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Abstract: The description of the dependence of steady-state creep rate on applied stress and
temperature is almost invariably based on the Norton equation or on derived power-law relationships.
In hot working, the Norton equation does not work, and is therefore usually replaced with the
Garofalo (sinh) equation. Both of these equations are phenomenological in nature and can be seldom
unambiguously related to microstructural parameters, such as dislocation density, although early
efforts in this sense led to the introduction of the “natural power law” with exponent 3. In an attempt
to overcome this deficiency, a recent model with sound physical basis has been successfully used
to describe the creep response of fcc metals, such as copper. The main advantage of this model
is that it does not require any data fitting to predict the strain rate dependence on applied stress
and temperature, which is a particularly attractive peculiarity when studying the hot workability
of metals. Thus, the model, properly modified to take into account solid solution strengthening
effects, has been here applied to the study of the creep and hot-working of simple Al-Mg single phase
alloys. The model demonstrated an excellent accuracy in describing both creep and hot working
regimes, still maintaining its most important feature, that is, it does not require any fitting of the
experimental data.
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1. Introduction

Although single-phase Al-Mg alloys have limited industrial relevance as creep-resistant alloys,
their creep response has been analysed in many papers. A non-exhaustive picture of the extensive
coverage of creep of Al-Mg alloys can be obtained, for example, from the relevant chapters in [1–3].
The cause for this interest can be traced back to the simple nature of these materials, since their
microstructure constitutes a good case study to identify the main creep mechanisms and separate their
relative contributions to creep response in solid solutions.

In most cases, the secondary creep rate (
.
ε) dependence on applied stress (σ) and the temperature

(T) of single-phase alloys has been described by the conventional power-law and Arrhenius equations,
in the form

.
ε = A

D0Gb
kT

( σ

G

)n
exp

(
− Q

RT

)
(1)

where A is a material parameter, k is the Boltzmann constant, G is the shear modulus, b is the length of
the Burgers vector, and R is the gas constant (all the symbols used, and, where relevant, their values,
are listed in Table 1). D0 in Equation (1) is the pre-exponential factor in the Arrhenius form and Q is
the activation energy for the relevant diffusional mechanism (self-diffusion or diffusion of Mg atoms
in Al). In pure Aluminium the stress exponent n is close to 4.4–5; however, above a certain stress
level, power-law breakdown occurs, and the slope of the curve describing the strain rate dependence
on applied stress in double-log coordinates increases progressively with the stress level applied.
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This behaviour, which is associated to a stress exponent in the power-law regime close to 5 and an
activation energy equivalent to that for vacancy diffusion, identifies “class M” (Metal) materials.
The addition of Mg results in a more complex dependence of the secondary creep rate on applied
stress. The stress exponent in the low stress regime is close to 4–5, it then becomes 3 in an intermediate
stress range, and again, 4–5 before power-law breakdown [4–6]. This behaviour (“class A”) is generally
interpreted by invoking the fact that, since glide and climb of dislocations occur in sequence during
high-temperature deformation, the slower is rate controlling. In pure metals, glide is always faster than
climb; therefore, the latter is, without exceptions, the rate controlling mechanism. In class A materials,
glide is substantially slowed down by the formation of clouds of solute atoms around dislocations,
and is, consequently, the rate controlling factor in the intermediate stress regime, leading to n = 3 and
to an activation energy that is equivalent to the activation energy for diffusion of Mg atoms in Al. It is
only when climb is very slow (in the low stress regime) or when the solute atoms no longer play any
role, since dislocations have broken away from their atmospheres (in high stress regime), that the stress
exponent is 4–5 and a class-M behaviour is apparent.

Table 1. List of fundamental symbols.

b Burgers vector 2.86 × 10−10 m
c concentration of Mg in solid solution [at %]
CL work hardening constant 86
D0sd pre-exponential factor in equation for self-diffusion 8.34 × 10−6 m2·s−1

D0Mg pre-exponential factor in equation for diffusion of Mg in Al 1.9 × 10−5 m2·s−1

G shear modulus at the testing temperature (3.022 × 1010–1.6 × 107 T) Pa
k Boltzmann constant 1.38 × 10−23 J·K−1

L mean dislocation free path [m]
m Taylor factor 3.06
Mc climb mobility of dislocations [m2·N−1·s−1]
Mcg climb and glide mobility of dislocations [m2·N−1·s−1]
n stress exponent in power-law equation
Qsd activation energy for vacancy diffusion (self-diffusion) 122 × 103 J·mol−1

QdMg activation energy for diffusion of Mg in Al 119 × 103 J·mol−1

R universal gas constant [J·mol−1·K−1]
Rmax maximum back stress [Pa]
RUTS ultimate tensile strength [Pa]
T absolute temperature [K]
vd velocity of dislocations [m·s−1]
α material constant in Taylor equations 0.3
δMg volume atomic misfit
ε strain
.
ε strain rate [s−1]
ν Poisson’s ratio 0.3
ρ free dislocation density [m−2]
ρa free dislocation density in annealed state [m−2]
σ stress (creep or constant strain rate experiments) [Pa]
σba break-away stress [Pa]
σi internal stress [Pa]
σss solid solution strengthening stress [Pa]
σ*

ss reduced solid solution strengthening stress [Pa]
σy yield strength [Pa]
τl dislocation line tension [N]
ω recovery constant [Pa]
Ω atomic volume of the host atom (Al) 1.66 × 10−29 m3

The explanation of the phenomenology of creep in Al-Mg alloys, which are very synthetically
outlined above, and the use of power law to describe related experimental data are generally taken
for granted. Yet, the power law is phenomenological in nature, and, for this reason, alternative
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approaches have been sought to introduce a set of constitutive equations more directly, based on the
underlying physics. The recent work by Fernández and González-Doncel [7], which deals with a
unified model for the description of creep in Al-Mg alloy, is just one of the many examples. In this line
of thought, Sandström proposed another set of equations for fcc metals, which, in his intent, should
not require any best-fitting of experimental creep or mechanical data, being based only on a number
of physical and microstructural pre-determined parameters [8,9]. The resulting basic model was
developed to describe creep phenomena, but has been also successfully applied to high temperature
constant strain rate experiments [8]. Since the analysis of the hot-working response of metals is
based on compression or torsion constant-strain rate experiments, the use of Sandström’s set of
equations to predict the material behaviour in this envelope of experimental conditions seems to be
a straightforward step. This reasoning has led the authors of this paper to apply the basic model
to Al-Mg single-phase alloys, with a major emphasis on the description of the high-temperature
conditions typical of hot-working operations.

2. The Model

The model, originally developed for Cu, is based on physically-derived equations, which will be
here illustrated for a simple Al alloy, possibly containing elements in solid solution.

Free dislocation density (ρ) [10] is usually related to applied stress by the well-known Taylor
equation, written in the form

σ = σi + σss + σd = σi + σss + αmGb
√

ρ (2)

where m is the Taylor factor and σd = αmGbρ1/2 is the dislocation hardening term. The term σi
represents the strength of pure annealed metal, that is, the stress that is required to move a dislocation
in the absence of other dislocations, while α is a constant. In solid solution alloys, the viscous drag of
dislocations is thought to reduce dislocation mobility and control creep response in a wide interval of
applied stresses. The term σss thus represents the stress required for dislocations to move by viscous
drag in the presence of solute atom atmospheres.

The evolution of dislocation density during straining can be expressed as [9]

dρ

dε
=

m
bL
−ωρ− 2

.
ε

Mτlρ
2 (3)

where ω is a constant, τl is the dislocation line tension (τl = 0.5Gb2), M is the dislocation mobility, and L
is the dislocation mean free path, i.e., the distance travelled by a dislocation before it undergoes a
reaction, customarily expressed as

L =
CL√

ρ
(4)

CL being the strain-hardening constant. The first term on the right-hand side of Equation (3) represents the
strain hardening effect due to dislocation multiplication, which is more rapid when L, and, consequently,
CL assume low values and/or the dislocation density is high. The second and third terms on the right-hand
side of Equation (3) describe the effect of dynamic recovery. Since, at high temperature, the last term of
Equation (3), which includes an Arrhenius-type dependence on T, largely predominates on the second
term, which is roughly a-thermal, and the main emphasis in this study is on describing high-temperature
behaviour (T > 500 K), Equation (3) can be simplified to become

dρ

dε
=

m
bL
− 2

.
ε

Mτlρ
2 (5)
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The dislocation climb mobility in a pure metal, according to Hirth and Lothe [11], is

Mc =
D0sdb

kT
exp

(
σdb3

kT

)
exp

(
−Qsd

RT

)
(6)

To describe the creep results obtained in the high strain rate regime, which are characterised
by higher stress exponents and lower values of the activation energy for creep, the model has been
further modified to take into account another mechanism, the glide of dislocations through an obstacle
field [12]. Thus, the glide mobility was described by a phenomenological equation in the form

Mg ∝ exp

{
−

Qg

RT

[
1−

(
σd

Rmax

)p]q
}

(7)

where Rmax, which depends on material structure, is the flow stress that is required to plastically
deform the material in the absence of thermal activation and Qg is the activation energy necessary to
overcome the obstacle field. Recent studies [9,13] showed that Equation (7) works very well for pure
Cu and Al with p = 2 and q = 1, with Rmax equivalent to the true stress corresponding to the ultimate
tensile strength of the material considered, roughly quantified as 1.5Ruts, where Ruts is the ultimate
tensile strength.

During viscous glide in solid solution alloys, solute atoms have to jump in and out of the
atmospheres that spontaneously form around dislocations. Thus, an additional term describing the
energy needed to overcome this barrier must be added to the activation energy. This additional term
has the form [14]

Uss =
β R
bk

(8)

with

β =
1

3π

(1 + ν)

(1− ν)
bGΩ δMg (9)

where ν is the Poisson’s ratio (=0.3 in Al), Ω is the average Al-atomic volume, and δMg is the volume
atomic misfit (details about Ω and δMg are given in [14]).

The combination of Equations (5)–(8) [9,13,14] gives the following relationship for climb and glide
mobility, to be used for M into Equation (5):

M = Mcg ∼=
D0cgb

kT
exp

[
σd b3

kT

]
exp

{
−

Qcg

RT

[
1−

(
σd

Rmax

)2
]}

exp
(
−Uss

RT

)
(10)

where Dcg = D0cgexp(−Qcg/RT) is the appropriate diffusion coefficient.
At steady state, Equation (5), combined with Equations (2) and (4), gives

.
εss =

2McgτlbCL

m

( σd
αmGb

)3
(11)

The model based on Equations (9) and (10) requires the determination of CL (CL = 86 in pure
Al [13]) and of two of the terms in Equation (2), namely σi and σss.

In the case of pure Al, the determination of σi, which is temperature and strain rate dependent,
was based on the assumption that the dislocation density in annealed state (ρa) and the σi values
account for the annealed yield strength of the pure metal [15]. The yield stress is thus given by Equation
(2) (which is general, and holds for any single stage of the stress vs. strain curve) [15], where ρa is
virtually nihil. The traditional way of describing the temperature dependence of yield strength is to
assume that, in the creep range, yield strength is proportional to creep strength, whereas below the
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creep range yield strength is proportional to shear modulus. On these bases, for pure Al, the following
expression has been used in [13]

σi = Ay

√
σcreepG (12)

where σcreep is the creep stress that corresponds to a given steady-state creep rate. The Ay constant
(Ay = 4.2 × 10−3 [13]) was determined so as to obtain a reliable estimate of the yield strength of
high-purity Al at room temperature by Equation (2).

An equation for solid solution strengthening stress was given in [14], in the form

σss =
vdcβ2

bΩDMgkT
I(z0) (13)

where vd is the dislocation velocity, being c the Mg atomic concentration. The term DMg = D0Mg
exp(−QMg/RT) is the diffusivity of Mg in Al. The term I(z0) can be calculated by the numerical
integration of

I(z0) =
∫ z0

1

2
√

2π

3
z−5/2 exp(z)d z (14)

with z0 = β/bkT [14].

3. Description of High Purity Aluminium

Figure 1 plots the steady-state creep rate as a function of stress for Al 99.999% [16] and the model
curves given by Equations (10) and (11) with CL = 86, Uss = 0, Qcg = Qsd = 122 kJ·mol−1, and Dcg = D0sd
= 8.34 × 10−6 m2·s−1 [13]. The original Figure in [13] was obtained by taking ω = 15; in this study,
the value ω = 0 was used, which demonstrates that the simplified model of Equation (5) still works
very well. The diffusion coefficient was recalculated in [13] by considering all the data reported in [17].
The basic model gives a very good description of the experimental data for the pure metal, without any
need for data fitting, and, for this reason, it is an excellent basis for the implementation of the analysis
of Al-Mg alloys.

Figure 1. Steady-state creep rate dependence on applied stress for Al 99.999% [16]; the curves were
calculated by Equations (10) and (11) with CL = 86, ω = σss = Uss = 0.
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4. Description of High Purity Aluminium-Magnesium Single Phase Alloys

4.1. Diffusion Coefficient

The typical value of the diffusion coefficient parameters for the diffusion of Mg in Al is
D0Mg = 1.24 × 10−4 m2·s−1, Qsd = 130.5 kJ·mol−1 [18]. The accuracy of this estimate was challenged in
a recent work [19], which reported a wide collection of literature results on the diffusivity of Mg in Al,
which is illustrated in Figure 2. A good fitting is obtained with Qsd = 119 kJ·mol−1 and D0sd = 1.9 ×
10−5 m2·s−1, which actually give a curve very close to the one from [18].

Figure 2. Diffusion coefficient in Al-Mg (set of literature data from [19]). The Figure illustrates the best
fitting of the data as well as the curve representing the diffusion coefficient used in the majority of
previous studies.

4.2. Drag Stress Calculation and Experimental Datasets on Dislocation Density and Strain Rate

Microstructural data, namely dislocation density variation with applied stress, and previous
results on pure Al, will be used to evaluate the accuracy of the model in estimating solid solution
stress. Equation (2) can be rewritten as

ρ =

(
σ− σi − σss

αmGb

)2
(15)

Figure 3, which collects data from different sources [20–22], shows that the experimental value of
the dislocation density in Al-Mg is somewhat lower than in pure Al. This behaviour is fully consistent
with Equation (15) due to the presence of drag stress. Thus, dislocation density could be properly
modelled, as long as the calculated value of drag stress is sufficiently reliable. To proceed in this
direction, it is necessary to estimate the dislocation velocity, which can be expressed by combining the
well known Orowan equation

.
ε = ρ b vd (16)

with Equation (11), giving

vd =
CL

α m2 Mcgbσd (17)
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Figure 3. Experimental values of the dislocation density as a function of stress for Al-3%Mg [20–22],
Al-4%Mg [21], Al-5%Mg [21], and Al-6.9%Mg [20]. The shaded area, which illustrates the scatter band
for Al-Mg alloys, was reported in [22]. The Figure also plots the model curve for pure Al [13] and for
Al-Mg alloys (3.24% and 5.5%Mg at 600 and 623 K, respectively).

The combination of Equations (13) and (17) gives

σss =
CL Mcgσdcβ2

α m2ΩDMgkT
I(z0) (18)

or
σss =

B
1 + B

(σ− σi) (19)

where

B =
CL Mcgcβ2

α m2ΩDMgkT
I(z0) (20)

The diffusion coefficient for climb and glide Dcg can be considered to be equivalent to the
self-diffusion coefficient of Al. Once the value of the ultimate tensile strength of the different Al-Mg
alloys is quantified (with the above-mentioned assumption, Rmax = 1.5RUTS), all of the parameters in
Equations (10), (12), and (19) are known. The model curves presented in Figure 3 were thus calculated
by Equations (15) and (18). Since the agreement between the curves and the experimental data is
excellent, a direct and independent confirmation that the estimation of the drag stress is sufficiently
reliable to be used in the model for the steady-state creep rate dependence on applied stress is obtained.

Figure 4 shows the sets of experimental creep data used in this study. The first dataset [4]
presents the creep rate at an applied strain of 0.2, i.e., reasonably close to the steady state, at a
constant temperature, for different Mg contents (Figure 4a). Although being limited to a single
temperature, the dataset represents the classical case study, since the three traditional regimes can
be easily recognised. Figure 4a clearly shows low stress Regime I, where creep is thought to be
climb-controlled (n = 4–5). Above a transition stress σc, the rate-controlling mechanism should be
viscous glide (n = 3). It is only when the applied stress exceeds a limiting value (σs

ba, frequently
identified with the break-away stress, σba) that dislocations are able to break-away from solute atom
atmospheres and creep should again become climb-controlled (n = 4–5). The data from [4] are thus
well suited to assess the accuracy of the model in describing the effect of different amounts of Mg in
solid solution.
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Figure 4. Literature data on the creep of Al-Mg alloys: strain rate at 0.2 strain data from [4] (a) and
steady-state creep and steady-state flow stress from constant strain rate experiments from [16] (b).

The second dataset (Figure 4b), which is related to an Al-2%Mg alloy, was obtained from [16].
This dataset is extremely useful to investigate the accuracy of the model in describing the temperature
dependence of the steady-state creep rate.

4.3. Viscous-Glide Controlled Creep: Strain Rate Dependence on Stress and Temperature at T ≥ 523 K

The first analysis was focused on the data included in Regimes I and II at high temperatures.
In the low-intermediate stress regime, solute atmospheres surround dislocations, exerting a drag stress
σss. Upon substitution of the drag stress into Equations (10) and (11), the model gives the curves
that are presented in Figure 5. It is clearly shown that the model gives an accurate description of
the experimental data in the low and intermediate stress regimes, although a significant deviation is
observed at high stresses. This behaviour could be rationalised by considering that the model can
describe the steady-state creep rate with reasonable accuracy as long as σ < σs

ba. Thus, all of the
data points for σ > σs

ba represent the steady-state creep rate in conditions, in which the progressive
break-away of dislocations results in a reduction of the strengthening effect of solute atom atmospheres,
that is, of the σss term.

Figure 5. Description of the experimental data for T > 523 K from [16] by Equations (10) and (11),
where the drag stress σss is obtained from Equations (19) and (20).
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4.4. Creep Above the Transition for Break-Away of Dislocations from Solute Atom Atmospheres

In the model presented in the previous section, the σss term monotonically increases with stress.
By contrast, the drag effect should rapidly reduce as dislocations break-away from solute atoms.
However, for stresses just above σs

ba, the solid solution stress cannot be reasonably expected to become
abruptly non-existent. This behaviour would indeed result in a step in the strain rate plot that
is not evident in Figure 4. Rather, it seems more reasonable to suppose that, as stress increases
above σs

ba, when the dislocation velocity exceeds a limiting value vba, a progressively increasing
fraction of the Mg atoms is expelled from the solute atmospheres. When the stress is sufficiently
high that all the dislocations are free from solute atoms, the material behaves essentially like pure
Aluminium—the main difference being that here the dislocation should overcome single Mg atoms,
and that the alloy still creeps at a lower rate. In parallel, the homogeneous dislocation distribution
typical of class A materials, which is associated to high drag stresses, is progressively replaced by a
more heterogeneous distribution with substructure formation [1–3].

If such is the situation, the drag stress can no longer monotonically increase, as predicted by
Equation (13), but, at a stress correctly identified as break-away stress (σba), should present a maximum
which should be larger than σs

ba.
The behaviour described above was here modelled by supposing that the effect of break-away

can be described by an equation in the form

σss∗ = F σss (21)

where 0 ≤ F(σ) ≤ 1, σss being the drag stress calculated by Equation (18) A suitable phenomenological
form for F is

F =

[
1 +

(
σ

σ50

)h
]−1

(22)

where σ50 is the stress for which the reduced drag stress is a mere half of the computed value of σss.
For the sake of simplicity, it was here assumed that σ50 ∼= σba. This assumption, in turn, implies that
to have a maximum in the drag stress for σ = σba, due to the peculiar dependence of σss on stress,
then the exponent h should range from 2, in the high temperature regime, to 3, at 600 K.

The general expression for the break-away stress was given by Friedel [23]

σba = mτba = m Aba
W2

mc
kTb3 (23)

where the maximum interaction energy between solute atoms and an edge dislocation can be
expressed as

Wm = − 1
2π

(
1 + ν

1− ν

)
G|∆Va| (24)

being ∆Va the difference in volume between solute and solvent atoms (that is, with the formalism used
in Equation (8), Wm is directly related to β). In Friedel’s original formulation Aba = 1, giving, for example,
a break-away stresses above 400 MPa for 2%Mg at 750 K, a level so high that it is hardly conceivable
for this mechanism to play any role in creep. These very high values were considered by some
authors [4,24,25] as incompatible with experimental evidence. Their analyses rather suggested that
σba is one order of magnitude lower, that is, Aba

∼= 0.1 [24,25] or even Aba
∼= 0.065 [26,27]: this reduced

value of the break-away stress will be here, denoted as σ∗ba. Thus, Equation (23) was here provisionally
used with Aba = 0.065, to obtain the values of the reduced drag stress σ∗ss. The curves obtained by
replacing σss with σ∗ss into Equation (11) are presented in Figure 6.
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Figure 6. Description of the experimental data from [4] (a) and [16] (b) by Equations (10) and (11),
with σ∗ss from Equations (21)–(24). Figure 6a also shows the variation of n = ∂ log

.
ε/∂ log σ for the alloy

with 3.24%Mg.

The model is now able to describe the material behaviour in the whole range of applied
stress, and even the complex change in slope n (=∂ log

.
ε/∂ log σ), usually associated to the

transition from Regimes I, II and III (Figure 6a), without requiring specific assumptions on the
rate-controlling mechanisms.

Examples of the variation of σ∗ss as a function of temperature and applied stress are presented in
Figure 7. The reduction of the drag stress is the effect of a lower amount of Mg in the atmospheres
around dislocations: c* can be identified as the amount of magnesium, still in the solute clouds,
which produces a given drag stress σ∗ss. The value of c*, as calculated by Equation (21), for a single
temperature and alloy is presented in Figure 8, which also plots the corresponding σ∗ss and σss.

Figure 7. Variation of σ∗ss as a function of temperature and applied stress for Al-2%Mg.
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Figure 8. Plots for σ∗ss, c* and σss as a function of modulus compensated stress for 3.24%Mg at 600 K.

4.5. Hot Working as an Extension of Creep: The Model in the High Strain Rate Plasticity Regime

One of the main tasks of this study is to assess whether the Sandström basic model, modified
to account for dislocation break-away, is able to also describe high-strain rate/high-temperature data,
i.e., the hot working regime. Figures 9–11 illustrate the compression data (stress at 0.3 strain, roughly
corresponding to the peak stress of the flow curve) for three different alloys (0.55, 2.2 and 5.5%Mg) [28], and,
for comparison purposes, other single creep datasets for 0.48%Mg [4], 2.2%Mg [1,29] and 5.5%Mg [1,30].
The model curves, as calculated by following the same procedure discussed above, i.e., by replacing σss with
σ∗ss, provide an excellent description of the experimental data (the average error is the stress estimation
for a given strain rate is 11, 10, and 7% for the alloys containing 0.55, 2.2, and 5.5%Mg, respectively), with
the mere exception of the results for 0.5%Mg at 573 K, where the average error reaches 22% (Figure 7).
As a matter of fact, at 573 K and at the highest strain rates at 623 K, the reduced drag stress, as calculated
by Equation (21), is extremely low, since the stress is far above σ∗ba. In this condition, isolated atoms
can still retard dislocation motion, an effect that has not been considered in the model, leading to the
overestimation of the strain rate in the lower temperature regime. With this notable exception, it can thus
be concluded that the basic model presented here can be successfully used to predict, with more than
reasonable accuracy, the hot workability response of Al-Mg alloys in the temperature regime between
550 and 850 K, without requiring any best fitting of experimental data. