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Abstract: This study aimed to obtain biocompatible ceramic materials in a Ti–C–Co–Ca3(PO4)2–
Ag–Mg system by the combustion mode of mechanically activated (MA) reaction mixtures.
The influence of the MA time on the reaction ability capability of the mixtures, on their structural
and chemical homogeneity, on the combustion parameters and structural-phase conversions in the
combustion wave, as well as on the structure and phase composition of the electrode materials
has been researched. It was found that the intense treatment of powder mixtures causes plastic
deformation of components, the formation of lamellar composite granules, a reduction in the sizes of
coherent scattering regions, and also the formation of minor amounts of products. The influence of the
activation duration of the ignition temperature and heat release during the combustion of the reaction
mixtures was studied. By the method of quenching the combustion front, it was demonstrated that in
a combustion wave, chemical transformations occur within the lamellar structures formed during
the process of mechanoactivation. It was shown that in the combustion wave, parallel chemical
reactions of Ti with C as well as Ti with Co and Ca3(PO4)2 occur, with a Ti–Co-based melt forming
the reaction surface. Ceramic electrodes with different contents of Ag and Mg were synthesized by
force self-propagating high-temperature synthesis (SHS)-pressing technology using the MA mixtures.
The microstructure of the materials consisted of round-shaped grains of nonstoichiometric titanium
carbide TiCx grains, intermetallic matrix (TiCo, TiCo2, CoTiP), inclusions of Ca and Mg oxides, and
grains of the Ag-based solid solution. An increased content of Ag and Mg in the composition of the
electrodes, as well as an increased MA duration, leads to an enlargement of the inclusions of the
Ag-containing phase size and deterioration in the uniformity of their distribution.

Keywords: self-propagating high-temperature synthesis; mechanical activation; structural-phase
transformations; electrode material; biocompatible

1. Introduction

The functionalization of surfaces of metallic implants in order to form a necessary surface
topography as well as a sufficient level of mechanical qualities, biocompatibility, and bioactivity [1]
is a challenge for modern medical tools. The modification of the chemical composition and
surface roughness of metallic implants significantly enhances the implants’ osteoconductive and
osteoinductive characteristics [2–4]. Antibacterial properties of the coatings prevent the adhesion
and growth of bacteria on the surfaces of implants, decreasing the risk of microbial infection when
such an implant is integrated with living tissues [5]. The application of multicomponent coatings,
in the composition of which each phase or element is responsible for different functional properties,
will permit the effective engineering of an implant’s surface properties. For example, the presence
of titanium carbides and nitrides in the coating ensures the implant’s hardness and wear-resistance.
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To enhance the mechanical properties of the coatings, one has to introduce a biocompatible metallic
component, for example, cobalt, into the coating composition. An addition of a little silver ensures
the antibacterial properties of the coating; such additions can also serve as lubricants, thus improving
the tribological characteristics of the surface [6]. The presence of calcium-phosphate compounds adds
bioactive characteristics to the coating and stimulates the growth of new cells of the osseous tissue on
the implant surface [2].

The properties of multicomponent biocompatible electrospark coatings in a Ti–Co–Ca–Ag–Mg–C–P–O
system deposited using composite electrodes produced by the self-propagating high-temperature synthesis
(SHS) method were investigated in [7]. The optimal content of cobalt binder amounting to 20% was
established, at which a sufficient level of the coating’s mechanical properties, biocompatibility, and
bioactivity are achieved. It was shown that the introduction of Ag and Mg into the coatings’
composition ensures the antibacterial effect of the coating against Escherichia coli (E. coli) and
Staphylococcus aureus (S. aureus) at a level of 98–99% over 24 h. However, these additives have
some inhibiting effect on the proliferation and differentiation of the osteoblasts. The latter is related
to the presence, besides highly dispersed inclusions of silver sized at 100–200 nm, of large particles
up to 1 µm in the coating. When such a multicomponent coating is immersed in physiological liquid,
microgalvanic effects that damage the living cells [8] appear between the Ag particles and other more
electronegative elements (Ti, Mg, Co, or others) in the composition of the coating. An increased
dispersity and homogeneity of the distribution of the silver inclusions will permit us to decrease
the galvanic currents and will positively influence their release kinetics by virtue of an increased
dissolution rate. Moreover, this must favor an accelerated removal of Ag+ ions from the organism.

