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Abstract: This article presents the results of investigation of the influence of holding temperature
during the quenching process on the microstructure and superplasticity of the Co-Ni-Nb alloy.
Temperature-strain rate intervals of the deformation of the superplasticity effects are stated.
The optimal regimes of the preliminary treatment by quenching and rolling as well as the routine of
the superplastic deformation of the Co-Ni-Nb alloy are defined. The interval of the temperatures
of the precipitation, morphology, composition, type and parameters of the lattice of the secondary
phase, which appears after the annealing + rolling (to 90%) Co-Ni-Nb alloy, are determined.
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1. Introduction

The application of the superplasticity (SP) effect in the technology of metal treatment under
pressure enables the production of metallic parts of complex configuration in a single operation. This
approach reduces energy consumption and cost of the items and increases labor productivity [1–3].
Therefore, of specific interest are high-strength disperse-hardening alloys with the base of cobalt
and nickel, which are highly resistant to treatment and become fragile after standard methods
of treatment [4]. The paper [5] presents phase diagrams of the triple Co-Ni-Nb systems, where
there were performed identification of phases that may form at the micro level, to predict how the
microstructure changes upon the heat treatment used. Most effort has been focused on mechanisms
of superplasticity [6]. A practical application of the SP of alloys poses important problems to
be solved: the features of the precipitation and parameters of particles of the secondary phases,
as well as the detection of basic and accommodative mechanisms of superplastic deformation (SPD).
The understanding of these phenomena will allow for a deeper insight into the nature of superplasticity
of alloys, and form the basis for the development of new methods of treatment for the design of
structures with optimal technological properties. So far the literature has presented no data on the
influence of holding temperature before quenching on superplastic properties of the Co-Ni-Nb alloy
and the contradictory information about the secondary phases, defined in the given alloy. Such types
of alloys are employed as a conducting spring in dental lighting devices [7].

Therefore, this suggests the following tasks:
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• The influence of quenching temperature on the structure and superplastic properties of the
Co-Ni-Nb alloys;

• The study of peculiarities of the formation of fine-grained superplastic structures at the annealing
temperature of the rolled samples;

• The influence of structure and phase composition on the superplasticity of an alloy;
• The definition of optimal deformation regime.

2. Materials and Methods

The Co-Ni-Nb alloy samples were prepared in accordance with GOST-9651-84 and had chemical
composition: base—Co, wt. 28%-Ni, wt. 5%-Nb, wt. 0.2%-Si. The quenching was performed in
room temperature water. The deformation treatment was performed on a standard rolling mill.
The thermal treatment of the samples was carried out in a tube-type furnace “SUOL-4” (Tula-Therm,
Tula, USSR) in quartz tubes, where vacuum was maintained with a residual pressure less than
10−3 MPa. The superplastic deformation was completed on the 1246R device in vacuum with a residual
pressure 10−5 MPa. The study of a microstructure was made on “HITACHI S-3400N” (HITACHI,
Japan) in the scanning electron microscope by the regime of secondary electrons under the accelerating
tension of 25 kV voltage. The analysis of a phase state of the samples was performed on the X-ray
diffractometer “DRON-3” with using Co Kα and Cu Kα X-rays (Burevestnik inc, St. Petersburg, Russia).
The elemental analysis was performed by the energy dispersive X-ray fluorescence spectrometer SRV-1
(TechnoAnalit, Ust-Kamenogorsk, Kazahstan). The tube with a molybdenum anode BS-1 (U = 25 kV,
I = 30 mA) and the energy resolution semiconductor detector were used (170 eV). The exposure time
was 180 s. The Scanning Electron Microscopy (SEM) images were prepared using Hitachi S-3400N
equipped with detector EDS Thermo Scientific Ultra Dry operating at 5 kV/10 kV. Microhardness
measurements of the samples were performed on a PMT-3 microhardener (GEO-NDT, Moscow, Russia),
with an indentor load P = 100 and a holding time of 10 s. As an indenter, a regular tetrahedral diamond
pyramid with a vertex angle of 136◦ was used to measure the microhardness, similar to the method for
determining the Vickers hardness.

