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Abstract: Equal-Channel Angular Pressing (ECAP) is a method used to introduce severe plastic
deformation into a metallic billet without changing its geometry. In special cases, strain localization
occurs and a pattern consisting of regions with high and low deformation (so-called shear and matrix
bands) can emerge. This paper studies this phenomenon numerically adopting two-dimensional
finite element simulations of one ECAP pass. The mechanical behavior of aluminum is modeled
using phenomenological plasticity theory with isotropic or kinematic hardening. The effects of the
two different strain hardening types are investigated numerically by systematic parameter studies:
while isotropic hardening only causes minor fluctuations in the plastic strain fields, a material
with high initial hardening rate and sufficient strain hardening capacity can exhibit pronounced
localized deformation after ECAP. The corresponding finite element simulation results show a regular
pattern of shear and matrix bands. This result is confirmed experimentally by ECAP-processing of
AA6060 material in a severely cold worked condition, where microstructural analysis also reveals the
formation of shear and matrix bands. Excellent agreement is found between the experimental and
numerical results in terms of shear and matrix band width and length scale. The simulations provide
additional insights regarding the evolution of the strain and stress states in shear and matrix bands.

Keywords: equal-channel angular pressing; ECAP; shear band; matrix band; kinematic hardening;
FEM; strain localization

1. Introduction

Equal-Channel Angular Pressing (ECAP) is a severe plastic deformation (SPD) process developed
by Segal [1,2]. During ECAP, a billet with a typically square or circular cross-section is pressed through
an angled channel. Both channels (entrance and exit channel) are intersected by a shear plane, where a
shear deformation is introduced into the material. The angle between these two channels (Φ) and the
angle of the outer curvature (Ψ) inside the “L”-shaped channel (cf. Figure 1) control the amount of
introduced (effective) strain [3].

In the most common ECAP dies (Φ = 90◦, Ψ = 0◦), the introduced effective strain is
approximately 1.15 after a single pass. As a consequence of the severe plastic deformation, grain
refinement occurs. Grain refinement results in a higher yield strength since geometrical boundaries
are effective obstacles for dislocation motion [4,5]. In addition, an extraordinarily high ductility is
observed in many materials after multiple ECAP passes [6–8].
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Figure 1. Sketch of an Equal-Channel Angular Pressing (ECAP) channel with the channel angle Φ and
the angle Ψ defining the outer curvature.

For most metallic materials, the billet is deformed predominantly homogeneously during
ECAP [8–10]. However, under certain conditions, pronounced strain localization occurs and results
in heterogeneous microstructures consisting of regions with large inherent strain (shear bands) and
regions with much lower strains (matrix bands) [11–15].

In addition to experimental investigations, finite element (FE) simulations have been carried
out to understand the ECAP process in greater detail. For this purpose, multiple parameter studies
were conducted, e.g., studying the effect of variations of the channel angle Φ [16–19], the angle of the
outer curvature Ψ [18–23], the strain rate [24–26] as well as the friction between the channel and the
billet [16,18,23,26,27]. However, within this huge body of scientific work, only a few papers address the
simulation of strain localization [24,28,29]. In those papers, strain softening behavior had to be used in
order to simulate strain localization in distinct bands. Figueiredo et al. showed that the occurrence
of shear bands depends on the initial flow-softening rate and the steady-state stress [28] as well as
the strain rate [24]. Furthermore, most of the aforementioned finite element studies do not contain a
convergence study for their simulation model and in some cases an automatic remeshing function was
used to reach a stable simulation [18,20,24,29].

The present paper shows both experimentally and numerically that strain localization during
ECAP can even occur for a strain hardening material. To this end, explicit finite element simulations are
conducted. In order to achieve reliable FE solutions, systematic convergence studies are performed.
As a special feature, the billet is meshed with pre-oriented rhomboid-shaped elements such that
remeshing is not necessary. The role of two types of hardening—isotropic and kinematic—is
investigated numerically by varying the corresponding material parameters. It is found that only
kinematic hardening leads to the emergence of localized deformation in a form of shear and matrix
bands. The simulation results are compared thoroughly to corresponding ECAP experiments on billets
made of an AA6060 alloy. Finally, the origin of the heterogeneous plastic flow is discussed both from a
microstructural and a mechanical point of view, representing a starting point for further basic research
on localization phenomena during SPD processing.

2. Simulation Model

Isothermal and frictionless 2D plane-strain finite element simulations of one pass of ECAP were
conducted using the commercial explicit finite element code Abaqus (Version 6.14-4). For the contact
between ECAP tool and billet, the Abaqus penalty algorithm is used employing a contact stiffness
factor of 0.8. The geometry parameters specifying the ECAP process are shown in Figure 2: d is the
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diameter of the billet with cross-sectional area of d × d and length h. Φ is the channel angle, Ψ the
angle of the outer curvature, r is the outer and R the inner edge radius. The outer edge radius is
defined via the diameter d, the angle of the outer curvature and the channel angle:

r =
Ψd

χ cos
(

1
2 (χ−Ψ)

) with: χ = π −Φ .

The gray area in Figure 2 is a 2D representation of the billet with the length h and the width d,
which is equal to the diameter of the entrance channel. The geometry parameters for the 2D model
presented in Table 1 are chosen in analogy to the parameters used for the experimental investigations
shown later.

Table 1. Geometry parameters for the simulation model (cf. Figure 2).

Φ Ψ R d dex h len lex l1 l2

90◦ 1◦ 5r 50 mm 52 mm 300 mm 300 mm 75 mm 5 mm 41 mm

Figure 2. Sketch of the simulation model with the relevant geometrical parameters.

To simulate the ECAP process, a version of the elastic visco-plastic material model of Shutov and
Kreißig [30] is used (cf. Table 2). It is based on the multiplicative decomposition of the deformation
gradient F = Fi · Fe and of the inelastic part of the deformation gradient Fi = Fii · Fie. The rheological
representation of the model [31] is shown schematically in Figure 3.

Figure 3. Rheological representation of the material model with the material parameters.
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The elastic behavior is modeled with a Neo-Hookean spring and the plastic flow is represented by
a parallel connection of a St. Venant element with an endochrone element that describes the kinematic
hardening of an Armstrong-Frederick type [32]. Furthermore, the St. Venant element incorporates the
yield stress and the isotropic hardening of Voce type [33]. Normally, the visco-plastic flow is prescribed
with Perzyna’s rule [34]. However, in the present study, rate-independent plastic flow is assumed.

Table 2. Constitutive equations of the applied elastic-plastic material model.

stress: T̃ · C =K ln
(

I3
(

C
))

I + G
(

C−1
i · C

)D
(1)

flow rule: C−1
i ·

4
C i =

λ̇

F

(
T̃ · C− T̃ i · Ci

)D
(2)

with: I3

(
0Ci

)
=1 and Ci|t=t0 = 0Ci

kinematic hardening: T̃ i · Ci =
ckin

2

(
C−1

ii · Ci

)D
(3)

C−1
ii ·

4
C ii =

1
2

λ̇κckin

(
C−1

ii · Ci

)D
(4)

with: I3

(
0Cii

)
=1 and Cii|t=t0 = 0Cii

flow function: Φ =F−
√

2
3
(σF0 + R) (5)

equivalent stress: F =N

((
T̃ · C− T̃ i · Ci

)D
)

(6)

with: N
(
X
)

:=
√

Xab Xba (7)

isotropic hardening: Ṙ =ṡ (γ− βR) with: ṡ =

√
2
3

λ̇ (8)

effective plastic strain: s(t) =
∫ t

τ=0
ṡ(τ)dτ (9)

KKT conditions: λ̇ ≥ 0, Φ ≤ 0, λ̇Φ = 0 (10)

Note that the constitutive model is a purely phenomenological elastic-plastic model with
isotropic and kinematic hardening. It is not based on specific assumptions regarding microstructural
deformation mechanisms and therefore allows for a quite general analysis of shear localization during
ECAP. As indicated in the constitutive Equations (1)–(10), seven parameters are needed to describe
the material behavior. K and G are the bulk and shear modulus, σF0 is the yield stress and the other
constants represent the parameters of the isotropic (β, γ) and kinematic (κ, ckin) hardening. As shown
in [35], β and κckin define the initial hardening rate (IHR) while γ

β and κ−1 determine the strain
hardening capacity (SHC). (The meaning of the kinematic hardening parameters is derived from
linearized equations. Strictly speaking, this interpretation is thus only valid for small strains.)

In the material model summarized in Table 3, the Cauchy-Green tensor C = FT · F, two internal
state variables Ci, Cii and the second Piola-Kirchoff stress T̃ further appear, which is related to the
Cauchy stress σ by

T̃ = I3
(
F
)

F−1 · σ · F−T .

Here, the third invariant I3 of a second order tensor X = Xab ea⊗ eb is defined by I3(X) = det[Xab].

Furthermore,
4
X denotes the material time derivative and XD represents the deviatoric part of X.

Finally, C = I3
(

C
)− 1

3 C denotes the unimodular part of C. The identity tensor is prescribed as the
initial condition for the internal state variables

(0Ci = I, 0Cii = I
)

throughout this paper. The inelastic
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multiplier λ̇ is calculated iteratively from the Karush–Kuhn–Tucker (KKT) conditions (10) applying a
Newton iteration.

The material model was implemented in the VUMAT user subroutine of Abaqus/Explicit.
Further details on the material model and applications to the simulation of metal forming can be
found elsewhere [30,36–38]. For an adequate interpretation of the results, some simplifications in the
simulation model must be kept in mind:

1. A two-dimensional plane-strain simulation is used. Therefore, boundary effects perpendicular
to the simulated plane have to be neglected. The main reason for this simplification is the
computational effort, which increases excessively when changing to a three-dimensional model.
However, the comparison of simulation and experimental results (Section 3) demonstrates that
the error of this simplification is small.

2. As the investigation of viscous effects goes beyond the scope of this study, a rate-independent
model was chosen. The aluminum material used in the experimental studies exhibits only a minor
rate dependence and the experiments have been performed at room temperature. Due to the
very low pressing speed of 0.3 mm/s and consequently low strain rates inside the shear zone, the
error of this limitation is kept small. Furthermore, adiabatic heating phenomena are essentially
negligible and do not have any practical significance [39].

3. A frictionless model was used to simulate ECAP. In the experimental studies, the ECAP die is
always lubricated such that the friction coefficient is low [40]. In addition, both in the experiments
and in the simulations, the exit channel is moved with the billet in order to minimize the
friction [41]. Because of this, self-heating due to friction may be neglected.

3. Parameter Variation

First, convergence studies for element type, element size, mass scaling and velocity scaling were
performed to reach a behavior independent of these influences and to avoid artificial effects (e.g., due
to inertia forces). The FE model was meshed with rhomboid-shaped CPE4R-elements. The initial
inclination was chosen such that the elements’ interior angles remain as close as possible to 90◦ during
the whole deformation. It turned out that a mesh with a maximum element size of e = 0.5 mm
(≈92,600 elements) has to be used by applying a maximum possible mass scale of fm = 400 and
plunger velocity of v = 0.75 m/s. After these convergence studies, a parameter variation for almost
all geometrical and material parameters was conducted. Here, only the most important results are
presented; for a more detailed depiction including the convergence studies, see [35].

3.1. Reference Simulation

As a reference, a single ECAP pass is simulated with elastic ideal-plastic behavior. The material
parameters corresponding to aluminum are shown in Table 3.

Table 3. Material parameters for aluminum with ideal-plastic behavior, used in the reference simulation.

K/MPa G/MPa σF0/MPa β γ/MPa ckin/MPa κ/MPa−1

73, 500.0 28, 200.0 270.0 0.0 0.0 0.0 0.0

In the contour plot in Figure 4, some inhomogeneities in the strain field are visible.
However, because of the low difference between maximum and minimum value and the missing
regularity, they do not represent fully developed shear or matrix bands (see Section 1). Instead, if the
amplitude of the effective plastic strain is lower than 0.15, this state will be called “minor fluctuation”
in the following. Furthermore, the outer edge of the ECAP die is completely filled with material
(lower left corner in Figure 4), which is in line with experimental investigations [23]. Finally, there is
a small curvature of the billet because of internal stresses developed during ECAP [42]. This is also
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known from ECAP experiments without applying any backpressure. In summary, the simulation result
corresponds well with the expectations gained from experiments.

Figure 4. Contour plot of the effective plastic strain s (cf. Equation (9)) for the reference simulation:
some inhomogeneities are visible. Compared to experimental observations of shear and matrix bands,
these variations are negligible; they are therefore considered as minor fluctuations.

