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Abstract: The main role of Rare Earth (RE) elements in the steelmaking industry is to affect the nature
of inclusions (composition, geometry, size and volume fraction), which can potentially lead to the
improvement of some mechanical properties such as the toughness in steels. In this study, different
amounts of RE were added to a niobium microalloyed steel in as-cast condition to investigate its
influence on: (i) type of inclusions and (ii) precipitation of niobium carbides. The characterization
of the microstructure by optical, scanning and transmission electron microscopy shows that: (1) the
addition of RE elements change the inclusion formation route during solidification; RE > 200 ppm
promote formation of complex inclusions with a (La,Ce)(S,O) matrix instead of Al2O3-MnS inclusions;
(2) the roundness of inclusions increases with RE, whereas more than 200 ppm addition would
increase the area fraction and size of the inclusions; (3) it was found that the presence of MnS in
the base and low RE-added steel provide nucleation sites for the precipitation of coarse niobium
carbides and/or carbonitrides at the matrix–MnS interface. Thermodynamic calculations show that
temperatures of the order of 1200 ◦C would be necessary to dissolve these coarse Nb-rich carbides so
as to reprecipitate them as nanoparticles in the matrix.
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1. Introduction

The chemical composition, population density, and morphology of non-metallic inclusions in
metals are among the key factors determining the steels’ quality [1–4]. These issues have become the
leading subjects in the field of steelmaking processes in the last few decades.

Rare Earth (RE) elements are known as non-metallic inclusion modifiers that can be added into
the molten steel in the form of misch metal, a master alloy consisting of rare earth elements such as
Ce and La. In contrast to MnS, RE-based inclusions do not deform during hot metal working i.e.,
they keep their spherical shape, which seems to be more beneficial for the toughness. In fact, despite
various roles of RE in steels, the main use of RE in steels concerns the shape control of inclusions,
especially MnS particles during the hot deformation processes [5–9]. It has been suggested that the
addition of these elements results in a considerable change in inclusion composition and generally
leads to the formation of several constituents such as oxysulphides (Ce2O2S, La2O2S), oxides (Ce2O3,
La2O3) and sulfides (Ce2S3, La2S3) [10,11].
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The standard Gibbs free energy (∆G◦) for the formation of characteristic La- and Ce-based
oxides/sulfides is given in Table 1. The values contained in this table have been obtained from
different references [12–14]. From this table, it can be discovered that at high temperatures, this energy
is so negative that it causes the formation of these components right after their addition into the
liquid steel; however, due to their densities, the removal of the RE inclusions from the molten steel is
relatively difficult [7,10,11,15–17]. Table 2 illustrates the melting point and density of some typical La
and Ce oxides and sulfides. The values shown in this table have been taken from Ref. [11].

Table 1. Standard Gibbs energy (∆G◦= A + BT) of the formation of oxide and sulfide of La and Ce and
its value at 1600 ◦C (1873 K) [12–14].

Compound A, J mol−1 B, J (mol K)−1 ∆G◦
1873 K kJ mol−1

Ce2O3 −1.30 × 106 374 −600
La2O3 −1.44 × 106 337 −810
Ce2S3 −1.02 × 106 340 −383
La2S3 −1.27 × 106 417 −490

Table 2. Physical properties of oxide and sulfide of La and Ce [11].

Compound Melting Point ◦C Density kg/m3

Ce2O3 ~2177 6200
La2O3 ~2249 6500
Ce2S3 ~2150 5020
La2S3 ~2099 5000

Although the effects of RE on the shape, fraction and distribution of inclusions have been widely
studied, it seems that there is no unanimity in this regard. For instance, Grajcar et al. [9] suggested
that the area fraction of non-metallic inclusions in the steels modified by misch metal was in the range
of 0.0012 to 0.0018, which was twice as low as that of untreated steels, while the average area of the
particles was the same for both conditions. On the other hand, Handerhan et al. [18] reported that the
volume fraction of inclusions has been similar for the base and RE-added steels, but inclusions in the
samples with RE were larger, which led to a larger interspacing of the inclusions. The same result was
also reported elsewhere [15]. In contrast, Belyakova et al. [19] suggested that the number of inclusions
increased by RE addition. In another work, it has been shown that when 0.35 kg/ton of misch metal is
added to the molten steel, it results in obtaining a higher volume fraction of inclusions compared to
the untreated steel [10]. However, adding higher amounts of RE could change the size distribution
of the inclusions. In addition, it has been observed that the size of the inclusions decreases with low
level of RE addition while it increases with higher level of RE addition; this somehow implies that the
optimum amount of RE should be added to the steel [5].

The reasons for obtaining these different results (sometimes contradictory) could be attributed
to the different steel making processes used in the various studies. For example, longer holding
time during the ladle treatment after RE addition would cause more deposition or floatation of the
inclusions. The location in the casting where the investigated samples have been taken can be another
reason for such disagreements. Regarding the latter case, Paul et al. [10] studied the distribution and
composition of the different inclusions in RE treated steels and showed that there is a considerable
difference between the bottom and top of the ingots.

On the other hand, having reviewed the literature, there has been a large number of investigations
pertaining to the use of RE elements through the hot deformation processes to derive benefits from
the size and shape control of the inclusions at that stage. However, the contribution of as-cast
condition to the inclusion characterization and consequently to the obtained properties has not been
completely disclosed. In fact, there is little recent information in the literature concerned with the
inclusion modification effects due to RE addition in cast steels while both steelmaking practice and
steel compositions have considerably changed over the past decades.
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Moreover, few studies have reported that the RE addition could improve the solubility of Nb
and consequently nanoprecipitation behavior in steels, but there is no certain consensus about its
mechanism [20,21].

In this work, an Nb-containing microalloyed steel has been selected to investigate the effects
of RE addition on the modification of non-metallic inclusions as well as on the nanoprecipitation
behavior in the as-cast condition. As it is discussed in the next sections, the results allow us to clarify
the effects of RE addition (amount) on inclusion characteristics (size and composition) and also on
the nanoprecipitation of Nb- and V-carbonitrides, which is directly related to the nature of inclusions
formed in each alloy.

2. Experimental Procedure

2.1. Casting and History of Samples

Clean scrap steel was melted in a 100 kg capacity induction furnace under the air atmosphere.
Once the melt reached to 1650 ◦C, the amounts of alloying elements were adjusted and the chemical
composition was measured by using the Optical Emission Spectrometry (OES) technique on site. Since
rare earth elements are strong oxide forming elements, it is desirable to add misch metal to the molten
steel when the oxygen level is as low as possible. In order to meet this requirement, aluminum was
added as deoxidizer to the melt prior to pouring the melt into the carrying ladle and adding the RE.

Three different amounts (2.5, 7 and 9 gr) of misch metal, containing 37.8 wt. % La and 62.1 wt. %
Ce, were placed at the bottom of the 25 kg capacity carrying ladle as the last addition. In fact, the same
melt with a base composition (Table 3) was used for all the castings while different amounts of RE
were added to the melts to ensure obtaining the same compositions as the base steel but with different
amounts of RE. The loss of RE elements in steelmaking is remarkably practice-dependent while many
conducted studies only reported the amount of added rare earth elements per kg of molten steel.
Hereupon, the amounts of RE in the ingots were measured by the Inductively Coupled Plasma (ICP)
technique, the results of which are given in Table 4. In addition, the amount of O and N in the ingots
was measured by using a gas analyzing equipment (model: LECO TC-436 AR (LECO Corporation,
Saint Joseph, MI, USA) for the studied steels; the results are shown in Table 4. Regarding the amount
of sulfur in these steels, it did not change compared to that of the base steel (Table 3). This result
seems reasonable because the misch metal was added to the ladle after deoxidation and removal of
floated impurities (steel slag); thus, RE would not have a considerable effect on the S content and this
element would place in solid solution as well as forming the sulfide particles distributed through the
as-cast ingot.

The ingots experienced homogenization treatment at 1100 ◦C for 5 h, and then smaller test samples
were normalized at 950 ◦C for 30 min prior to their inspection under the microscopes.

Table 3. Chemical composition of the base microalloyed steel (Fe to balance).

Elements C Si Mn S P V Nb Mo Cu Al Cr

wt. % 0.16 0.30 1.00 0.01 0.02 0.11 0.05 0.01 0.09 0.04 0.06

Table 4. Amounts of rare earth (RE) elements (La and Ce), O and N in different samples.

Steels
Elements, ppm

Ce La Ce + La O N

RE1 <10 <10 — 96 ± 10 113 ± 4
RE2 37.5 17.5 55.0 116 ± 35 114 ± 3
RE3 127.0 72.5 199.5 93 ± 6 112 ± 3
RE4 192.0 100.0 292.0 110 ± 14 114 ± 1
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2.2. Sample Preparation and Metallographic Observations

Prior to inspection by Optical Microscopy (OM), the steel samples were ground and polished
using standard metallographic procedures. Inclusion characterizations are usually carried out on
optical micrographs taken from the polished surface to achieve better contrasts between the inclusions
and the matrix. Therefore, the microstructure was characterized in the as-polished condition. Since the
surface of the samples might react with water, the samples were dryly ground. In addition, special
care was taken during grinding and polishing; controlled force was exerted on the samples during
grinding to prevent removal of inclusions from the surface. In addition, a lubricant, which was a mix
of ethanol and DP-Lubricant Blue (DP stands for Diamond Polishing; Struers Aps, Ballerup, Denmark),
was used for polishing to ensure prevention of oxidation or any possible errors committed through
the assessment of inclusions. In the last step of this preparation, ethanol was also used to remove
any products coming from the polishing steps. The characterization of the area fraction, average area
and roundness factor of the inclusions was carried out with the aid of an image analyzing program
(Image J 1.47v, free software developed at the National Institute of Mental Health (NIMH), Bethesda,
MD, USA) on at least five random micrographs using the same magnification for all the steel samples.
For this characterization, the samples were extracted from the middle and 3 cm from the bottom of
each Y block ingots (Figure 1). Considering the inclusions as circular in 2D, the average size (d) was
calculated from their average area (A) according to d = 2

√
(A/π).

Scanning Electron Microscopy (SEM) in both Secondary and Back Scattered-Electron (SE
and BSE) imaging modes plus microanalyses of inclusions were carried out by using a scanning
electron microscope, model Hitachi S 4800 J (Hitachi Ltd., Chiyoda, Tokyo, Japan) with an Energy
Dispersive X-ray Spectroscopy (EDS, Oxford INCA (Oxford Instruments plc., Abington, Oxfordshire,
UK) capability. Similar to OM inspection, inclusion characterization by SEM was done on the
polished samples.

Transmission Electron Microscopy (TEM) observations were carried out using a microscope model
JEOL JEM 3000F (JEOL Ltd., Tokyo, Japan) equipped with an EDS unit (Oxford INCA) for elemental
analyses. The samples were prepared from 3 mm diameter discs ground to ~80 µm thickness and then
electropolished by Tenupol 5 (Struers Aps, Ballerup, Denmark) using 95/5: acetic/perchloric acid
electrolyte at room temperature and the voltage of 40 V.
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3. Results

3.1. OM Observations and Image Analyses of the Inclusions

Figure 2 shows characteristic optical images of distribution of the inclusions in different polished
samples for steels R1, R2, R3 and R4, respectively. The average area fraction, average surface area
and average roundness factor of the inclusions for the different steels are given in Table 5. These
parameters were calculated from the images similar to those shown in Figure 3.

Considering the errors reported in Table 5, these values comprise of standard error (E) and also
the errors imposed by the holes/gaps appeared on the polished surface. The value of E was calculated
from the standard deviation (σ) and the number of measured inclusions (n) according to American
Society for Testing and Materials (ASTM E2586): E = σ/

√
n. It should be noted that the average area of

the inclusions have been estimated with respect to the total area covered by the inclusions and also
the gaps appeared around some of the inclusions in the microstructure. It is very difficult to conclude
whether the black particles, appeared in the OM images, are inclusions or pores. From the OM images,
the gaps are not easily distinguishable as they appear with a similar color/contrast as the inclusions.
However, they can be better differentiated in the SEM images, especially when using both SE and BSE
imaging modes. The area covered by these gaps has been estimated and considered in calculation of
the error of the reported results. The gaps themselves can be divided into two groups: (i) those caused
during cooling by different thermal expansion coefficient between the inclusion and matrix; and (ii)
those in which a broken part of an inclusion has been removed (a broken MnS particle as an example).
This latter case has been avoided in this work by undertaking a careful metallographic preparation of
the samples (which has been described in Section 2.2) and its contribution can be regarded as negligible.
By considering the area covered by the gaps and by undertaking this correction, the intention of the
authors has been to give the most accurate value for the area fraction of the inclusions. It should be
noted that the gaps caused by thermal contraction have been more often observed in RE1 and RE2
rather than RE3 and RE4 steels. However, because of the reasons mentioned, there might be a minor
error in the results of RE1 and RE2. The sum of the error given in Table 5 represents≤5% of the average
value measured for each sample.

It is known that area fraction/volume fraction (V) and mean diameter (dm) of the particles would
affect the magnitude of mean free path (λ) between those particles according to Equations (1) and
(2) [22–24], both of which result in a larger mean free path between the inclusions for the data obtained
for steel RE3. According to Equation 1, this value was calculated to be around 12.4, 11.6, 14.1 and
11.4 µm for the data obtained for steels RE1, RE2, RE3 and RE4, respectively:

λ =
4(1−V)

3V
dm, (1)

λ =
(1−V)

V
dm. (2)

In addition, the results in this table also show that inclusions in samples RE3 and RE4 have an
average roundness factor closer to 1 compared to the steels RE1 and RE2. This is clearly depicted in
the images shown at higher magnification in Figure 3; these optical micrographs show that in RE1
(sample without RE) and RE2 (sample with 55 ppm RE), the roundness of inclusions is low (Figure 3a,b)
while the roundness of the particles in RE3 and RE4 samples is closer to 1 (Figure 3c,d). It should be
noted that, although the difference between average roundness factors is about 10–15 percent, the
micrographs show a remarkable difference in roundness factor for the coarser inclusions. This is
due to the fact that small inclusions in all samples look spherical (with roundness close to 1), which
would affect the magnitude of the average roundness factor of inclusions for the different samples.
Furthermore, in the micrographs shown in Figure 3, dark areas surrounded by gray envelope can be
distinguished almost in all cases.
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3.2. Inclusion Characterization by SEM

3.2.1. Sample RE1

Figure 4 shows SEM images of characteristic inclusions observed in sample RE1 along with
their microanalyses. It can be seen in Figure 4a that the roundness of the inclusion particles is low.
In addition, in this figure, black areas could be considered as a gap/hole between the inclusion
and the matrix. These gaps have been reported as one of the reasons for steels susceptibility to
brittleness [25]. Figure 4b (spectrum No. 4) shows a considerable accumulation of Nb in the vicinity of
these inclusions. A detailed evaluation of the larger inclusions in this sample using SE and BSE imaging
modes (Figure 5a,b) revealed that there are white areas around the MnS particles. Microanalyses of
these areas illustrate that there exist aggregations of Nb-rich phases (likely NbC) on the surface of MnS
particle (Figure 5c). It is important to be mentioned that the use of Wavelength Dispersive Spectroscopy
(WDS) should be considered if better limits of detection or accurate and precision performance is
searched for light elements (C, O, N); thus, the results obtained for the light elements should be taken
with caution.