3. Results and Discussion

3.1. Structural-Phase State of Co-Ni-Nb Alloy after the Quenching

The metallographic (Figure 1a) and X-ray diffraction (Figure 2a (2)) studies show that quenching
of the Co-Ni-Nb alloy at 1423 K for 10 min creates a one phase state with the formation of homogeneous
solid solution Nb in Co-Ni matrix, having face-centered cubic lattice with a parameter a = 0.356 nm.
The microstructure of the initial state sample of the Co-Ni-Nb alloy is characterized by equigranular
grains and the presence of twins, which are traced in almost every grain (Figure 1a,b). The average
size of grains determined by the intercept method is about 30 µm (Figure 2a). However, according
to the data presented in paper [8], which revealed the quenching temperature and the influence of
the regime of the consequent ageing on the service properties of the Co-Ni-Nb alloy, the most optimal
combination of the durability properties (the relaxation stability and low electric resistance) is reached
as a result of quenching at 1223 K (10 min) and ageing at 873 K (5 h).
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Figure 1. Structural-phase state of the Co-Ni-Nb alloy: (left side) initial sample microstructure and 

(right side) fragment microstructure with twins (black arrows). 

The data obtained by the methods of optic microscopy (Figure 1b) and X-ray diffraction analysis 

(Figure 2a) also establish that the Co-Ni-Nb alloy takes the state of only one γ-phase in solid solution 

both after quenching at 1223 K (10 min) and after quenching at a much higher temperature than 1423 

K. The structure of the alloy quenched at 1223 K features grains of less size (d = 18 µm) and much 

fewer twins (Figure 1b). 

  

Figure 2. Fragments of diffractograms of Co-Ni-Nb alloy: (a) after quenching at 1223 K (10 min) (1) 

and at 1423 K (10 min) (2); (b) after annealing at 773 K (1 h) (1), 973 K (1 h) (2) and at 1173 (1 h) (3). 

3.2. The Results of the Studies of the Secondary Phase of Co-Ni-Al Alloy 

Annealing at 773 K (1 h) + rolling (90%) the Co-Ni-Nb alloy did not evoke decomposition of γ-

phase of solid solution (Figure 2b). The X-ray diffraction of annealing at 973 K of alloy shows reflexes 

of the secondary phase with the hexagonal close-packed (HCP) lattice (Figure 2b). The electron 

microscopy (Figures 3 and 4) and metallographic methods confirm the appearance of the secondary 

phase of spherical shape after rolling (90%) and annealing of the Co-Ni-Nb alloy. 

The analysis of the structure of the surface of the Co-Ni-Nb alloy by the scanning electron 

microscopy makes it possible to state that particles of the secondary phase at tempering can 

precipitate not only on the edges of grains (Figure 3a) but also inside in their volume. As a result, at 

the initial stage of decomposition of the alloy a matrix structure with finer particles of the secondary 

phase is formed (Figure 3b). The size of the matrix grains equals <d> = 2–3 µm after annealing at 1153 

K (25 min), and the size of particles of the precipitation is <d> = 0.2–0.4 µm. 

Figure 1. Structural-phase state of the Co-Ni-Nb alloy: (left side) initial sample microstructure and
(right side) fragment microstructure with twins (black arrows).

The data obtained by the methods of optic microscopy (Figure 1b) and X-ray diffraction analysis
(Figure 2a) also establish that the Co-Ni-Nb alloy takes the state of only one γ-phase in solid solution
both after quenching at 1223 K (10 min) and after quenching at a much higher temperature than 1423 K.
The structure of the alloy quenched at 1223 K features grains of less size (d = 18 µm) and much fewer
twins (Figure 1b).
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Figure 2. Fragments of diffractograms of Co-Ni-Nb alloy: (a) after quenching at 1223 K (10 min) (1)
and at 1423 K (10 min) (2); (b) after annealing at 773 K (1 h) (1), 973 K (1 h) (2) and at 1173 (1 h) (3).

3.2. The Results of the Studies of the Secondary Phase of Co-Ni-Al Alloy

Annealing at 773 K (1 h) + rolling (90%) the Co-Ni-Nb alloy did not evoke decomposition of
γ-phase of solid solution (Figure 2b). The X-ray diffraction of annealing at 973 K of alloy shows
reflexes of the secondary phase with the hexagonal close-packed (HCP) lattice (Figure 2b). The electron
microscopy (Figures 3 and 4) and metallographic methods confirm the appearance of the secondary
phase of spherical shape after rolling (90%) and annealing of the Co-Ni-Nb alloy.