A preliminary mechanical treatment of the reaction mixture in high-energy planetary centrifugal
mills (PCMs) and attritors [9,10] is an effective method that permits us to decrease the size of the
structural constituents and increase the homogeneity of the component distribution in the SHS
electrodes. The application of high mechanical forces on the reaction mixture allows us to:

- mechanically activate (MA) the mixture, thus increasing its reaction ability by virtue of a decrease
in the crystallite sizes, and an increase in the reaction surface between the components and an
accumulation of the crystalline structure defects. The MA method is widely used in SHS technologies at
the stage of preliminary treatment of weakly exothermic and hardly ignitable mixtures for combustion
synthesis [11–15];

- obtain lamellar granules or multilayer composite structures with a homogeneous distribution of
the elements within the crystallites [16–18];

- evenly distribute little amounts (up to 5 wt. %) of alloying nanosized additives, including ones
with a considerable difference in density [19,20];

- activate the solid-phase or liquid-phase sintering process [21–23];
- conduct mechanochemical synthesis in the mill drums [24–26].
That is why optimization of the MA regime is an important technological task. As a result of the

processes of structural transformation and energy accumulation in the reaction mixture, the initiation
temperature for the SHS process decreases and the rate of the reactions as well as the completeness of
the chemical conversions rises [9–11,13].

This work has aimed at continuing research [7,27] into the production of electrode materials for
the technology of pulsed electrospark deposition (PED) of biocompatible and bioactive coatings with
an antibacterial effect. The main attention has been devoted to an analysis of the influence of the
MA on the reaction ability of Ti–C–Co–Ca3(PO4)2–Ag–Mg mixtures, on their structural and chemical
homogeneity, on the combustion parameters and structural-phase conversions in the combustion wave,
as well as on the structure and phase composition of the electrode materials.

2. Materials and Methods

Powders of titanium (99.0% purity, ~30 µm in size), technical carbon black (99.9% purity, ~0.2 µm
in size), cobalt (99.5% purity, ~63 µm in size), silver (99.0% purity, ~15 µm in size), magnesium (99.0%
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purity, ~75 µm in size), and tricalcium phosphate β-Ca3(PO4)2 (97.5% purity, ~15 µm in size) were
applied as the initial components of the reaction mixture.

The compositions of the reaction mixtures were calculated from the equation (70% − X)(Ti + 0.5C)
+ 20% Co + 10% Ca3(PO4)2 + X% (3Mg + 2Ag), where X is the charge mixture parameter equal to
13% and 24%, which conforms to the Ag and Mg content of 4 and 6 at. % as well as 8 and 12 at. %,
respectively, in the composition.

Low-energy mixing was performed in a ball rotating mill (BRM) (MISiS, Moscow, Russia) at the
following technological parameters: the working volume of the hard-alloy drum was 3 L, the drum
rotational speed was 100 rpm, the ratio of the hard-alloy balls’ mass to the charge mixture mass was
6:1, and the mixing time was 8 h [7]. High-energy mixing (mechanical activation) was performed in an
Aktivator-2S (OOO Machine-Building Plant “Aktivator”, Novosibirsk, Russia) high-speed planetary
centrifugal mill (PCM) in inert argon atmosphere (1 atm.) at the following technological parameters:
the working volume of the steel drums was 250 cm3, the drum rotational speed was 700 rpm (70 g),
and the ratio of the steel balls’ mass to the charge mixture mass was 15:1.

The heat release in the combustion reaction of the MA mixtures was determined using a BKS-2H
(ISMAN, Chernogolovka, Russia) fast combustion calorimeter accurate up to 0.2% in the range of
103–104 J under a constant pressure.

The amount of heat generated during the combustion of the MA mixtures was determined using
a high-speed combustion calorimeter, BKS-2H, with a precision of up to 0.2%.

