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Abstract: A new effective method is proposed to prepare vanadium nitride (VN) via carbothermal
reduction–nitridation (CRN) of the precursor, obtained by adding carbon black (C) to the stripping
solution during the vanadium recovery from black shale. VN was successfully prepared at a low
temperature of 1150 ◦C for only 1 h with a C/V2O5 mass ratio of 0.30 in N2 atmosphere, but a
temperature of 1300–1500 ◦C is required for several hours in the traditional CRN method. The low
synthesis temperature and short period for the preparation of VN was due to the vanadium-coated
carbon structure of the precursor, which enlarged the contact area between reactants significantly and
provided more homogeneous chemical composition. In addition, the simultaneous direct reduction
and indirect reduction of the interphase caused by the coating structure obviously accelerated the
reaction. The phase evolution of the precursor was as follows: (NH4)2V6O16·1.5H2O→ V2O5 →
V6O13→ VO2→ V4O7→ V2O3→ VC→ VN. The precursor converted to V6O13 and VO2 completely
after being calcined at 550 ◦C, indicating that the pre-reduction of V2O5 in the traditional CRN
method can be omitted. This method combined the synthesis of VN with the vanadium extraction
creatively, having the advantages of simple reaction conditions, low cost and short processing time.
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1. Introduction

Vanadium nitride (VN) has received increasing attention in recent years due to its typical
properties including extreme hardness, high melting point, wear and corrosion resistance, good electric
and thermal conductivity, high-temperature stability, as well as good catalytic activity. It can be widely
used as iron and steel additive [1,2], electrode [3,4], catalyst [5,6], superconductor [7], and coating [8,9].
The frequent application of VN, as an important steel additive, can be ascribed to its beneficial effect
on fine grain and precipitation strengthening, which can improve the comprehensive performance of
steel and reduce the cost of the smelting process by using nitrogen to reduce the vanadium content of
steel [10].

The traditional procedure for the synthesis of VN is the process of carbothermal reduction– nitridation
(CRN) of V2O5 in N2 at a high temperature of 1500 ◦C for 3 h with a N2 flow rate of 13.3× 10−6 m3· s−1 [11],
and at 1400 ◦C with a N2 flow rate of 50 L·h−1, using a microwave method [12]. The low melting point
(670 ◦C) and the high saturation vapor pressure of V2O5 will result in a volatile loss of V2O5 near its
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melting point. Hence, the pre-reduction during transformation from V2O5 to a high melting point and
low-valent vanadium oxides below the melting point of V2O5 is necessary [13], resulting inevitably
in a long reaction period. However, using the low-valent vanadium oxides will increase the
production cost due to the higher price compared to V2O5. In addition to the traditional CRN method,
VN was prepared by thermal liquid-solid reaction [14]: Ammonolysis of precursor compounds of
metal [7], self-propagating high-temperature synthesis [15], sol-gel method [16], chemical vapor
deposition [17], mechanical alloying [18] and other methods [19,20]. However, most methods are
plagued by the presence of air-sensitive or toxic reagents, expensive equipment and raw materials,
elevated temperatures and long reaction time, which limit its large-scale production and application.
Therefore, there is a need for a simple synthesis route of VN. Thermal processing precursor, as a novel
method to prepare metal nitrides, has gradually become a research hotspot. Zhao et al. [21] synthesized
VN nanopowders by thermal nitridation of the precursor obtained by physically drying an aqueous
solution of ammonium vanadate (NH4VO3) and nanometer carbon black. (Cr,V)2(C,N) solid solution
powders were synthesized by CRN of the precursor, prepared by heating admixtures of ammonium
dichromate ((NH4)2Cr2O7), NH4VO3, and carbon black in distilled water with continuous stirring [22].
These methods can reduce the synthesizing temperature greatly, but the production cost remained high
due to the use of de-ionized water, NH4VO3 and nanometer carbon black, indicating the strong demand
of a simple, low-cost and low-temperature approach to synthesize VN. Moreover, the formation process
and microstructure of the precursor and its promoting effect on the preparation of metal nitrides were
not discussed.