The analysis of the structure of the surface of the Co-Ni-Nb alloy by the scanning electron
microscopy makes it possible to state that particles of the secondary phase at tempering can precipitate
not only on the edges of grains (Figure 3a) but also inside in their volume. As a result, at the initial
stage of decomposition of the alloy a matrix structure with finer particles of the secondary phase
is formed (Figure 3b). The size of the matrix grains equals <d> = 2–3 µm after annealing at 1153 K
(25 min), and the size of particles of the precipitation is <d> = 0.2–0.4 µm.
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grains quickly dissolve. As a result, particles merge at the boundary of the grains due to the inflow 

of released atoms. 
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annealing at 1073 K the size of particles of the secondary η-phase begin growing and the alloy has 

two-phase micro duplex structure of grains with the equiaxed grain (Figure 4). The body of the grains 
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thermal processing of similar hetero-phase alloys usually brings about the expanding of the 

temperature interval of precipitation and stabilization of secondary phases, which improves the 
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Figure 3. Scanning electron microscopy of the Co-Ni-Nb alloy structure after annealing at 773 K
(1 h) + 90% rolling at room temperature and the annealing at 1153 K (25 min) (picture (a) with 6000
magnification and picture (b) with 15,000 magnification) and grain size histogram (c) obtained by the
intercept method.

With the elongation of the annealing time up to 1 h, earlier precipitated particles inside new
grains quickly dissolve. As a result, particles merge at the boundary of the grains due to the inflow of
released atoms.

HCP phase of precipitation starts from the ageing temperature at 923–973 K. After 4 h of annealing
at 1073 K the size of particles of the secondary η-phase begin growing and the alloy has two-phase
micro duplex structure of grains with the equiaxed grain (Figure 4). The body of the grains is almost
free from dislocation, and the size of secondary phases grains is smaller than 1 µm. A similar type of
structure of grains with the non-coherent high angle grain boundaries is considered favorable for the
realization of the superplasticity effect.

In this paper, the parameters of the lattice, the composition of dark particles in hexagonal
close-packed (HCP) phase (Figure 4) are established by the X-ray and electron-microscopic analysis.
HCP phase have lattice parameters a = 5.62 Å and c = 7.90 Å. It is noteworthy that under the annealing of
the rolled (90%) Co-Ni-Nb alloy particles of HCP phase precipitating within the interval of 973 K–1153 K
take a spherical shape. This result differs from that presented in referennce [8,9], where particles had
a plate shape. Paper [9] stated that the ageing of the Co-Ni-Nb alloy evokes precipitation of the
equiaxed particles of the high-temperature stable phase within the interval of 1123–1223 K.
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Figure 4. Pictures of secondary phase precipitations after rolling-mill (90%) and annealing for 5 min at
1143 K obtained with the Scanning Electron Microscope.

Rolling and annealing of the Co-Ni-Nb alloy, preliminary quenched from the temperature higher
than 1223 K (10 min), results in the formation of two-phase micro duplex structure under a continuous
recrystallization and precipitation of the secondary phase. However, it is stated that the temperature
interval of HCP-phase precipitation is expanding significantly and covers the range of 873–1213 K,
which is 90 K larger than after the annealing at 1423 K (10 min). This fact explains the temperature
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decrease of the annealing of the Co-Ni-Nb alloy from 1423 K to 1223 K, because the thermal processing
of similar hetero-phase alloys usually brings about the expanding of the temperature interval of
precipitation and stabilization of secondary phases, which improves the exploiting properties.

The character of the dependence of both volume faction of HCP-phase and grain size of the matrix
on the annealing temperature has been defined. A visible precipitation of the HCP-phase starts at 873 K
and, under further temperature increase, grows, reaching the maximum value at 1073–1123 K (Figure 5
curve-a). Dissolution of the particles of HCP-phase in the matrix above 1123 K and the consequent
reduction of its volume faction evoke the dramatic growth of the matrix grains (Figure 5 curve-b).
The obtained results show that the particles of HCP-phase precipitated under the annealing of rolled
(90%) Co-Ni-Nb alloy hinder the growth of matrix grains and, therefore, stabilize the microstructure in
the wide temperature interval.
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Figure 5. Dependences of the volume faction of HCP-phase (f HCP, curve-a) and grain size of γ-matrix
(dγ, curve-b) of the Co-Ni-Nb alloy (preliminary quenching from 1223 K (10 min) and 90% rolling) on
the annealing temperature (T).