3.2. Effects of Isotropic Hardening

Strain localization is observed in experiments if the SHC of the material subjected to ECAP is
low. Motivated by these experimental observations, two different levels of the hardening capacity:
γ
β = 15 MPa and γ

β = 200 MPa and three different levels of the initial hardening rate (IHR): β = 0.1,
β = 1.0 and β = 10.0 are chosen for a systematic comparison. For β = 0.1, the material has a low and
for β = 1.0 it has a high hardening rate during the whole deformation. For β = 10.0, the material has a
pronounced IHR and a very small hardening rate at the end of the deformation.

The results of the simulations with γ
β = 15 MPa and with γ

β = 200 MPa are shown in Figures 5
and 6, respectively. Minor strain fluctuations occur for all simulations, except the one with a high
SHC and a high hardening rate during the whole deformation, Figure 6b. In this case, even minor
fluctuations are suppressed yielding a quasi-homogeneous distribution. The situation is different for
the low SHC

(γ
β = 15 MPa

)
: even the high hardening rate during the whole deformation is still too

low to suppress fluctuations. Consequently, the SHC controls the heterogeneity of plastic deformation
in case of isotropic hardening. However, the difference between the ideal-plastic behavior and this
hardening behavior is very small and therefore the results are similar.

For γ
β = 200 MPa, the SHC is much higher. Still, for low IHR, the material behavior is almost

ideal-plastic as well and, due to this, fluctuations occur. For high IHR, the material is hardening during
the whole deformation and any heterogeneities are suppressed. For pronounced IHR, the SHC is
already exhausted at the initial stage of the deformation process. Thus, at the end of the deformation,
the material behaves almost ideal-plastically with a higher yield stress. For this reason, heterogeneities
also occur in this case.

There is another feature that becomes visible looking at the bottom zone of the billets shown in
Figures 5 and 6: the more the material flow omits the outer edge of the channel, the less the bottom zone
deforms and the higher the vertical gradient of the effective plastic strain and the billet’s curvature.
This detail is in perfect agreement with experimental observations [41,43,44], which further indicates
that the FE simulations presented here accurately capture various subtle experimental details.
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Figure 5. Effective plastic strain s (cf. Equation (9)) for simulations with isotropic hardening with
γ
β = 15 MPa in combination with (a) β = 0.1, (b) β = 1.0 and (c) β = 10.0. σF = 270 MPa. In all cases,
only minor fluctuations occur.

Figure 6. Effective plastic strain s (cf. Equaiton (9)) for simulations with isotropic hardening with
γ
β = 200 MPa in combination with (a) β = 0.1, (b) β = 1.0 and (c) β = 10.0. σF = 270 MPa.
In (a,c), minor fluctuations occur; (b) shows a quasi-homogeneous distribution of the effective
plastic strain.
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3.3. Effects of Kinematic Hardening

The difference between kinematic and isotropic hardening is the plastic anisotropy induced
by kinematic hardening. While modeling of isotropic hardening usually involves only the
scalar equivalent stress, kinematic hardening is based on the stress and back stress tensor (cf.
Equation (3)). Hence, kinematic hardening not only depends on the principal stresses, but also
on the principal directions.

A high SHC of κ−1 = 200 MPa was chosen and the IHR was varied in a similar way as in the
investigations for isotropic hardening. The results shown in Figure 7 are similar to those of isotropic
hardening. At low IHR and at pronounced IHR strain, inhomogeneities occur, whereas, at high IHR,
the inhomogeneities are suppressed. However, there is an important difference: at pronounced IHR,
the deformation is not only inhomogeneous but, as an entirely new feature, a very regular pattern
emerges. Additionally, the difference between the minimum and maximum strain values in the
distinctly different regions is high (∆s ≈ 1.0).

Figure 7. (left) effective plastic strain s (cf. Equation (9)) for simulations with kinematic hardening
with κ−1 = 200 MPa in combination with (a) κckin = 0.075, (b) κckin = 0.25 and (c) κckin = 3.75;
(right) comparison of the simulations with optical micrographs after one pass of ECAP for a fully
recrystallized (top) and a severely cold worked conventional 6000 series aluminum alloy (bottom).

This type of localized deformation is very similar to the shear and matrix band structure observed
in the experiment (cf. Section 3.4). The regularity of these bands can also be documented by plotting
the progression of the effective plastic strain along the length of the billet, Figure 8. The undeformed
regions of the billet (i.e., the material near the ends of the billet that has not passed through the shear
zone during ECAP) and the region of unsteady flow at the beginning of the process are omitted in
this analysis; the total length of the billet is 300 mm. Furthermore, an animation of this simulation is
provided in the supplementary material of this paper.

To ensure a converged solution, the simulation model of the billet was divided into five parts
(cf. Figure 9). The two big outer parts are meshed with an element size of e = 0.5 mm, the two parts
next to them with an element size of e = 0.25 mm and the part in the midst with an element size
of e = 0.125 mm. Despite the mesh size variation with the length of the billet, the shear and matrix
bands dimensions remain constant and some shear bands cross the border between two mesh parts.
This shows that the dimensions and the direction of the shear bands do not depend on the mesh.
The difference in the effective plastic strain increases with a further refinement of the mesh.
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Figure 8. The effective plastic strain s (cf. Equation (9)) as a function of the position in the billet
(cf. Figure 7). Undeformed areas and the unsteady flow at the beginning of the process are omitted.

Figure 9. Contour plot of the effective plastic strain s (cf. Equation (9)) for the simulation with locally
refined mesh. The billet is divided into five parts. The outer two parts are meshed with an element
size of e = 0.5 mm, the two parts next to them with an element size of e = 0.25 mm and the part in the
midst with an element size of e = 0.125 mm. Obviously, the solution is converged with respect to the
dimensions of the shear and matrix bands.

In order to further analyze and confirm the observation that shear bands are formed when there
is a pronounced IHR, additional simulations were carried out, varying κ and ckin. In Figure 10,
three examples are shown: in simulation (a), ckin was doubled resulting in an increase of the IHR
(cf. Section 2). With this increase of the IHR, many more shear bands are formed. In simulation
(b), κ−1 is halved, which decreases the SHC and reduces the IHR. This also increases the number of
shear bands, but the difference in effective strain between shear and matrix bands is considerably
decreased (∆s ≈ 0.2). In simulation (c), κ−1 and ckin are halved such that the hardening capacity is
lower, but the IHR remains unchanged. In this case, the number of shear bands increases as well
compared to Figure 7c. Based on these (and many other performed) simulations, it can be concluded
that there is a strong effect of the kinematic hardening parameters on the emergence, number, and
shape of the bands as well as on the amount of plastic strains within them. However, this effect is
strongly nonlinear and the occurrence of distinct shear bands cannot be simply related to a single
material parameter in the framework of the present material model.

Finally, one key result of the present study is that—while fluctuations in terms of the distribution
of effective strains along the billet can in principle be simulated both by assuming isotropic or kinematic
hardening, and using a wide variety of material parameters—only kinematic hardening appears to be
suitable for an accurate simulation of distinct shear bands that differ from the adjacent matrix bands
by relatively large amounts of plastic strain.

The results may be summarized in a generalized diagram where the parameter regions are
indicated with corresponding uniaxial flow curves as function of s (Figure 11). (Note that the diagram
is only valid for reasonable i.e., sufficiently high values of the SHC). Heterogeneities occur in two
different regions, defined approximately by the solid lines: in the region where the hardening rate is
too low during the whole deformation such that the material behavior is similar to ideal-plastic, as
well as in the region where the maximum hardening capacity is reached shortly after the beginning of
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the deformation. For isotropic hardening (cf. Figure 11a), all heterogeneities remain minor fluctuations
whereas for kinematic hardening (cf. Figure 11b) shear and matrix bands are formed. The region
defined approximately by the dotted curves corresponds to the quasi-homogeneous solution.

Figure 10. Effective plastic strain s (cf. Equation (9)) for simulations with kinematic hardening
with the parameters (a) κ−1 = 200 MPa, κckin = 7.5, (b) κ−1 = 100 MPa, κckin = 7.5 and (c) κ−1 =

100 MPa, κckin = 3.75. In all cases, shear and matrix bands occur.

Remark 1. Only the reference simulation (and not a solution with such strong heterogeneities as in Figures 7c,
9 and 10) was considered in the convergence studies. However, here a converged solution with respect to the
number of the shear and matrix bands is presented. While the number of shear and matrix bands stays constant
when the mesh size is further reduced, the values of the effective strain in the bands have not fully converged yet.

(a) (b)

Figure 11. Generalized diagram with uniaxial flow curves as functions of the effective plastic strain
depicting the regions where localized deformation occurs for (a) isotropic and (b) kinematic hardening.
Material parameters corresponding to flow curves in the marked regions lead to the indicated solution.
Note that, despite the apparent similarity of the uniaxial flow curves, isotropic and kinematic hardening
are fundamentally different in the multiaxial case.
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3.4. Experimental Validation

In order to validate the simulation results, complementary experimental studies were carried
out using technical parameters where shear localization has been reported before. It is well known
that ECAP typically introduces a homogeneous shear deformation for many metallic materials [9].
One main requirement for a homogeneous deformation is a sufficient SHC of the processed material.
In the case of processing conventional fully recrystallized 6000 series aluminum alloys, a homogeneous
introduction of strain is generally observed [43–45]. Figure 12 shows the microstructure of an
ECAP-processed billet (AA6060) that has been processed conventionally (hot extrusion including
full recrystallization) prior to ECAP. Figure 12a shows an optical micrograph of the severely sheared
microstructure without any macroscopic heterogeneities. A detailed view into the microstructure
by scanning electron microscopy (in electron back-scatter diffraction mode, EBSD) reveals minor
differences regarding the locally introduced strains that result from the different crystallographic
orientations of Figure 12b,c. These microstructural results are completely in line with earlier
reports [9,46,47] showing macroscopically homogeneous deformation for similar alloys.

Figure 12. Microstructure after homogeneous shear deformation by one pass of ECAP of a
fully recrystallized conventional 6000 series aluminum alloy. Optical micrograph (a) showing a
microstructural overview and color-coded orientation map (OM) (b) and image quality map (IQ)
(c) from electron back-scatter diffraction (EBSD) measurement.

These results were obtained for a fully recrystallized material that exhibits a sufficiently high
hardening rate throughout the whole deformation process. The analogous simulation parameters
in the conducted simulations for isotropic hardening are γ

β = 200 MPa, β = 1.0 and for kinematic

hardening κ−1 = 200 MPa, κckin = 0.25. Both simulations result in a quasi-homogeneous solution, as
shown for isotropic hardening in Figure 6b and for kinematic hardening in Figure 7b. Thus, a very
good accordance between simulation and experiments is achieved for this kind of material condition.

In contrast to the homogeneous microstructure observed after ECAP of a fully recrystallized
material, a strongly heterogeneous structure was found after processing a severely cold-worked
condition (cold extrusion [48]) of the same alloy. As a consequence of cold extrusion the material
exhibits a very limited SHC compared to its hot-extruded counterpart. Figure 13a shows the
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microstructure after ECAP. It is characterized by an alternating arrangement of two fundamentally
different types of macroscopic bands: Shear bands, where the material got severely sheared and
matrix bands that exhibit much lower strains. Figure 13c shows an image quality map of an EBSD
measurement. Darker areas are associated with a low band contrast as a result of severe distortion of
the lattice due to inherent strain. The band structure is oriented under an angle of exactly 45◦ with
respect to the pressing direction, which corresponds to an alignment parallel to the theoretical shear
zone [3,49] of the ECAP die. The mean width of both band types is approximately 400 µm resulting in
an almost equal area fraction (≈50%). It should be noted that the material might show a pronounced
kinematic strain hardening caused by the previous cold working by extrusion at ambient temperature.

Figure 13. Microstructure after heterogeneous deformation by one pass of ECAP of a severely
cold worked conventional 6000 series aluminum alloy. Optical micrograph (a) showing a
microstructural overview and color-coded orientation map OM (b) and image quality map IQ (c) from
EBSD measurement.

The material behavior in this case corresponds to the simulations for isotropic hardening
with γ

β = 200 MPa, β = 10.0 or for kinematic hardening with κ−1 = 200 MPa, κckin = 3.75.
These simulations show a very small SHC during the entire ECAP pass (cf. Remark 2). As shown
in Figure 7, there exists a very good agreement between the result of the simulation with kinematic
hardening and the experimental strain distributions of shear and matrix band. (An explanation of
why a simulation including only isotropic hardening cannot produce shear and matrix bands is given
in Section 4.) Consequently, a scale comparison was conducted in Figure 14, which also shows excellent
agreement. The length scales of the shear and matrix bands in the experiments and in the simulations
are nearly equal.

Remark 2. To be more precise, these simulations show at the beginning of the process a high SHC, but also a
pronounced hardening rate. With this particular material behavior, the hardening of the material during the
extrusion prior to ECAP can be captured. However, after a minimal plastic deformation in the simulation, the
material already reaches the state of a very small remaining SHC.
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Despite the inherent simplifying assumptions (cf. Section 2) and even though the experiments are
affected by various technological influencing factors like friction, there is a close agreement between
the simulations and the experimental observations. This encourages and motivates further analysis
of the microstructural and mechanical mechanisms that lead to the formation of shear bands during
ECAP. A first attempt to more generally understand which conditions lead to distinct shear localization
is given below.

Figure 14. Comparison of shear and matrix bands in simulation (right) and experiment (left). In the
optical micrograph, the shear bands are shown in bright and the matrix bands in dark gray. In the
simulation, the opposite is the case: The shear bands are depicted in dark and the matrix bands in
bright gray. Additionally, the positions of the chosen elements in the billet far away from all boundaries
are shown in red.

4. Remarks on the Mechanism of Heterogeneous Plastic Flow

To get a more detailed description of the localization mechanism, two representative finite
elements are chosen: one element of a shear and one element of a matrix band, as depicted in Figure 14
(simulation). These elements are selected far away from all boundaries of the ECAP tool, such that no
boundary effects affect the results. For these elements, the stress and strain state is evaluated.

At first, the evolution of stresses and strains during one ECAP pass in the shear and matrix bands is
investigated. Shear and matrix band evolve one after another and there is a constant time interval between
the formation of these bands. For reasons of clarity and comprehensibility, the time interval is subtracted
in every diagram comparing shear and matrix bands (Figures 15 and 16). As shown in Figure 15, the
evolution is equal for both types of bands for a long time. However, at a certain point after the plastic flow
has already set in, the solution diverges abruptly. At this point of the deformation, the effective plastic
strain rate ṡ increases rapidly in the shear bands, whereas, in the matrix bands, ṡ decreases. It follows
that, at this point, the plastic flow increases rapidly in the shear band as the rate of plastic deformation
is directly proportional to the effective plastic strain rate:

(
λ̇ =
√

3/2ṡ
)
. Interestingly, the duration of

plastic flow is equal for both bands, as shown in the yellow domain in Figure 15. This is in contrast to
results given in the literature [11], where it is assumed that plastic flow occurs only in the shear bands.
The simulation results show that also in the matrix bands plastic flow occurs while passing through
the shear zone, even though to a very small extent. The simulations also indicate that the deformation
of both types of bands occurs in the same shear zone region within the ECAP die.
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To reach a better comprehension of the evolution of the shear and matrix bands, the evolution
of the corresponding stress states is also considered. Figure 16a compares the von Mises stress of the
shear and the matrix band. Interestingly, the von Mises equivalent stress remains almost equal until
far after the divergence of the effective plastic strain. For a justification of this fact, the definition of the
von Mises stress

σvM =

√
1
2

[(
σxx − σyy

)2
+ (σxx − σzz)

2 +
(
σzz − σyy

)2
]
+ 3

(
σ2

xy + σ2
xz + σ2

yz

)
(11)

has to be considered. It is clear that equal normal stresses are not required for an equal von Mises
stress; only the difference between the coefficients of the stress tensor has to be equal. This observation
gives an explanation why shear bands only appear by involving kinematic hardening and not by
isotropic hardening: isotropic hardening is based on the equivalent stress (cf. Equation (8)). If there
is no difference between shear and matrix band in terms of the equivalent stress, there will be no
differences in material behavior. Therefore, there is no difference concerning effective strain.

Figure 15. The evolution of the effective plastic strain s (cf. Equation (9)) for the representative elements
corresponding to shear and matrix bands, respectively (see highlighted elements in Figure 14).

(a) (b)

Figure 16. The evolution of the effective plastic strain s (orange) and of (a) the von Mises equivalent
stress (blue) and of (b) the principal stress in ECAP pressure direction (blue). The solid lines are used
for the shear band and the dotted lines for the matrix band.
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As a consequence of almost equal von Mises stresses, all components of the stress tensor have
to be analyzed. The focus here is placed on the normal component with respect to the pressing
direction y. (cf. Figure 2—Note that the y-direction is defined globally. Hence, it is only the pressing
direction for the input channel.) Again, the evolution of σyy within shear and matrix bands remains
very similar for a long time. As indicated in Figure 16b, a difference in σyy occurs just in time with
the difference in the effective plastic strain within shear and matrix bands. The fact that it is difficult
to identify a precise source/origin of the divergence of the solution into shear and matrix bands
is typical for pattern-forming systems. In such systems, assigning cause and effect is not always
directly possible [50,51]. Moreover, one peculiarity becomes obvious: the difference in stress and
strain state emerges abruptly and there is no indicator for a slowly increasing gap between the
bands. This indicates an analogy to a supercritical pitchfork bifurcation in the solution (cf. Figure 17).
The control parameter in such a theoretical scenario is likely to be a combination of ckin and κ, as shown
in Section 3. There are domains in the parameter space where only one stable solution occurs, the
homogeneous distribution of strain. However, in other domains, two stable solutions occur: the shear
and the matrix band. The choice of the stable solution is affected by the previously deformed material
segment. A material segment that experiences an overlarge plastic flow (the shear band) is followed
by a material segment that experiences an undersized plastic flow (the matrix band). It is worth noting
that the application of bifurcation analysis (which is common in studying pattern-forming systems) to
ECAP represents a novel approach to understand the formation of shear and matrix bands. While the
fundamental idea is presented here for the first time, it is highlighted that further work is required to
fully describe and understand localized flow during ECAP in the conceptual framework of pattern
formation and self-organizing systems.

Figure 17. Assumed supercritical pitchfork bifurcation of the effective plastic strain s (cf. Equation (9))
in the parameter space. The control parameter is a function of both parameters of kinematic hardening.

5. Conclusions

Adopting phenomenological plasticity theory with isotropic and kinematic hardening and using
two-dimensional explicit finite element simulations, and strain localization during ECAP can be
reproduced. To this end, a systematic convergence study helps to ensure a stable and reliable FE solution,
which is suitable for gaining new insights in the localization process. The FE simulations show that
isotropic hardening can only cause minor fluctuations in the plastic strain fields. Kinematic hardening
with high initial hardening rate and sufficient strain hardening capacity can lead to pronounced localized
deformation in form of shear and matrix bands. This enables the numerical analysis of the evolution of
this band structure during ECAP with a phenomenological material model. Neither micro-mechanical
material features nor strain softening of the material have to be considered. It is confirmed that kinematic



Metals 2018, 8, 55 16 of 18

harding plays thus an important role for simulating strain localization during ECAP. Additionally,
we find a surprisingly accurate match between simulation and our experimental results. A detailed
analysis of shear and matrix bands revealed that not only the shear bands, but also the matrix bands
deform plastically during ECAP. Although the plastic deformation is very small in the whole shear
zone, the effective plastic strain rate is always larger than zero.

In future work, the influences of the different hardening mechanisms have to be studied in greater
detail. In particular, the effect of the parameters of kinematic hardening but also the influence of
the formative hardening on the evolution of shear bands is not fully understood yet. An extensive
experimental characterization of the present hardening behavior of the investigated material is the focus
of a future work. This will help to gain a detailed understanding of the relationship between material’s
hardening behavior and the occurrence of strain localization. Because of the complex relationship
of strain hardening and local (plastic) deformation behavior including strain localization in certain
cases, an in-depth understanding of the acting microstructural and micro-mechanical mechanisms is
needed to describe and predict the material’s behavior during severe plastic deformation. Applying the
theoretical concepts used to describe pattern-formation in self-organizing systems may provide a novel
pathway to distinguish stable vs. unstable deformation modes.

Supplementary Materials: The following are available online at www.mdpi.com/2075-4701/8/1/55/s1, Video S1:
Effective strain for kinematic hardening with the hardening parameters κ−1 = 200 MPa, κckin = 3.75. The shear
and matrix band formation in the shear zone is shown.

Acknowledgments: The authors gratefully acknowledge the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) for supporting this work carried out within the framework of the Collaborative
Research Center SFB 692 (projects A1, C2, C5).

Author Contributions: Tobias Daniel Horn performed the FE simulations, based on a pilot study from Christian
Silbermann. Philipp Frint conceived and designed the experiments. All authors discussed the results.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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