In China, most of the vanadium resources exist in the form of black shale, so the utilization
and exploitation of black shale is an essential way to recover vanadium [23]. The vanadium recovery
from black shale was investigated using a pyro-hydrometallurgical process specifically including
roasting, acid leaching, purification, and chemical precipitation [24–26]. Solvent extraction was
the most commonly adopted process to purify the acid leaching solution for better selectivity
and economy [27,28]. After solvent extraction and stripping, vanadium can be precipitated from
the stripping solution with acidic ammonium salt [29]. In view of the preparation method of
precursor [7,21,22] in the synthesis of VN, and the application of the precipitation method [30]
to synthesize Pb(Mg1/3Nb2/3)O3 ceramic, it may be feasible to prepare the precursor during the
vanadium precipitation from the stripping solution in the process of vanadium extraction from black
shale, to synthesize VN. This method revealed the merits of a low reaction temperature, short period,
and a widely available, cheap vanadium source, which make it more practical, economical and efficient
in industrial applications.

In this study, we combined the synthesis of VN with vanadium extraction from black shale for
the first time by adding carbon black (C) to the stripping solution. First, the precursor containing
the vanadium source and reducing material formed gradually during the vanadium precipitation,
then the precursor was reduced and nitrided in the N2 atmosphere to yield VN. The effects of
the main reaction conditions on the nitrogen content (N content) in VN product were investigated.
In order to explain the lower temperature and shorter time for the preparation of VN in comparison
with the conventional CRN method: The phase and microstructure of the precursor were analyzed.
In addition, the mechanism of preparing VN from the precursor was discussed through phase analysis,
thermodynamic calculation, and thermogravimetric (TG) experiment.

2. Experimental Section

2.1. Materials

The stripping solution was obtained by blank roasting, acid leaching, solvent extraction and
stripping of black shale obtained from Tongshan, China. The main chemical composition of the
stripping solution is given in Table 1, the concentration of V in the stripping solution is 20.63 g·L−1,
while the major impurity ion is Al with the content of 5.78 g·L−1. The pH of the stripping solution is



Metals 2017, 7, 360 3 of 12

0.03. Carbon black containing 94.80% of carbon with the particle size of less than 0.074 mm was used
as the reducing agent.

Table 1. Main chemical composition of the stripping solution.

Element V Al Fe K Na P

Concentration (g·L−1) 20.63 5.78 0.06 0.34 0.42 0.1

2.2. Typical Procedure for the Preparation of VN

The process flow sheet to prepare VN is shown in Figure 1. Typically, sodium chlorate (NaClO3,
AR (analytical reagent), 2.95 g) was added to the stripping solution (200 mL) to oxidize vanadium
(IV) to vanadium (V) in a temperature-controlled magnetic stirrer (SZCL-2A, Wuhan Keer Instrument
Co., Ltd., Wuhan, China) at room temperature. After complete oxidation, a certain amount of carbon
black was added to the solution and dispersed by stirring. The pH of the solution was adjusted to
1.8 with ammonia (AR), and then the solution was stirred to precipitate ammonium polyvanadate
(APV) at 90 ◦C for 1 h. After solid-liquid separation by vacuum filtration (model SHB-III, Wuhan Keer
Instrument Co., Ltd., Wuhan, China), the precursor was washed by water, dried in an oven, and then
compressed into cylindrical blocks of 30 mm diameter at a pressure of 14 MPa. The cylindrical block
was placed into the tubular atmosphere furnace (SGL-1700, Shanghai Institute of Optics and Fine
Mechanics, Shanghai, China) with a certain flow rate of nitrogen (99.999%). The sample was calcined
to deaminize at 550 ◦C for 20 min and pre-reduced at 650 ◦C for 2.5 h, and then heated to the desired
temperature for reduction and nitridation for a certain of time. Subsequently, the product was cooled
to room temperature in nitrogen atmosphere.
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2.3. Material Characterization