The dependence of microhardness (Hµ) on the annealing temperature of the studied alloy presents
the decrease of the microhardness value at 973–1023 K (Figure 6). It is most likely related to the
beginning of the recrystallization process and removal of hardening caused by the preliminary
rolling. The rectilinear part on the graph (about 1100 K), observed under further temperature
increase, is explained by the precipitation and growth of the HCP-phase particles, which stabilize
the matrix structure and the alloy hardness to some extent. Above 1193–1213 K a dramatic decrease
in micro-hardness occurs because of the reverse process of the dissolution of the phase particles in
the matrix and transition of the alloy into the one-phase state. Thereof, the HCP-phase particles
precipitation at the annealing of the 90% rolled alloy not only stabilize the microstructure but also
promote the stability of micro-hardness.
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Figure 6. The dependence of the microhardness (Hµ) on the annealing temperature (T) of the studied
alloy after the quenching at 1223 K (10 min) and 90% rolling.
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To define the element composition of HCP phase and analyze the changes in the element
concentration in the matrix, X-ray fluorescence analysis of the samples has been made. The studies
of the composition of the samples have been performed after quenching at 1223 K, 90% rolling and
annealing at 1153 K (25 min), because such procedure of treatment contributes to the improvement
of superplasticity properties and a large amount of HCP-phase. After electrochemical etching of the
obtained samples at 1153 K (25 min), the concentration of cobalt decreases, but the amount of niobium,
reversely, increases compared to the polished sample (Table 1).

The results of the X-ray fluorescent analysis of the chemical composition of the HCP-phase
particles, obtained by the precipitation on anode and mounted on the replica are presented in Table 1.
They are clearly different from the matrix with the small concentration of cobalt and saturated niobium
with the concentration up to 17%.

Table 1. Data of the chemical composition of the samples of the Co-Ni-Nb alloy obtained on an
X-ray-fluorescent energy-dispersion spectrometer.

Treatment of the Studied Sample Amount in wt. % (in Mass)

Mn Co Ni Nb

quenching at 1223 K, 90% rolling and annealing at 1153 K (25 min)
after polishing <0.5 67.8 ± 0.9 28.5 ± 0.95 3.2 ± 0.8
after etching <0.5 67.0 ± 0.9 28.7 ± 0.96 3.8 ± 0.81
participles of HCP-phase on the coal replica 53.3 ± 0.95 29.9 ± 0.98 16.8 ± 0.85

The analysis of the chemical composition of microzones of the studied alloy (Table 2) performed
on the scanning electron microscope equipped with the microanalyzer (Figure 7), presents a good
agreement with the X-ray-fluorescent analysis.

Table 2. Data on the elements composition of the samples of the Co-Ni-Nb alloy obtained on the
electron microscope with the microanalyzer.

Treatment of the Studied Sample Amount in wt. % (in Mass)

Mn Co Ni Nb

quenching at 1223 K, 90% rolling and annealing at 1153 K (25 min)

Matrix - 65.0 ± 0.7 29.9 ± 0.8 5.1 ± 0.6

HCP–phase - 54.0 ± 0.6 30.2 ± 0.8 15.8 ± 0.6
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15–18% Nb (Tables 1 and 2).
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3.3. The Results of the Analysis of the Influence of Quenching Regime and Temperature—Strain Rate
Conditions Deformation on the Superplasticity of the Co-Ni-Nb Alloy

In paper [10] superplasticity of the Co-Ni-Nb alloy is detected in the samples quenched at
1423 K (10 min) and 87% rolled at the deformation temperature 1143 K and the strain rate equals
0.7 × 10−3 s−1. Therefore, the oversaturated solid solution of the Co-Ni-Nb alloy was obtained at
1423 K (10 min).

67CoNi5Nb alloy, rolled to 60% at high temperature strain, reveals the signs of superplasticity.
The highest ductility value δ = 158% and the index m = 0.41, which describes the sensitivity of the flow
rate of stress to strain, are achieved at 1203 K and

.
ε = 1.2 × 10−4 s−1, correspondingly.

After quenching at 1423 K (10 min) and 90% rolling the Co-Ni-Nb alloy shows the effect of
superplasticity in the deformation range of 1053–1243 K. Maximum values of the relative residual
elongation (δ) and the m index reach 780% and 0.44, respectively, at the deformation temperature
1143 K and velocity 0.72 × 10−3 s−1 (Figure 8a). The experimentally defined dependence of the tensile
strength (σ) of the Co-Ni-Nb alloy on the deformation velocity (

.
ε) at 1143 K for optimal superplasticity

is precisely (R2 = 0.9994) described by the σ = 1111.7 × .
ε0,4644 function (Figure 8b). Conformity of this

dependence with the common empirical σ = k × .
εm equation verifies a viscose state of the Co-Ni-Nb

alloy after being treated. This empirical equation was used to calculate the value of coefficient k (1111.7)
and the value of the index of the strain rate sensitivity of the flow tension (m) ≈ 0.46, the latter is close
to 0.44 obtained with Hedworth-Stowell method [11]. The decrease of the alloy quenching temperature
from 1423 K to 1223 K leads (at superplastic deformation TSPD = 1143 K and

.
ε = 1 × 10−3 s−1) to the

improvement of the ductility from 780 to 1140%.
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Figure 8. The mechanical properties of the Co-Ni-Nb alloy at the superplastic deformation.
Dependencies of the relative residual elongation (δ) (curve 1) and the tensile strength (σ) (curve 2) on
the superplastic deformation temperature (T) obtained at velocity = 0.72 × 10−3 s−1 (a) and dependence
of the tensile strength (σ) on the stretching speed (

.
ε) at T = 1143K (b).

There are two reasons for the plasticity strengthening for the Co-Ni-Nb alloy after quenching
from 1223 K and 90% rolling. The first reason is that the grain size (d) after quenching from 1223 K
equals 18 µm. This is 3.5 to 4 times less than after quenching from 1423 K. The second reason is that
after quenching from 1223 K (10 min) the twin quantity is much smaller (compare Figures 1 and 9a).
The twins are known to worsen superplastic properties of alloys [2,3]. Therefore, the quenching of
the Co-Ni-Nb alloy from 1423 K proves to be inefficient due to insufficient plasticity at superplastic
deformation, since relative elongation after the break is 1.6 times smaller than after quenching from
1223 K.

The experimental results can find their practical application in the improvement of technological
plasticity of the Co-Ni-Nb alloy. Therefore, the following regime of treatment can be suggested:
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quenching from 1223 K (10 min) + 90% rolling and superplastic deformation at 1143 K and
.
ε = 1 × 10−3 s−1. Such a regime makes it possible to obtain a structure with good technological
characteristics and optimal combination of exploiting features.

Next, for the further studies of the alloy, processing was employed—quenching at 1223 K (10 min)
+ 90% rolling and annealing at 1153 K (20 min). This processing helped produce a fine-grain superplastic
structure with an average grain size (d) of the matrix ≈ 2.7 µm. The metallographic pictures show
the precipitation of spherical particles on the borders of the matrix with the average size of grains
(d) equal from 1 to 1.5 µm (Figure 4b). This fact is in agreement with the above-presented results for
superplastic deformation. This phenomenon was verified by X-ray diffraction and electron-microscopy
measurements which show that optimal superplastic properties are typical for the alloy with two-phase
fine-grain structure (d = 4 µm), consisting of grains of γ-matrix and particles of the secondary
HCP-phase. The volume part of HCP-phase particles (<fη>) defined with the methods of quantitative
metallography is 17–20%. The samples of the Co-Ni-Nb alloy were subjected to deformation at
T = 1143 K and

.
ε = 1 × 10−3 s−1. The determined degree of deformation at the relative residual

elongation (δ) equals 26%.
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temperature 1143 K and

.
ε = 1 × 10−3 s−1 (d0 = 2.7 µm).

In the course of experiments on the deformation of the studied alloy it was stated that superplastic
deformation provokes the growth of the grain size. This growth is much faster in the working part of
sample than in the non-deformed zones. After 26% deformation an average size of grains increased,
twice reaching <d> = 5.4 µm. Moreover, the grains are expanding in all directions and their number
is decreasing.

The obtained characteristics of microstructure features and results of mechanical tests are
presented in Table 3.

Table 3. Characteristics of microstructure features and results of mechanical tests depending on the
conditions for sample preparation.

Treatment of the Studied Sample Grain Size, µm Phase Composition Microhardness, MPa

preliminary quenching from 1223 K
(10 min) and 90% rolling 18 FCC 4405

preliminary quenching from 1223 K
(10 min) and 90% rolling and

TSPD = 1143 K and
.
ε = 1 × 10−3 s−1

-* FCC + HCP 2860

* The track of the grain size of the matrix is not possible to define after SPD.