The experiments on determining the mixtures’ self-ignition temperature were performed in
a reaction chamber in an argon flow at a pressure of 1 atm. Tablets with a relative density of 70%,
a diameter of 3 mm, and a thickness of ~1 mm were pressed from the reaction mixture and installed
on a graphite substrate into a boron nitride crucible with a diameter of 3 mm. The sample ignition
temperature was measured using two W-Re5/20 thermocouples, one of which was installed in the
lower butt end of the crucible, and the other one was on the sample’s surface. The graphite substrate
was heated by passing electric current that transferred the heat to the sample. The ignition temperature
was determined by a characteristic sharp bend of the temperature profile curve.

To study the dynamics of the structural transformations in the combustion wave, the method
of the stopped combustion front (SCF) by quenching in a copper wedge (with a vertex angle of
5◦) [14,28] was applied with subsequent scanning electron microscopy (SEM) and energy-dispersive
spectroscopy (EDS) of the characteristic SCF areas using a Hitachi S-3400N (Hitachi, Tokyo, Japan)
scanning electron microscope equipped with a NORAN (Hitachi, Tokyo, Japan) energy-dispersive
X-ray spectrometer. In order to perform the microstructural research, the SCF sample was embedded
into a current-conducting resin. This microscope was also used for analyzing the microstructure of the
activated reaction mixtures and compact synthesized samples.

The compact materials were obtained using the force SHS-pressing technology in a “sand” mold,
according to the methodology [7,13–15,28]. Synthesized parts were polished, and from their central
parts the samples were cut using an electroerosive tool in order to perform the X-ray phase and
structural research.

The phase compositions of the reaction mixtures and SHS products were studied by an X-ray
diffraction analysis (XRD) using monochromatic CuKα radiation. The scanning was performed in
a step-by-step mode in an angle range of 2θ = 10 ÷ 110◦ with a filming step of 0.1◦ and exposure for
6 s at each point. The obtained spectra were processed using the JCPDS cards.

3. Research Results and Discussion

In order to assess the contribution of the MA to the charge mixture’s reaction ability, the
morphology and structure state of the Ti–C–Co–Ca3(PO4)2–Ag–Mg powder mixtures were studied
at X = 24% after 3–11 min of the MA. The size of the coherent scattering regions (CSRs) as well as
the Ti and Ag microstrain (ε) values were measured using the Rietveld method [29]. The obtained
spectra were processed using a special software package [30]. Table 1 presents the XRD results and



Metals 2017, 7, 378 4 of 15

Figure 1 provides the diffraction patterns after a certain time of the MA. It can be seen that as the
MA duration rises, the CSR becomes smaller and the ε value grows. This evidences an accumulation
of defects of the material’s crystalline structure and growth of the stored energy. Besides the initial
components (amorphous C), the mixtures contain titanium hydride TiH2 due to the calcium-hydride
way of obtaining the Ti powder.

Table 1. Influence of the mechanically activated (MA) duration on the phase composition of the
Ti–C–Co–Ca3(PO4)2–Ag–Mg mixtures at X = 24%, the coherent scattering region (CSR) size, and the Ti
and Ag lattice microstrain values.

Phase α-Ti (hP2/1) Ag (cF4/1) TiH2
(cF12/1)

Mg
(hP2/1)

Ca3(PO4)2
(hR92/2)

α-Co
(hP2/1)

AgMg
(cP2/1)

MA
Duration,

min
wt. % CSR, Å ε, % wt. % CSR, Å ε, % wt. % wt. % wt. % wt. % wt. %

3 39 551 ± 50 0.27 ± 0.03 23 232 ± 30 0.21 ± 0.02 5 7 11 15 –
5 49 420 ± 50 0.27 ± 0.03 19 166 ± 30 0.21 ± 0.02 4 3 9 12 4
6 55 405 ± 50 0.28 ± 0.03 16 166 ± 30 0.25 ± 0.03 4 – 9 11 5
7 56 374 ± 40 0.29 ± 0.03 12 155 ± 20 0.40 ± 0.04 5 – 6 8 13
9 59 366 ± 40 0.30 ± 0.03 11 152 ± 20 0.51 ± 0.05 5 – 5 7 13

10 61 364 ± 40 0.33 ± 0.03 8 142 ± 20 0.57 ± 0.06 4 – 6 3 18
11 Mechanochemical synthesis (Refer to Figure 1c)

The dependence of the microstrain on the duration of the MA is determined by the mixture
components’ elastic characteristics. For the Ti and Ag lattices, the CSRs decreased equally (for ~1.5),
but ε accumulated more in the silver. The microstrain of Ag rises 3 times as compared to the initial
powder, whereas the one of Ti increases only by 30%.