The elemental distribution map of an inclusion in RE1 (Figure 6) confirms the accumulation of
considerable amounts of Nb around the MnS. In addition, the micrographs show an Al2O3 inclusion
surrounded by a MnS particle, which suggests the possibility of MnS nucleation on these oxides. This
type of synergy between Al2O3 and MnS particles has been often observed in the microstructures. It
is noteworthy that, for the steels deoxidized with aluminum, Al2O3 particles exist as non-metallic
inclusions having unique faceted shapes, clusters of which tend to remain in solidified steels [26].
Apart from the Al2O3, another dark area can be seen in the bottom left part of this inclusion, which,
according to the microanalyses, is suggested to be an Si-oxide particle probably originated from casting
in the sand mold. As it can be seen, some parts around this particle have been probably removed
during the preparation process.
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3.2.2. Sample RE2

Figure 7 shows the SEM images and elemental map of an inclusion in sample RE2. Despite the
addition of RE to this sample, there is not a significant change in the nature of inclusions; MnS could
be considered as a dominant inclusion surrounding Al2O3. According to the elemental mappings, the
existence of (La,Ce)-rich phases in the vicinity of Al-oxide would unveil the possibility of formation of
these components on the preexisted Al2O3. Similar to steel RE1, precipitation of considerable amount
of Nb-rich phases (white area) can be clearly seen around MnS in this steel (Figure 7a). Finding these
NbC precipitates at the surface of MnS inclusions was not surprising, as the elements like Al, Mn,
La or Ce form inclusions (oxy-sulphides) in the melt or in the pasty region first, while NbC particles
would nucleate and grow/coarsen after the formation of these inclusions has taken place.
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3.2.3. Samples RE3 and RE4

Figure 8 illustrates a complex inclusion observed in the microstructure of sample RE3. According
to the microanalyses (elemental map), this complex inclusion is mainly composed of a cluster of
cubic light particles all over this inclusion. Due to the high content in La, Ce, Al and O of these
cubic particles, they seem to be (RE,Al)-based oxides (likely (RE,Al)2O3). The results of the EDS
microanalysis performed on one of these cubic (Figure 8d) approve that due to the high oxygen
content, the cubic light particles are oxides as labeled in Figure 8a. Previous reports indicated and
discussed the agglomeration tendency of these cubic inclusions to lower the contact area with molten
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steel [26]. In addition, some small gray particles can be seen in SEM images, which are based on the
microanalyses, are believed to be (RE,Mn)S. In addition to these particles, a darker phase similar to
those observed in Figures 6 and 7 can be distinguished in this complex inclusion, which, according to
the elemental mappings, is proposed to be Al2O3 type. These particles are distributed in the matrix of
this inclusion, which seems to consist of RE-sulfides. Despite the addition of RE to sample RE2, such a
complex inclusion has not been observed in that sample. Regarding the complex inclusion illustrated
in Figure 8, there is no sign of Nb-rich areas in the outer surface of the inclusions, which have been
noticed in RE1 and RE2 (Figures 5–7). It is worth mentioning that, although the Mn-containing particles
co-exist with Al2O3 in RE1, RE2 and RE3, in the latter steel, the presence of Mn is much scarcer.

A characteristic inclusion in sample RE4 and its microanalyses are illustrated in Figure 9. As
observed in steel RE3, the EDS analysis shows the co-existence of Al2O3 particles with RE inclusions in
sample RE4. It should be also mentioned that in this sample the presence of Mn could not be detected
as part of the inclusion composition, suggesting that MnS has not been formed (Figure 9c) in this
sample. This is possibly due to the fact that sulfur has been linked to La/Ce and there is little sulfur
available for the formation of MnS. In fact, when RE consumes S to form RE(S,O)/RES, the content of
S in solid solution as well as its activity will be decreased, lowering the possibility of MnS formation
in the presence of RE. Thus, it can be proposed that the rest of the sulfur exists in the form of solid
solution in the matrix. In addition, in a similar way as for RE3, inclusions in sample RE4 do not show
the accumulation of Nb on the inclusion–matrix interfaces.
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Figure 9. SEM micrograph in (a) BSE and (b) SE modes, (c) EDS analysis of a complex inclusion
observed in steel RE4.

4. Discussion

4.1. Nature of Inclusions: Volume Fraction, Size and Roundness

In order to complement and discuss the results obtained in this investigation, equilibrium phases
and their transformation temperature ranges were calculated by means of Thermo-Calc® (Solna,
Sweden), which is a thermodynamic software based on the CALPHAD (Computer Coupling of Phase
Diagrams and Thermo-chemistry), using TCFE8 database and using the chemical composition of the
base steel (Table 3). It should be mentioned that the database does not contain information regarding
the influence of RE elements on equilibrium phase formation. Although these simulations do not
take into account the influence of RE-alloying elements, they still give very useful information to
understand some of the experimental observations presented in this investigation.

Figure 10 reveals that Al2O3 exists in the molten steel at temperatures even above 1500 ◦C, but
MnS is present at the lower temperature range of the pasty region (<1464 ◦C). These data predict
that, during solidification, alumina (Al2O3) would be formed first, followed by MnS. This sequence
of formation would explain observations like that provided in Figure 6; alumina inclusions already
present in the molten steel at high temperatures would be used as nucleation sites by MnS particles,
which do form at lower temperatures. As a result, complex inclusions with an inner alumina core and
MnS crust would be formed.

As it has been mentioned above, the Gibbs free energy of the formation of RE sulfides is so
negative (Table 1); thus, these components form right after the RE addition into the molten steel. It
seems that 55 ppm addition of RE into the steel (RE2) was not sufficient to consume a considerable
amount of the sulfur in molten steel and, thus, some free sulfur also combined with Mn to promote
the formation of MnS in RE2 (same as in RE1). Higher level of RE additions (RE3 and RE4) would
lead to almost the complete consumption of the sulfur to form sulfides or oxysulphides, reducing the
concentration of free sulfur in the molten steel considerably. In this case, the amount of sulfur available
to form MnS, would be negligible, which could explain why this inclusion can hardly be found in steel
RE3 (Figure 8) or has not been observed in the analysis presented in Figure 9. In other words, when
the amount of RE addition is high enough to consume the entire or considerable amount of sulfur, the
formation of MnS would be avoided and all the Mn would remain in solid solution.
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at which different equilibrium phases are present in the base steel according to Thermo-Calc predictions.

It was shown in Table 5 that, in comparison with the base steel, a low level of RE addition (55 ppm,
RE2) results in having a higher area fraction of inclusions with a larger size while a higher level of rare
earth addition (199.5 ppm, RE3) could decrease both their area fraction and average size. The same
results (higher fraction of inclusions with low level of RE addition) has been reported earlier [10], where
the authors claimed that this outcome would be contributed to the floatability of the inclusions (oxides,
sulfides and oxy-sulphides) in the presence of RE and also to the location in the ingot from which the
studied samples have been taken. In fact, the modification of the oxide inclusions to oxysulphides
improves their floatability because of the lower density of oxysulphides/sulfides compared to oxides.
Hence, with the formation of RE sulfides/oxysulphides, especially regarding the modification of
Al2O3 clusters, RE3 steel achieved the lowest area fraction of inclusions by promoting the floatability
of inclusions towards upper part of the ingot (this kind of complex inclusion that has been trapped
during solidification is shown in Figure 8). In steel RE4, it seems that an excessive amount of RE has
promoted a higher area fraction of inclusions with a larger average size, which could be caused by the
higher activity of RE elements. Considering the cleanliness and associated mechanical properties of
steels, it has been pointed out that the excessive amount of RE in steel should be avoided [5,25].