The nitrogen content (N content) was determined employing distillation-acid base titration
analysis. The X-ray diffraction (XRD) patterns were obtained by using a Rigaku D/MAX-RB X-ray
diffractometer (Rigaku, Akishima, Japan) with Cu Kα radiation to analyze the phase compositions
in the products. Microscopic observation and elemental analysis (SEM–EDS; SEM: Scanning electron
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microscope; EDS: Energy-dispersive X-Ray spectroscope) was conducted using a JSM-IT300 scanning
electron microscope (JEOL, Tokyo, Japan), equipped with an X-ACT energy dispersive spectrometer
(Oxford Instruments, Oxford, UK). The thermogravimetric (TG) experiment was carried out by utilizing
a STA449C analyzer (Netzsch, Selb, Germany) to change from room temperature to 1400 ◦C with a
linear heating rate of 10 ◦C·min−1 under N2, and a gas flow rate of 50 mL·min−1.

3. Results and Discussion

3.1. Effect of the Main Reaction Conditions on the N Content in VN Product

3.1.1. Effect of C/V2O5 Mass Ratio

The effect of C/V2O5 mass ratio (m(C:V2O5)) on the N content in VN product is shown in
Figure 2, obtained at a reaction temperature of 1250 ◦C, a reaction time of 3 h, and a N2 flow rate of
300 mL·min−1.
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Figure 2. (a) Effect of C/V2O5 mass ratio on the N content in VN product with a reaction temperature
of 1250 ◦C, reaction time of 3 h and N2 flow rate of 300 mL·min−1; (b) XRD (X-ray diffraction) patterns
of the products obtained at different C/V2O5 mass ratios with a reaction temperature of 1250 ◦C,
reaction time of 3 h and N2 flow rate of 300 mL·min−1.

As evident from Figure 2a, the m(C:V2O5) has a pronounced effect on the N content in VN, as the N
content increased from 15.37% to 17.03% when m(C:V2O5) increased from 0.27 to 0.30. Beyond 0.30,
the N content decreased from 17.03% to 10.17%. The low N content was a possible result of the
incomplete reduction, due to the shortage of carbon. This may be confirmed by the appearance of V2O3

(Figure 2b) at an m(C:V2O5) value of 0.27. Conversely, when the m(C:V2O5) exceeded 0.30, the excess
carbon and the formation of vanadium carbonitride solid solution led to the decrease of the N content.
However, there were no peaks that could be indexed to C or VC in Figure 2b, which was due to the
amorphous state of carbon black and very similar diffraction patterns of VC and VN [31], respectively.
Therefore, 0.30 was considered as the most suitable C/V2O5 mass ratio for the reaction.

3.1.2. Effect of Reaction Temperature

To investigate the effect of the reaction temperature on the N content in VN product, several
experiments were performed at a C/V2O5 mass ratio of 0.30, a reaction time of 3 h and a N2 flow rate
of 300 mL·min−1. The experimental results are depicted in Figure 3.
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Figure 3. (a) Effect of reaction temperature on the N content in VN product with a C/V2O5 mass
ratio of 0.30, reaction time of 3 h and N2 flow rate of 300 mL·min−1; (b) XRD patterns of the products
obtained at different temperatures with a C/V2O5 mass ratio of 0.30, reaction time of 3 h and N2 flow
rate of 300 mL·min−1.

As shown in Figure 3a, the N content in VN product increased rapidly from 4.69% to 16.70% as the
reaction temperature increased from 950 ◦C to 1150 ◦C; the N content then stayed at a constant level over
the elevated reaction temperature. Figure 3b exhibits XRD patterns of the products obtained at different
temperatures. At 950 ◦C, the peaks were identified as V2O3 and VN, indicating that the reduction and
nitridation of the precursor were not complete at a temperature as low as 950 ◦C. The XRD patterns
were identical and all diffraction peaks corresponded to VN at 1150 ◦C and 1250 ◦C, revealing that the
precursor was reduced and nitrided almost completely. Hence, a reaction temperature of 1150 ◦C was
chosen as the optimal condition in this experiment.