The MA lasting for 1–4 min does not cause any noticeable changes of the mixture’s phase
composition. As a result of the intense plastic deformation, the crystallites are ground, which is
evidenced by a broadening of the peaks that correspond to the α-Ti, Co, and Ag phases (Figure 1).

AgMg intermetallics form in the powder mixture after 5 min of the MA as a result of recurrent
destruction and cold-welding processes [31]. If the MA duration increases, the content of AgMg rises
and the content of Ag and Mg decreases. The decrease of the Ca3(PO4)2 and Co peaks’ intensity
(Figure 1b) indicates an amorphization and a great degree of grinding of these particles [32]; also,
a partial dissolution of Co in the Ti is possible. The maximal solubility of α-Co in α-Ti is ~1.5 wt. % [33].
Mechanochemical synthesis takes place in the mill drums after 11 min of the treatment. As a result,
titanium carbide forms, and TiCo, TiCo2, and TiCoP intermetallics also form (Figure 1c).

Figure 2 presents the microstructures of polished samples of the Ti–C–Co–Ca3(PO4)2–Ag–Mg
powder mixtures at X = 24% after the planetary milling and demonstrates the changes in the
morphology of the mixtures. The mixture prepared in a BRM is characterized by an uneven distribution
of the components (Figure 2a,b). The initial particles do not practically change their shape and sizes
when stirred. After 3 min of the MA (Figure 2c), as a result of collisions with the milling bodies, the
titanium particles are flattened, ground, and the small particles of the other components—Ca3(PO4)2,
C, Ag, and Mg—are evenly distributed. The cobalt particles do not practically change their size and
shape. The 5-min MA (Figure 2d) leads to the formation of elongated titanium layers 2–3 µm thick,
and between their boundaries there are interlayers of Ca3(PO4)2, C, Ag, and Mg. Thus, the specific
surface of the particles and their contact surface increases. When the treatment duration rises up to
7 min (Figure 2e), the powder particles fuse, and agglomerates that are composite particles sized at
50–100 µm begin to form. At this duration of the activation, the cobalt particles deform and change
their shape, and the titanium interlayers become thinner.
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Figure 1. Diffraction patterns of the Ti–C–Co–Ca3(PO4)2–Ag–Mg powder mixtures at X = 24% after the
MA lasting for 3 (a), 10 (b), and 11 (c) min.

Figure 2f presents the microstructure of the composite particle after 9 min of the MA.
The composite’s lamellar structure formed earlier has been destroyed after being exposed to the
shear deformation that occurs during the intense mechanical treatment. A homogeneous distribution
of the Ca3(PO4)2, C, Ag, and Mg components with titanium and cobalt inclusions with sizes up to
10 µm is observed in the particles. After the mechanochemical synthesis at 11 min of the MA, the
structure and morphology of the composite particles does not practically change and consists of grains
of the evenly distributed phases of the reaction products (Figure 2g,h). In addition to that, using the
EDS method for the structure, Ti particles sized at 6–8 µm have been detected that were not found
through the XRD method (Table 1) because of the overlapping diffraction lines of the different phases.
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Figure 2. Evolution of the microstructure of the Ti–C–Co–Ca3(PO4)2–Ag–Mg powder mixtures at
X = 24% after the ball rotating mill (BRM) (a,b) and MA during 3 (c), 5 (d), 7 (e), 9 (f), and 11 (g,h) min.

Figure 3 presents the results of the calorimetric studies of the Ti–C–Co–Ca3(PO4)2–Ag–Mg powder
mixtures at X = 13% and 24% in the form of a chart of the dependence of the generated specific heat
on the MA duration. Due to the possibility of several simultaneous reactions with different thermal
effects in the multicomponent system during the SHS, the obtained dependencies have complicated
profiles that differ from the standard parabolic one [13,14].
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Figure 3. Dependence of the specific heat of combustion on the duration of the MA of the
Ti–C–Co–Ca3(PO4)2–Ag–Mg powder mixtures at X = 13% and 24%.

The MA during 5 min (for X = 13%) and 6 min (for X = 24%) generates an insignificant increase
in the specific heat released during the combustion of the samples. The further increase of the MA
duration leads to a drastic decrease of the heat generation, which is apparently connected with a
significant increase of the content of the forming AgMg intermetallics and heat losses necessary for
their heating and melting. According to the XRD (Table 1), by the 7th minute of the MA of the
composition with X = 24%, the content of AgMg amounts to about 13%, which is ~2.5 times higher
than in the mixture treated for 6 min. When the MA lasts for 7 to 10 min, a sharp rise of the specific
heat generation from the combustion reaction is observed on the curves. According to the data given
in Table 1, when the MA lasts longer, the CSRs of the α-Ti and Ag lattices become smaller and the
value ε rises, which increases the mixture’s calorific value by virtue of an accumulation of energy on
the structural defects and an increase in the reagents’ specific surface when forming the composite
granules with a lamellar structure. The greatest specific heat generation for the composition with
X = 13% is achieved at the MA duration of 9 min. The further mechanical treatment of the mixture
initiates chemical reactions and mechanochemical synthesis that take place directly in the mill drums,
which results in the formation of the reaction products.

The type of dependence of the specific heat generation for the composition with X = 13% repeats,
in general, the course of the curve for the composition with X = 24%, but is characterized by higher
heat generation values. This is explained by an increased content of titanium and carbon in the
reaction charge mixture, and, consequently, a larger contribution of the exothermic reaction to titanium
carbide formation [34].

Thus, when the Ti–C–Co–Ca3(PO4)2–Ag–Mg reaction mixture is mechanically activated,
competing processes can be marked out: on the one hand, the increase in the reaction surface and
accumulation of the energy of the structure defects; and on the other hand, the partial chemical
conversion that decreases the system’s energetic capabilities.

The composition of combustion products after the combustion of the MA mixture at X = 24%
in the high-speed calorimeter is presented in Table 2. Based on the XRD results, it can be concluded
that the duration of the reaction mixture treatment does not affect the final phase composition of the
synthesized samples. The phase content is almost identical: the difference does not exceed 1–5%.
An increasing MA time increased the depth of the combustion reaction conversions, which lead to the
disappearance of the reaction intermediates (TiCo3).
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Table 2. Composition of the synthesis products after the combustion of the Ti–C–Co–Ca3(PO4)2–Ag–Mg
mixtures at X = 24% in BKS after the MA for 5, 7, and 9 min.

MA Duration, min 5 7 9

Phase
(Pearson Symbol) wt. % Lattice

Parameter, Å wt. % Lattice
Parameter, Å wt. % Lattice

Parameter, Å

TiC (cF8/2) 49 a = 4.311 43 a = 4.309 44 a = 4.310
AgMgx (cF4/1) 18 a = 4.099 17 a = 4.112 18 a = 4.117

CaO (cF8/2) 6 a = 4.803 7 a = 4.805 6 a = 4.807
TiCo2 (cF24/1) 5 a = 6.682 12 a = 6.708 11 a = 6.711
TiCo (cP2/1) 4 a = 2.981 13 a = 2.969 13 a = 2.968
TiCo3 (cP4/2) 10 a = 3.618 – –

CoTiP (oP12/2) 8 – 8 – 8 –

Figure 4 presents the results of measuring the self-ignition temperature (Tig). The Tig of the
non-activated mixture prepared in the BRM was equal to ~1010 ◦C. After 3 min of the MA, the
self-ignition temperature decreases by 275 ◦C. An increase of the MA duration up to 7 min does
not practically change the Tig. Within the range of 7–10 min, the self-ignition temperature decreases
from 710 ◦C to 590 ◦C. A further increase in the activation time leads to the growth of the Tig, which
corresponds to the results of the heat generation measurements (Figure 3) within this range, and is
explained by the starting chemical conversions that decrease the system’s energetic capabilities.
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Figure 4. Dependence of the self-ignition temperature on the duration of the MA of the
Ti–C–Co–Ca3(PO4)2–Ag–Mg powder mixtures at X = 13%.

The combustion wave quenching experiments exemplified by the composition with X = 13%
activated for 5 min, with a subsequent energy-dispersive spectroscopy analysis of the characteristic
areas of the stopped combustion front, have permitted us to make suppositions about the phase
conversion dynamics. The combustion front line is marked in Figure 5a. To the left of this line, there is
a pre-heating zone with particles of the initial reagents that have not reacted yet, including the lamellar
composite granules formed during the MA (Figure 5b), as well as separately occurring Co and Ti
particles. To the right of the combustion front, there is a combustion zone (Figure 5c). The combustion
temperature for this composition (~1812 ◦C) measured by the thermocouple permits us to suppose
that particles of all of the components except carbon melt in the combustion wave.
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Figure 5. The microstructures of the stopped combustion front (SCF) from the
Ti–C–Co–Ca3(PO4)2–Ag–Mg mixture at X = 13% activated for 5 min in various areas of the
quenched sample. (a) general view of the sample’s SCF; (b) initial charge mixture; (c) combustion zone;
(d,e) post-combustion zone; (f,g) final product.

When researching the combustion zone, one can note that the size and shape of the formed melt
areas practically coincide with the size and shape of the initial composite lamellar particles (Figure 5b,c).
The proximity of the sizes of the reaction mixture powder granules and the quenched area particles in
the combustion wave indicates that the chemical conversion—namely, the melting of the component
particles, the stirring of the melts, the impregnation of the carbon black surface, and the structurization
of the product—takes place within a reaction cell granule. Further, in the post-combustion zone, the
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melts fuse (Figure 5d). During detailed research of the post-combustion zone (Figure 5e), small circular
grains of titanium carbide TiCx (size up to 1 µm) have been noted. This phase forms through the
known mechanism of reaction diffusion after the formation of a titanium melt and the dissolution of
carbon in it [25,34]. Apart from this, one can observe the products of the interaction of titanium and
cobalt with tricalcium phosphate: calcium oxide, CaO, as well as CoTiP phosphate phase, distributed
over the titanium carbide grain boundaries.

The final product (Figure 5f,g) consists of carbide grains sized up to 1 µm and an interlayer based
on a Ti–Co metallic binder, in which phosphorus is dissolved. The carbide grains grow through the
coalescence mechanism and diffusion processes in the post-combustion zone as it cools. When the
reaction is completing, the concentrations become even within the whole volume of the product, and
the composition approximates to equilibrium. The light-colored irregular inclusions sized from 1 to
2 µm are the phase of the silver-based solid solution, in which Mg is dissolved, according to the results
of the energy-dispersive spectroscopy analysis.

To obtain compact samples through the force SHS-pressing technology, Ti–C–Co–Ca3(PO4)2–Ag–Mg
mixtures of the following compositions were prepared: X = 13% (BRM and MA for 5 and 9 min); X = 24%
(MA for 5 min). Table 3 provides the phase composition of the synthesis products. Nonstoichiometric
titanium carbide TiCx is the main phase in all of the samples. The calculated lattice constant of TiCx in all
of the samples is a = 4.309÷ 4.313 Å, which corresponds to the stoichiometry of TiC0.6 [35]. An addition
of Co into the reaction mixture causes its melting in the combustion wave and interaction with a part
of the titanium melt. At a temperature of 1325 ◦C, TiCo intermetallics with a wide homogeneity area
crystallize from the melt. A TiCo2 intermetallic with a cubical crystal structure apparently forms in the
post-combustion zone through the peritectic reaction TiCo + L→ TiCo2 at 1235 ◦C [33].

Table 3. Phase composition of the compact products of the synthesis.