In this case, for the investigated type of microalloyed steel, it seems that 200 ppm of RE would be
enough in order to avoid the formation of MnS as preferential sites for Nb accumulation and reach a
high roundness factor. A higher level of RE addition beyond this amount would result, as discussed
before, in having a greater volume fraction of inclusions with larger size, which is detrimental for steel
properties [3].

In addition, it was found that, in comparison with the inclusions observed in samples RE1 and
RE2, the roundness factor of inclusions in RE3 and RE4 is closer to 1, which could be attributed to the
formation of RE(S,O)-Al2O3 inclusions in the molten steel and reaching the minimum surface energy
with the melt [23].

4.2. Influence of RE Addition on the Accumulation of Nb-Rich Phases Around MnS and Nanoprecipitation

It is well documented that, among the microalloying elements, Nb plays the most important role
as a solid solution strengthener and it also forms very fine precipitates in the matrix that can contribute
to grain refinement and precipitation hardening in the microalloyed steels [27–35]. Therefore, the
formation of coarse Nb(C,N) precipitates would reduce the amount of Nb available in solid solution
to strengthen through nanoprecipitation. As it has been shown previously, it is evident that Nb
accumulates around MnS in RE1 and RE2 samples (Figures 5–7), likely forming large NbC and/or
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Nb(C,N) precipitates. According to the thermodynamic calculations, NbC precipitates form in the
solid state (austenite) below ~1177 ◦C (Figure 10).

In addition, it is known that the presence of heterogeneous nucleation sites in the matrix, like
MnS inclusions for Nb-rich phases, can even alter the formation range of Nb(C,N) precipitates, shifting
it to higher temperatures [23]. To dissolve these primary large Nb-rich carbonitrides, the steel would
have to be heated to very high temperatures [36], which is not always easy to reach. In contrast to MnS
particles observed in steels RE1 and RE2, (La,Ce)(S,O)-Al2O3 inclusions do not seem to be preferential
sites for Nb(C,N) nucleation in steels RE3 and RE4 (Figures 8 and 9).

The presence of the nanoprecipitates in the matrix has been characterized by TEM in steels RE2
and RE3. Figure 11 reveals the presence of few V-rich precipitates in the microstructure of sample
RE2; these precipitates are also rich in Nb, which suggests that complex (Nb,V)(C,N) precipitates have
been formed. According to the thermodynamic calculations, V-rich precipitates would only form at
temperatures much lower than that of Nb(C,N) (<837 ◦C). As it has been shown in Figure 7, large
Nb(C,N) particles have precipitated at the surface of MnS inclusions in steel RE2, reducing the amount
of Nb in solid solution available to promote nanoprecipitates in the steel matrix, which is the reason
why they have not been detected so easily in this steel. In contrast to RE2, large Nb(C,N) precipitates
have not been observed at inclusion surfaces and the microstructure of RE3 sample shows the presence
of several Nb-rich precipitates (Figure 12). These precipitates are also rich in V, although its presence is
much lower than Nb. As mentioned above, previous studies [20,21] have suggested that RE addition
increases the amount of Nb dissolved in solid solution in the austenite, which would allow forming
Nb(C,N) nanoprecipitates during cooling in the matrix.

There is limited information in the literature concerned with the mechanism by which RE addition
could affect the formation of NbC precipitates in steels. However, the present results suggest that its
formation is associated with the presence of MnS inclusions in the microstructure. The addition of
significant concentrations of RE elements in RE3 and RE4 samples would promote the formation of
(La,Ce)(O,S) inclusions in the melt and the removal of the sulfur from solid solution. As a consequence,
the formation of MnS is inhibited (no sulfur available in solution) and the formation of coarse
Nb-rich phases is avoided, as these do not seem to form at the surface of (La,Ce)(O,S) and only
at MnS inclusions.
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Figure 12. TEM micrograph of steel RE3 presenting Nb-rich precipitates along with their
EDS microanalysis.

It is known that the difference between the thermal contraction of inclusions and the matrix
during cooling can create stress fields around the inclusions leading to the adjacent matrix deformation
or discontinuity between the matrix and inclusion [37–39]. Figure 13 illustrates the thermal expansion
coefficients of conventional inclusions and includes data from different references [40–42]. This figure
has been copied, with permission, from Figure 10 in reference [43]. If the thermal expansion coefficient
of an inclusion is lower than that of the matrix (ferrite), like that of Al2O3, stress fields appear around
the inclusions; however, in the case of higher contraction coefficient than ferrite e.g. MnS, vacancies
and subsequently gaps could appear [37]. It can be seen that MnS has one of the highest values among
the typical inclusions while Al2O3 and other oxides have lower values. It is worth mentioning that the
thermal expansion coefficient of ferrite lies between the values for MnS and Al2O3, which is reported
to be around 11 × 10−6 (1/◦C) [44]. In addition, based on the ThermoCalc predictions (Figure 10),
the investigated steels are hyper-peritectic type; i.e., delta ferrite is the first phase that solidifies from
molten steel during cooling. In addition, MnS has been found to form in the lower range of the pasty
region. It is known that the solubility of sulfur in molten steel is higher than the solid state, so, as
solidification proceeds, the sulfur concentration would build up in the remained molten steel, resulting
in higher sulfide formation [26]. In addition, non-equilibrium condition/heterogeneous nucleation can
alter the formation temperature of MnS to higher temperature. Both phenomena would lead to the
formation of MnS in the temperature range where delta ferrite coexists with the molten steel. In other
words, the proposed mechanism considers the difference between the thermal expansion coefficient of
MnS and the delta ferrite, while when it is compared with that of austenite, such a difference does
not exist. For RE-based inclusions, this factor has been reported to be similar to that of ferrite [38,45].
Eventually, due to the considerable difference between the thermal contraction of MnS and delta ferrite,
MnS creates stress fields at its interface with matrix as well as losing its solid continuity, which is
likely to remain even after transformation of delta ferrite to austenite. Thus, these areas could provide
preferential sites for Nb accumulation/precipitation at high temperature, as it has been experimentally
observed in this investigation.
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Figure 13. Thermal expansion coefficient of conventional inclusions found in steels; this Figure has
been copied from Figure 10 in reference [43].

5. Conclusions

The major findings of the present investigation have been highlighted as follows: according to
SEM results, RE addition can change the nature of inclusions formed during casting. In the base and
low RE-added steels, Al2O3 exists in the molten steel and MnS inclusions form in the pasty region at
lower temperatures, sometimes nucleating at these alumina particles and forming complex inclusions.
Higher level of RE additions to the base steel (RE3 and RE4) promotes the formation of inclusions with
an RE-based matrix instead of Al2O3-MnS inclusions that can modify the Al2O3 cluster as well.

The results of image analyses showed that the inclusions observed in RE3 and RE4 are rounder
than those Al2O3-MnS found in RE1 and RE2. The rest of parameters e.g., area fraction and size of
the inclusions did not follow a clear trend; compared to RE3, inclusions in steel RE4 were larger with
higher area fraction that can lead to poor mechanical properties.

Formation of MnS was suppressed in steels RE3 and RE4, which has been found to serve as
preferential sites for the precipitation of Nb-rich phases. As a consequence, alloying the steel with
more than 200 ppm of RE inhibited the formation of coarse Nb-based precipitates. Thus, Nb remains
in solid solution and available for nanoprecipitation as NbCN.

The precipitation of Nb-rich phases on MnS inclusions would be due to the difference in the
thermal expansion coefficient between the matrix and the MnS particles. This difference could cause
stress fields as well as solid discontinuity at the interface of MnS with matrix during cooling providing
nucleation sites for Nb-rich phases.
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