3.1.3. Effect of Reaction Time

The effect of reaction time on the N content in VN product was investigated under the conditions
of a C/V2O5 mass ratio of 0.30, a reaction temperature of 1150 ◦C and a N2 flow rate of 300 mL·min−1.
The results are shown in Figure 4.
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It can be observed that the N content in VN product increased strongly from 13.80% to 16.38%
as the reaction time increased from 0.5 h to 1 h and then remained almost constant beyond 1 h,
which indicated that the reduction and nitridation of the precursor was almost complete at 1 h.
Thus, the optimum reaction time was determined to be 1 h.

3.1.4. Effect of N2 Flow Rate

The effect of N2 flow rate on the N content in VN product was investigated under the conditions
of a C/V2O5 mass ratio of 0.30, a reaction temperature of 1150 ◦C and a reaction time of 1 h. The results
are shown in Figure 5.
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Figure 5 indicates that the N2 flow rate substantially influenced the N content in VN product.
The N content first rose from 13.73% to 16.38% and then decreased to 15.43% with an increasing
N2 flow rate. There was an optimum N2 flow rate of 300 mL·min−1, at which a maximum N
content was achieved. The flowing nitrogen can increase N2 partial pressure and decrease the CO
partial pressure, which might accelerate the reduction and nitridation reactions. However, the rapid
flowing nitrogen could not be sufficiently heated, and the contact time with vanadium oxides was
too short to react adequately, resulting in decreased N content as the flow rate increased further.
Therefore, 300 mL·min−1 was the optimal N2 flow rate.

3.2. Phase and Microstructure Analyses of the Precursor

Although an appropriate flow rate of nitrogen can promote the synthesis of VN, high reaction
temperature and long reaction time were still required in the synthesis of VN with the flow of nitrogen
in the tubular furnace [11,12]. Compared with a temperature of 1300–1500 ◦C required to prepare
VN by the traditional CRN method, this study permitted a lower temperature and a shorter time by
as much as several hundred degrees centigrade and several hours, respectively. The traditional raw
materials were a mixture of V2O5 and C, while a precursor with V-coated C structure was applied in
our research, a fact we consider an essential difference. Hence, we had to investigate the precursor.
To understand the phase compositions of the precursor, XRD analysis was conducted. The result
shown in Figure 6 revealed that the precursor consists of (NH4)2V6O16·1.5H2O with a small amount of
NH4Al(SO4)2·12H2O. No peaks can be indexed to C, due to the amorphous state of carbon black.
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To have a visualized comprehension of the distribution of (NH4)2V6O16·1.5H2O and carbon
black in the precursor, SEM–EDS analysis was conducted and the results are presented in Figure 7.
As shown in Figure 7a, there was C in the center and V was plentiful around C in a single particle,
which indicated that the carbon black was surrounded by vanadium during the process of vanadium
precipitation. Figure 7b is a partially enlarged view of the edge of the particle shown in Figure 7a. It can
be clearly seen that V is located at the edge of the particle, with C being in the interior. There were many
vanadium-coated carbon structures (V-coated C structures), as shown in the red circles in Figure 7c.
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The formation process of the V-coated C structure is schematically illustrated in Figure 8, where the
black parts and orange parts represent carbon black and APV, respectively. Due to the presence of
the dispered carbon black, the nuclei of the vanadium precipitates in the slurry grow on the surface
of carbon black, which served as the heterogeneous nucleation site, instead of forming discrete
precipitates. As the precipitation proceeded, APV particles grew gradually and coated carbon black
completely, the typical coated structure formed with the core and the coating layer was carbon black
and APV, respectively; the uncoated carbon black located around APV. The overall distribution of the
precursor was the V-coated C structure which was surrounded by the uncoated carbon black.
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Figure 8. Formation process sketch of the precursor. (APV: Ammonium polyvanadate.)

The V-coated C structure evidently promoted the reaction between vanadium oxide and carbon
black due to the following reasons. First, on the internal interphase of the V-coated C structure,
CO produced by direct reduction of vanadium oxides by carbon black could not escape due
to the coated structure; hence, it continued to react with vanadium oxide by indirect reduction.
Subsequently, CO2 produced by indirect reduction will react with carbon black to produce CO at high
temperature. That is to say, inside the vanadium oxides, the direct reduction and indirect reduction
occur simultaneously at the internal interphase. Secondly, outside the vanadium oxides, the uncoated
C reacted with vanadium oxides simultaneously on the external interphase. Lastly, the V-coated
C structure increased the contact area between carbon black and vanadium oxides remarkably
and provided a more homogeneous chemical composition than traditional mechanical blending.
APV decomposed into V2O5 and V2O5 was reduced and nitrided gradually during the synthesis of
VN. The coating structure always existed with the coating layer changing from APV to lower-valent
vanadium oxides, vanadium carbide and vanadium nitride, until the precursor converted into VN
completely. Hence, the V-coated C structure obtained by adding carbon black to the stripping solution
before the precipitation of vanadium significantly reduced the reaction temperature and shortened the
reaction time.

3.3. Phase Evolution of Preparing VN from the Precursor

The progress of the phase formation during the preparation of VN was monitored by interrupting
the reaction intermittently at different temperatures and then the samples were analyzed by XRD
analysis. Figure 9 shows the XRD patterns of the precursor and products at different temperatures.
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The precursor was composed of (NH4)2V6O16·1.5H2O and a small amount of NH4Al(SO4)2·12H2O
as shown in curve (a). The diffraction peaks were identified as V6O13 and VO2 [32–35] in curve
(b), attributed to the decomposition of (NH4)2V6O16·1.5H2O into V2O5 and NH3; then, the V2O5
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was initially reduced to V6O13 and VO2 by NH3 under 550 ◦C. As shown in curve (c), all peaks
corresponded to V4O7, which indicated that the further reduction of V6O13 and VO2 to V4O7 may be
by the progressive reduction of V6O13 to VO2 and VO2 to V4O7 below 650 ◦C. The appearance of V2O3

and VN in curve (d) illustrates that V4O7 was reduced to V2O3 continuously and the VN phase was
formed from V2O3 below 950 ◦C. There was only a single phase of VN at 1150 ◦C. Based on the above
recorded phase changes, the possible mechanism of preparing VN could be formulated as follows:

(NH4)2V6O16 · 1.5H2O = 3V2O5 + 2NH3 ↑ +2.5H2O (1)

3V2O5 + 2NH3 = V6O13 + N2 ↑ +2H2O + H2 ↑ (2)

3V2O5 + 2NH3 = 6VO2 + N2 ↑ +3H2O (3)

2V6O13 + 5C = 3V4O7 + 5CO ↑ (4)

V6O13 + C = 6VO2 + CO ↑ (5)

4VO2 + C = V4O7 + CO ↑ (6)

V4O7 + C = 2V2O3 + CO ↑ (7)

2V2O3 + 2N2 = 4VN + 3O2 ↑, ∆Gθ = 1371222− 82.73T, J·mol−1 (8)

V2O3 + 5C = 2VC + 3CO ↑, ∆Gθ = 535438.31− 490.18T, J·mol−1 (9)

2VC + N2 = 2VN + 2C,∆Gθ = −185495.60 + 147.56T, J·mol−1 (10)

According to the standard Gibbs free energy changes (∆Gθ (T)) of Reactions (8)–(10), calculated
by the “Reaction” module of Factsage 7.1 software (Factsage 7.1, Thermfact/CRCT, Montreal, QC,
Canada; GTT-Technologies, Aachen, Germany), the VN phase can be formed at 16,575 ◦C via V2O3

reacting directly with nitrogen under standard state conditions, while the VC phase can be formed
at a lower temperature of about 1092 ◦C. The transformation of VC to VN was spontaneous below
1257 ◦C. This means that intermediate formation of VC can occur and subsequently convert to VN
when the temperature varies between 1092 ◦C and 1257 ◦C under standard state conditions and in an
extended range of temperatures in flowing nitrogen atmosphere, indicating that 1150 ◦C satisfies the
thermodynamic conditions. Therefore, the phase evolution of (NH4)2V6O16·1.5H2O to VN took place
in the following sequential order:

(NH4)2V6O16·1.5H2O→ V2O5 → V6O13 → VO2 → V4O7 → V2O3 → VC→ VN

It is worth noting that after being heated at 550 ◦C for 20 min, the precursor converted completely
to low-valent vanadium oxides V6O13 and VO2 without the appearance of residual unreacted V2O5,

which has a low melting point (670 ◦C) and high saturation vapor pressure. V6O13 can decompose to
VO2 at 700 ◦C, and VO2 has a high melting point of 1542 ◦C [36]. Thus, the pre-reduction at 650 ◦C for
2.5 h can be eliminated in this process.

TG experiments were carried out under N2 atmosphere to reflect the physical and chemical
phenomena in the preparation process of VN. TG and DTG (differential thermogravimetric) curves of
the precursor are shown in Figure 10. There were four major weight losses indicated by four DTG peaks
in the DTG curve. The first major weight loss between room temperature and 136 ◦C was attributed
to the evaporation of physically absorbed and crystalline water. The second major weight loss from
380 ◦C to 447 ◦C was due to the decomposition of APV and the initial reduction of V2O5 to V6O13 and
VO2, which corresponded to the Reactions (1)–(3). The third weight loss corresponded to the further
reduction of V6O13 and VO2 to V4O7 according to Reactions (4)–(6). In this stage, the absolute value of
weight loss rates first increased, then decreased and eventually increased again at the temperatures of
600 ◦C–653 ◦C, 653 ◦C–660 ◦C and 660 ◦C–700 ◦C, respectively. The absolute value of weight loss rate
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escalated with increasing temperature because the reduction reaction was endothermic and increasing
the temperature promoted the reduction. The absolute value of weight loss rate decreased as the
reaction progressed. The increase of the weight loss rate was due to the decomposition of V6O13 to
VO2; the maximum, absolute value of the weight loss rate at 700 ◦C corresponded to the decomposition
temperature of V6O13. The last weight loss was assigned to the phase transformation from V4O7 to
V2O3 and V2O3 to the desired phase VN, which corresponded to Reactions (7), (9) and (10).
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4. Conclusions

A novel synthesis method of a (NH4)2V6O16·1.5H2O precursor to prepare VN was proposed,
characterized by adding carbon black to the stripping solution during the vanadium recovery from
black shale. VN with an N content of 16.38% was successfully prepared by thermal processing of the
precursor at 1150 ◦C for 1 h with a C/V2O5 mass ratio of 0.30 and a N2 flow rate of 300 mL·min−1.
Low synthesis temperature and short period for the preparation of VN was due to the V-coated
C structure of the precursor, which enlarged the contact area between reactants significantly and
provided a more homogeneous chemical composition. In addition, the simultaneous direct reduction
and indirect reduction at the interphase caused by the coating structure evidently accelerated the
reaction. XRD patterns and thermodynamic analysis indicated that the phase evolution from the
precursor to VN took place in the following order (NH4)2V6O16·1.5H2O→ V2O5 → V6O13 → VO2

→ V4O7 → V2O3 → VC→ VN. The precursor converted to V6O13 and VO2 completely after being
calcined at 550 ◦C, indicating that the pre-reduction of V2O5 in the traditional CRN method can be
dispensed with. Therefore, this method is an effective, simple and low-cost route to prepare VN.
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