Mixture
Composition
and Mixing

Type

Phase (Pearson Symbol)

TiC (cF8/2) TiCo (cP2/1) TiCo2 (cF24/1) CoTiP (oP12/2) AgMgx (cF4/1) CaO (cF8/2) MgO (cF8/2)

wt. %
Lattice

Parameter,
Å

wt. %
Lattice

Parameter,
Å

wt. %
Lattice

Parameter,
Å

wt. %
Lattice

Parameter,
Å

wt. %
Lattice

Parameter,
Å

wt. %
Lattice

Parameter,
Å

wt. %
Lattice

Parameter,
Å

a (BRM) 61 a = 4.309 20 a = 2.965 – 10
a = 6.033
b = 3.557
c = 6.875

7 a = 4.107 2 a = 4.802 –

b (5 min of
MA) 60 a = 4.313 10 a = 2.969 8 a = 6.714 9

a = 6.033
b = 3.562
c = 6.864

10 a = 4.105 3 a = 4.804 –

c (9 min of
MA) 50 a = 4.313 – 18 a = 6.699 6 – 15 a = 4.104 6 a = 4.801 5 a = 4.213

d (5 min of
MA) 44 a = 4.312 20 a = 2.970 7 a = 6.712 10

a = 6.018
b = 3.549
c = 6.877

16 a = 4.117 3 a = 4.804 –

Ti–C–Co–Ca3(PO4)2–Ag–Mg at X = 13% (a–c); Ti–C–Co–Ca3(PO4)2–Ag–Mg at X = 24% (d).

In all of the synthesized samples, a ternary compound of complex titanium and cobalt phosphite
CoTiP, calcium oxide CaO, and an Ag-based substitution solid solution with a cubical lattice are present.
The calculated value of the silver lattice constant equals from 4.104 to 4.117 Å, which greatly exceeds
its standard value (a = 4.086 Å), and can be a consequence of the dissolution of Mg in Ag [7]. In the
sample obtained from the charge mixture activated for 9 min, besides calcium oxide, there is 5% of
MgO. The intense mechanical treatment of the mixture in the high-energy planetary centrifugal mill
favors the formation of new reaction surfaces, on which a significant amount of admixture gases is
adsorbed while preparing the mixture for the SHS compacting. Since magnesium and calcium have a
high affinity for oxygen, during the combustion they actively react and form oxides.

Figure 6 provides the microstructure of the synthesis products. The compact materials consist of
circular grains of titanium carbide located in the matrix based on TiCo and TiCo2 intermetallics as well
as ternary CoTiP compound. The average size of the carbide grains in the sample synthesized from the
BRM mixture (Figure 6a) equals to 2.4 µm. The CaO phase is located in the intergranular areas in the
form of faceted crystals. The light-colored irregular inclusions sized from 4 to 6 µm are the phase of
the silver-based solid solution, in which 10.5–12.5 at. % of Mg is dissolved, according to the results of
the energy-dispersive spectroscopy analysis.
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Figure 6b presents the microstructure of the compact sample synthesized from the
Ti–C–Co–Ca3(PO4)2–Ag–Mg mixture at X = 13% activated for 5 min. The highly-energetic treatment
has reduced the silver inclusions size in the compact product to 1–2 µm and has favored the decrement
of TiCx grains size to 1.4 µm. The compact sample from the mixture mechanically activated for 5 min
is characterized by a homogenous structure with an even distribution of the silver-based inclusions,
which must ensure a stable speed of removal of Ag+ ions from the PED coatings. Apart from this,
a diminution of the structural constituents of the material, titanium carbide grains in particular, must
increase the intensity of the electrode (anode) dispersion. At an invariable energy of the pulsed
discharges, the anode erosion rate will rise owing to a steady flow of small fragments commensurable
with the electrode material grains to the substrate (cathode), which results in an enhanced quality of
the formed coatings (continuity, thickness, homogeneity) [36–38].

The increased duration of the MA of Ti–C–Co–Ca3(PO4)2–Ag–Mg mixture at X = 13% up to 9 min
in order to achieve the maximal heat generation (Figure 3) caused an active emission of gases during
the combustion of the reaction mixture, which loosens the sample structure and results in the formation
of large pores and cracks (Figure 6c).

The increased content of silver and magnesium (X = 24%) led to the formation of large
accumulations of AgMgx phase (Figure 6d) in the synthesized sample. It should be noted that
this compound is the last one to crystallize (in the range of 760–960 ◦C), and the size of the AgMgx

phase precipitates depends non-linearly on the total volume fraction of silver and magnesium in the
alloy (at X = 13%, Dav

AgMgx = 1−2 µm; at X = 24%, Dav
AgMgx = 10−15 µm). The twofold increase

of their content leads to a practically tenfold enlargement of the silver-based solid solution grains.
This effect is caused by a coalescence of the AgMgx melt sites in the post-combustion zone, which
additionally deteriorates the homogeneity of the distribution of silver in the sample.Metals 2017, 7, 378  13 of 16 
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mixtures composed of: X = 13% (BRM) (a); X = 13% (MA for 5 min) (b); X = 13% (MA for 9 min) (c);
X = 24% (MA for 5 min) (d).

Summarizing, we can state that the increased concentration of Ag and Mg is not permissible in
the samples. Large grains (globules) of solid (Ag) solution with an inhomogeneous distribution form
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because of the strong surface tension and bad wettability of the melt which forms during the synthesis.
Moreover, a long MA is also undesirable due to the active emission of gases during the combustion of
the reaction mixture, which makes the material’s structure less dense.

The optimization of the technological regimes of the force SHS-pressing technology for the
Ti–C–Co–Ca3(PO4)2–Ag–Mg reaction mixtures at X = 13% allowed us to produce electrodes with
a section of 4 × 4 mm and a length of 40 mm (Figure 7) for the pulsed electrospark deposition of
bioactive coatings that have an antibacterial effect. The measured residual porosity of the materials lies
within the range of 5–10% optimal for PED. It can be expected that an application of MA to the reaction
mixtures will make it possible to enhance the homogeneity of the distribution of alloying additives in
the electrodes, which will improve the mechanical and functional properties of the coatings, to which
further works will be dedicated.Metals 2017, 7, 378  14 of 16 
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Figure 7. Pulsed electrospark deposition (PED) electrodes obtained using force self-propagating
high-temperature synthesis (SHS)-pressing technology in a Ti–C–Co–Ca3(PO4)2–Ag–Mg system.

4. Conclusions

1. The study has been conducted on the influence of mechanical activation on the structural and
phase transformations in the reaction mixtures in a Ti–C–Co–Ca3(PO4)2–Ag–Mg system with the
content of Ag amounting to 4 and 8 at. % as well as the content of Mg amounting to 6 and 12 at. %
with the MA duration varying from 0 to 11 min. It has been shown that, during the MA, the initial
components undergo plastic deformation, there is a formation of lamellar composite granules, a
decrease in the coherent scattering regions, a formation of an AgMg intermetallic, and a gradual
increase of its content in the mixture.

2. The influence of the MA duration on the ignition temperature and heat generation during the
combustion of the reaction mixtures has been investigated. The dependencies are extreme: when
the MA duration increases, the starting temperature of the reaction decreases and the reaction
mixture’s calorific value rises due to an accumulation of macro- and microdefects in the initial
powders, and then there is a small increase of the initiation temperature and a decrease of the
specific heat generation due to a partial formation of the synthesis products in the mill drum.

3. Ceramic materials with a Co-based metallic binder have been obtained from the MA
Ti–C–Co–Ca3(PO4)2–Ag–Mg mixtures using force SHS-pressing technology. The compact
ceramics consist of a bound framework of nonstoichiometric TiC0.5–TiC0.6, with phases of
intermetallics (TiCo and TiCo2) which are evenly distributed over the grain boundaries as well as
the complex phosphide CoTiP. The introduction of Ag and Mg has resulted in the formation of a
silver-based solid solution phase.

4. Electrodes for pulsed electrospark deposition of biocompatible and bioactive coatings, including
ones with an antibacterial effect, have been made from the activated Ti–C–Co–Ca3(PO4)2–Ag–Mg
reaction mixtures.
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