After the superplastic deformation of the samples with the initial grain size d0 = 2.7 µm
(at T = 1143 K and

.
ε = 1 × 10−3 s−1) no significant formation of intergranular voids and cracks is
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observed as it was for the alloy with a large initial size. It means that superplastic deformation
triggers accommodative processes. Using the metallographic and X-ray methods it was shown
that during superplastic deformation the dissolution of HCP-phase particles occur under optimal
conditions. The pictures of the structure (Figure 9) clearly present the dissolution of spherical particles
of HCP-phase, which is accompanied by the formation of shear transformation zones [12–16] near
the boundaries of the matrix. The growth of grains and their consequent decrease in number is
observed in the zones of the structure lacking particles of the secondary phase (Figure 9), since the
temperature of the beginning of the reverse dissolution of the HCP-phase particles coincides with the
optimal temperature of the superplastic deformation. This phenomenon supports the fact that the
directed mass-transfer on grain boundary is an accommodative process, initiated by the dissolution
of the secondary phase particles, which causes the grain growth and removal of the defects arising
from the grain boundary sliding. The authors of the papers [17,18] suggest considering the process
of the re-orientation and the growth of the grains under super-plastic deformation as a result of
transformation of part of the material into the liquid state. The liquid component facilitates the sliding
of the grains’ boundaries and acts as a soft sliding. However, this liquid oiling is not a liquid as it is.
Such a state is called liquid-like and it is considered a shifting transformation zone where the switching
of chemical bonds takes place fully or to some extent [11]. Such switching is obviously a solid phase
phenomenon, bringing about a decrease of Gibbs energy and is non-reversible as a mechanical-chemical
reaction, which causes the formation of new products and gives off heat [19].

In the SPD process, the material is in the state of intense dynamic loading; in such a case the
Stokes-Einstein equation can be used to describe the behavior of the alloy. The Stokes-Einstein
Equation (1) as well as the dynamic viscosity Equation (2) are used for calculation of the energy:

η = η0 exp
Eη
RT (1)

η ∼ τµ (2)

where η0 is a coefficient independent from temperature, Eη is the activation of relaxation energy of
a viscous flow and τ—structural relaxation time.

According to Landau and Lifshitz [20], under extreme conditions, viscosity can be equated for the
product of the relaxation time by the shear modulus. According to [4], the time of structural relaxation
for the 67CoNi5Nb alloy is 4 h at 400 ◦C and it equals 5 h at 450 ◦C. On the basis of Equations (1) and (2)
one can obtain the equation for the activation of relaxation energy:

Eη = RTSPDln
τ1

τ2
(3)

The estimated value of the activation of relaxation energy is 120 kJ/mol for non-superplastic
materials [21], and for a superplastic material it is 2.1 kJ/mol.

4. Conclusions

The studies have shown an impact of temperature on microstructure (a grain size of the matrix,
the presence of twins, and a phase composition) and superplastic properties of the Co-Ni-Nb alloy.
Metallographic and X-ray diffraction methods have proved that the quenching temperature decrease
from 1423 K (10 min) to 1223 K (10 min) does not change the phase composition. A significant reduction
of the number of twins was observed after the quenching of the studied alloy at 1223 K (10 min)
compared to the procedure at 1423 K (10 min). The decrease of the alloy quenching temperature from
1423 K to 1223 K leads to the improvement of the ductility from 780% to 1140%. This phenomenon
is conditioned by the following processes: firstly, a grain size is decreasing by 3.5–4 times with the
quenching temperature decrease to 1223 K (10 min), and secondly, the twins number is also reducing.
The Co-Ni-Nb alloy after quenching from 1223 K (10 min) and rolling by 90% demonstrates the
superplasticity effect in the deformation temperature range of 1053–1243 K.
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The transformation of the HCP-phase particles during the superplastic deformation under optimal
conditions was found. Moreover, alongside the dissolution of the spherical particles of HCP-phase
the formation of “shear transformation” zones take place nearby the matrix boundaries. The growth
of the grain size and the decrease of the number of grains were observed in the zones without
the secondary phase. Since the temperature of the beginning of the reverse transformation of the
HCP-phase particles coincides with the optimal temperature of superplastic deformation, it is assumed
that the accommodative process in the shear transformation zones under the deformation influences
the transformation of the secondary phase. This shear transformation zone is characterized by the
repaired defects arising from the grain boundary sliding.
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