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Abstract: The cyclic fatigue resistance of ProTaper Universal (PTU), ProTaper Gold (PTG), and
ProTaper Next (PTN) nickel titanium (NiTi) rotary files was evaluated. Fifteen instruments of each
type were selected, totaling 195 files. The instruments were rotated until fracture in an artificial
canal with dimensions corresponding to the dimensions of each instrument tested: +0.1 mm in width
and 0.2 mm in depth, an angle of curvature of 45◦, a radius of curvature of 5 mm, and a center of
curvature 5 mm from the instrument tip. The fracture surfaces of three representative samples of each
subgroup were examined using scanning electron microscopy (SEM). Time to fracture was analyzed
via analysis of variance and Tukey’s tests (P < 0.05). PTG F1 and F2 had significantly higher resistance
than PTU F1 and PTN X2, and PTU F2 and PTN X3, respectively. PTN X2 showed a significantly
higher resistance than PTU F1. The PTG series demonstrated superior cyclic fatigue (CF) behavior
compared with that of the PTU and PTN series.
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1. Introduction

Due to iatrogenic procedural errors associated with the material stiffness of stainless-steel
instruments, nickel–titanium (NiTi) material was introduced in the production of endodontic files [1].
The main characteristics of NiTi rotary instruments include memory shape, superior elasticity, and
a centered canal preparation. In particular, the elastic flexibility of NiTi instruments is two to three
times higher than that of stainless-steel instruments due to their lower modulus of elasticity [2,3].
The material properties of NiTi and stainlessness rotary files are presented in Table 1 [4].

Despite the elastic flexibility of NiTi rotary systems, instrument fracture has been reported [5,6].
The failure of rotary NiTi files can be either flexural (cyclic) or torsional [7]. The majority of studies have
shown that cyclic fatigue (CF) fracture occurs when an instrument is flexed in the maximum curvature
region of the canal while rotating freely, resulting in repeated tension–compression cycles [6,8]. The
tension occurs on the part of the instrument on the outside of the curve, whereas the compression
occurs on the other part on the inside of the curve. Therefore, these repeated cycles, caused by the
rotation of the instrument within the curved canal, result in instrument fracture due to the increase in
the cyclic fatigue of the instrument over time. Torsional fatigue occurs when an instrument tip is locked
in a canal, while the body continues to rotate. Therefore, fracture of the tip becomes unpreventable
when the torque exerted by the handpiece exceeds the elastic limit of the metal [8]. However, one of
the limitations in in vitro studies of the cyclic fatigue behavior of NiTi instruments is the difficulty of
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assessing the clinical relevance of published tests results, where there are several factors, including
torsional fatigue, at play at the same time.

Table 1. Properties of NiTi and stainless steel rotary files.

Properties Ni–Ti Alloy Stainless Steel

Ultimate tensile strength ~1240 MPa ~760 MPa
Density 6.45 gm/cm3 8.03 gm/cm3

Recoverable elongation 8% 0.8%
Effective modulus ~48 GPa ~193 GPa

Coefficient of thermal expansion 6.6×10−6 – 11×10−6 ◦C−1 17.3×10−6 ◦C−1

Micro-hardness 303–362 VHN 522–542 VHN

The mechanical behavior and elastic flexibility of the NiTi alloy were improved by changing
the transformation behavior of the alloy through heat treatment [9]. The NiTi alloy contains three
microstructural phases (austenite, martensite, and R phase). Instruments in the martensite phase
can be soft, ductile, and easily deformed and can recover their shape upon heating above the
transformation temperature. Compared with conventional super-elastic NiTi, which shows a finish
temperature of 16–31 ◦C [7,9], controlled memory wire and M-wire instruments show increased
austenite transformation finish temperatures of approximately 55 and 50 ◦C, respectively [10].
Therefore, at body temperature, the conventional super-elastic NiTi file has an austenite structure,
whereas an NiTi file with thermal processing is essentially in the martensite phase [9].

ProTaper Universal (PTU) and ProTaper Gold (PTG) rotary instruments possess the same
geometries; however, PTG instruments have been metallurgically enhanced through heat-treatment
technology in an attempt to improve flexibility, resistance to CF, and durability [7,11]. ProTaper Next
(PTN) instruments are made of M-wire, which is fabricated by the thermomechanical processing of
NiTi wire blanks [5]. In addition, fracture resistance has been improved in PTN instruments due to the
unique asymmetrical rotary motion and reduced contact points between the instrument and root canal
walls [5].

In the endodontic literature, rotational bending is applied to test for CF in NiTi rotary instruments.
Several devices and methods have been used to evaluate the in vitro CF fracture resistance of NiTi
rotary endodontic instruments [8]. In addition to two important parameters used to determine the
shape of the root canal, i.e., the angle and radius of curvature [6], some studies have reported that
the results obtained might be unreliable and inconsistent if the established device parameters do not
follow each instrument’s morphologic and geometric features [8]. To overcome this problem, multiple
devices with artificial canals that have dimensions that exceed those of the tested instruments by
0.1–0.3 mm have been used [12–14].

No previous study has compared the CF resistance of all the ProTaper instruments among the
three different generations. Therefore, the aim of the present study was to assess the CF behavior of
the PTU, PTG, and PTN NiTi rotary files.

2. Materials and Methods

2.1. Preparation of Artificial Canals

The laser micromachining technique was used to machine artificial canals in stainless-steel plates
with dimensions of 100 mm × 50 mm × 10 mm. Machining was performed using the LASERTEC 40
(Deckel Maho Gildemeister, Hamburg, Germany), which consists of a Q-switched Neodynium-doped
Yttrium Aluminum Garnt (Nd: Y3Al5O12 (Nd: YAG)) laser operating at a wavelength of 1064 nm with
a maximum average power of 30 W.

The artificial canal to be machined was modeled using CATIA V5® software (Dassault Systèmes,
Version 5, Vélizy, France), and laser path programming was performed with a Standard Triangle
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Language file of the proprietary machine software. After the laser process parameters were established,
the laser was focused on the workpiece with the aid of a galvano scanner, and the canal was then
machined layer by layer [15].

The artificial canals were machined in stainless-steel blocks with dimensions corresponding to
the dimensions of the instrument tested: +0.1 mm in width and +0.2 mm in depth, with an angle of
curvature of 45◦, a radius of curvature of 5 mm, and a center of curvature 5 mm from the tip of the
instrument [6,8] (Figure 1).
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Figure 1. Custom-made stainless-steel blocks with dimensions corresponding to the dimensions of
ProTaper Next (PTN) (A), ProTaper Gold (PTG), and ProTaper Universal (PTU) (B): +0.1 mm in width
and +0.2 mm in depth, with an angle of curvature of 45◦, a radius of curvature of 5 mm, and a center of
curvature 5 mm from the tip of the instrument. (C) Two-dimensional draft of artificial canal for PTU
F1 instrument.

The dimensions of the PTU and PTG instruments were recorded according to the manufacturer as
shown in Table 2. The actual dimension for the PTN from the manufacturer along with the maximum
diameters of the PTN instruments measured using Digimizer® software (MedCalc Software, version
4.5., Ostend, Belgium) are shown in Table 3.
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Table 2. Dimensions of PTU and PTG from the manufacturer.

Active Part Length (mm)
Diameter (mm)

S1 S2 F1 F2 F3

0 0.170 0.200 0.200 0.250 0.300
1 0.190 0.240 0.270 0.330 0.390
2 0.220 0.285 0.340 0.410 0.480
3 0.260 0.335 0.410 0.490 0.570
4 0.305 0.390 0.465 0.550 0.640
5 0.355 0.450 0.520 0.610 0.710
6 0.415 0.510 0.575 0.665 0.760
7 0.485 0.570 0.630 0.720 0.810
8 0.565 0.630 0.685 0.775 0.860
9 0.655 0.690 0.740 0.830 0.910
10 0.755 0.760 0.795 0.885 0.960
11 0.855 0.850 0.850 0.940 1.010
12 0.960 0.955 0.905 0.995 1.060
13 1.075 1.070 0.960 1.050 1.110
14 1.185 1.185 1.015 1.105 1.160
15 1.070 1.160 1.210
16 1.125 1.215 1.260

Table 3. Dimensions of the PTN from the manufacturer.

Active Part Length (mm)

Diameter (mm)

X1 X2 X3

Actual Maximum Actual Maximum Actual Maximum

16 1.16 1.26 1.2 1.3 1.2 1.34
13 0.98 1.06 1.11 1.15 1.09 1.14
9 0.7 0.76 0.84 1.06 0.89 1
6 0.49 0.534 0.63 0.7 0.71 0.78
3 0.31 0.35 0.43 0.45 0.53 0.65
1 0.21 0.23 0.31 0.34 0.38 0.52
0 0.17 0.17 0.25 0.25 0.3 0.3

2.2. Cyclic Fatigue Testing

Fifteen rotary instruments of each type (PTU S1, S2, F1, F2, and F3, PTG S1, S2, F1, F2 and F3, and
PTN X1, X2, and X3), totaling 195 instruments of 25 mm in length, were used in this study.

Stainless-steel blocks were attached to a main frame to which a mobile support for the handpiece
was connected. The dental handpiece was mounted on a mobile device that allowed for the simple
placement of each instrument inside the artificial canal as shown in Figure 2. To prevent the instruments
from slipping out and to allow for observation of the instruments, the artificial canals were covered
with glass.
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to reduce the friction of the tested file against the artificial canal walls. The motor and timer were 

Figure 2. CF testing device illustrating positioning of dental handpiece, NiTi rotary instrument, and
stainless steel block.

A pilot study was conducted to confirm the reliability of the CF device. All of the instruments
were rotated at the speed recommended by the manufacturer (300 rpm) until fracture. The artificial
canals were lubricated with synthetic oil (3-In-One Multi-Purpose Oil, WD-40®, San Diego, CA, USA)
to reduce the friction of the tested file against the artificial canal walls. The motor and timer were then
simultaneously activated. During each test, the instrument was monitored and visualized through the
glass until fracture occurred, and the time to fracture was registered in seconds. Figure 3 shows the
rotary files before and after fracture. The fractured surface was examined using SEM (JEOL 6360LV
Scanning Electron Microscope, Tokyo, Japan) after preparation with ≥99.8% ethanol.
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Statistical analysis of the empirical data is essential for the proper interpretation and prediction of
results. There are many statistical methods such as analysis of variance (ANOVA), regression analysis,
and correlation for analyzing data and representation of results [16]. Reports are available on the use
of statistical methods for cyclic fatigue failure analysis [17] and fatigue life prediction [18].
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In this work, one-way ANOVA and Tukey’s tests were performed to analyze and compare the
means. Statistical significance was set at P < 0.05. Weibull reliability analysis was performed and the
probability of survival was calculated for the tested instruments.

3. Results

The mean times to fracture and standard deviations for the PTU, PTG, and PTN instruments are
presented in Table 4. The CF behaviors of the PTU, PTG, and PTN series are presented in Figure 4.
Comparing the instruments with similar D5 ±0.01 mm, one-way ANOVA and Tukey’s post-hoc tests
showed that PTG F1 and F2 had significantly higher CF resistance than PTU F1 and PTN X2, and
PTU F2 and PTN X3, respectively. PTN X2 showed a significantly higher CF resistance than PTU F1.
However, there was no significant difference between PTU F2 and PTN X3 in terms of CF resistance.

Table 4. Instrument type, sample size, time to fracture (seconds; mean ± SD), and Weibull calculations.

Instrument N Mean ± SD Weibull Modulus R-Squared Predicted Time in Seconds
for 99% Survival

PTU
S1 15 166.07 ± 34.3 4.809 0.914 69
S2 15 170.40 ± 21.9 8.500 0.924 104
F1 15 101.47 ± 13.6 8.528 0.986 62
F2 15 93.20 ± 15.2 6.405 0.965 48
F3 15 87.20 ± 13.8 6.338 0.918 44

PTG
S1 15 352.5 ± 57.4 6.357 0.916 181
S2 15 294.0 ± 34.2 5.495 0.839 135
F1 15 239.40 ± 25.4 9.276 0.952 152
F2 15 198.40 ± 14.6 13.415 0.951 145
F3 15 183.40 ± 16.6 10.352 0.872 122

PTN
X1 15 334.69 ± 67.5 5.062 0.865 154
X2 15 176.93 ± 32.3 5.221 0.950 78
X3 15 133.27 ± 31.5 4.274 0.781 49

SD: standard deviation. Weibull calculations included the Weibull modulus (m), the coefficient of determination
(R-squared), and the predicted time in seconds for 99% survivability.
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Probabilistic modeling of fatigue failure and reliability assessment has been done for various
engineering components such as turbine blades [19], turbine disc [20], and railway axles [21], which
are subjected to variable loading conditions. Reliability analysis is important for the establishment of
suitable safety levels for any device or system.

Weibull reliability analysis results and the probabilities of survival calculated for the PTU, PTG,
and PTN instruments are presented in Table 4. The PTG series showed higher reliability than the PTU
and PTN series. PTG S1 showed the longest resistance, with 181 s at 99% survival. Regarding the
instruments with similar diameters at 5 mm from the tip, rotation for 152 s was predicted for PTG F1 at
99% reliability compared with 78 and 62 s for PTN X2 and PTU F1, respectively. Additionally, rotation
for 145 s was predicted for PTG F2 at 99% reliability compared with 49 and 48 s for PTN X3 and PTU
F2, respectively.

Figure 5 shows the fractography analysis of the PTU S1 sample. Two distinct regions were noticed:
one with fatigue striations (Region a) and another with a dimpled surface (Region b) (Figure 5A). The
crack initiates at the edge and propagates to the fatigue striations (Figure 5B). Micro-voids produced
coalesce with each other and weakens the material (Figure 5C), after which ductile fracture occurs,
which is evident from the dimpled surface in Figure 5D, until failure. The round dimples indicate
normal rupture caused by tensile stresses.Metals 2018, 8, 36  7 of 10 
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4. Discussion

In this study, the tested instruments were selected because they shared the same recommended
scheme of instrumentation. Generally, compared with the PTU and PTN series, the PTG series in this
study demonstrated favorable CF behavior. However, the PTU, PTG, and PTN instruments vary in their
tapering schemes, cross sections, axes of rotations, and alterations in metallurgic processing. Therefore,
comparisons were performed among instruments of similar diameter (±0.01 mm) at the center of the
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curvature to minimize confounding factors. The PTG instruments were most resistant to CF, followed
by PTN and PTU. However, the difference between PTN X3 and PTU F2 was not significant.

The higher CF resistance of the PTG and PTN instruments can be attributed to the
thermomechanical treatment of these instruments [9]. Furthermore, instrument morphology is
considered a significant determinant of CF behavior and can explain the greater CF resistance
of the PTG instruments compared with that of the PTN instruments. Some studies have shown
that instrument design is not an important determinant of CF resistance [22,23], whereas others
have suggested that a different cross-sectional design is a main determinant of the CF resistance of
different files [10,12,14,24,25]. Cheung et al. reported that instruments with a triangular cross-section
demonstrated a higher fatigue resistance than those with a square cross section [26].

Yong et al. reported a favorable balanced relationship of flexibility, peak torque, and cyclic
fatigue resistance of NiTi rotary instruments when compared to stainless steel instruments [27].
Furthermore, the thermomechanically treated NiTi instruments demonstrated greater flexibility and
fatigue resistance than conventional SE NiTi instruments of similar diameter and geometry.

Several studies have compared the CF resistance of different NiTi rotary systems. Hieawy et al.
tested the CF resistance of PTG and PTU instruments of sizes S1 to F3 using a 3-point bending device
at a curvature of 40◦ with a 6 mm radius [7]. Their results showed that the PTG file had a significantly
higher CF resistance than did the PTU file (P < 0.001). In addition, the S1 and S2 files were more
resistant to fatigue failure than the F1 to F3 files in both the PTG and PTU systems (P < 0.001). PTG S1
showed the highest CF resistance among all files (P < 0.001), whereas PTU F3 showed the lowest CF
resistance. These findings agree with the results from the PTU and PTG series in this study.

Perez-Higueras et al. reported that PTN X2 and X3 were more resistant than were PTU F1 and F2,
respectively, when tested in stainless-steel curved canals at a curvature of 60◦ with a 3 mm radius [28].
Nguyen et al. compared the CF among PTU and PTN instruments with a curvature of 90◦ and a
5 mm radius. Their results indicated that PTU F1/F2 had a higher CF resistance than PTN X2/X3,
respectively; however, this difference was not significant [29].

Weibull analysis can predict a product’s resistance and be used to compare the reliability of
various product designs. Nguyen et al. discussed in detail the clinical relevance and the advantages
of Weibull analysis in such cases when they compared CF with PTN, PTU, and Vortex Blue rotary
instruments [29]. Weibull prediction can also provide the clinician with information about the time
required for a rotating instrument in a canal to fracture.

Topographic features of the fracture surfaces of all broken instruments were analyzed using SEM.
The findings of this study are in agreement with previous studies where the fracture surfaces of all
groups showed typical features of CF with one or more crack initiation areas, fatigue striation, and a
fast fracture zone with dimples [5,7].

The KT (Kitagawa–Takahashi) diagram represents the boundary in terms of crack size and stress
range for infinite fatigue life [30]. The present work can be extended to define the KT diagram
for fatigue life prediction based on various approaches such as the probabilistic S-N model, EIFS
(equivalent initial flaw size), and fatigue crack growth models [18,31,32]. The experimental fatigue life
data can then be plotted and compared with the KT diagram.

5. Conclusions

Compared with the PTU and PTN series, the PTG series demonstrated superior CF behavior.
The PTU series was the least resistant to CF. As fatigue resistance is one of the most common factors
attributed to instrument fracture and considering the recent advances in technology, international
standards for CF testing devices should be established to minimize the variations in reported data.
Furthermore, the experimental results and SEM analysis used in this work can be used to define the
KT diagram for fatigue life prediction.
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