568	4.65646	1.61243698	16.8152283				Yeoh

Reference

 Liss, K.-D.; Funakoshi, K.-I.; Dippenaar, R.J.; Higo, Y.; Shiro, A.; Reid, M.; Suzuki, H.; Shobu, T.; Akita, K. Hydrostatic Compression Behavior and High-Pressure Stabilized β-Phase in γ-Based Titanium Aluminide Intermetallics. *Metals* 2016, 6, 165. [CrossRef]

 \odot 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).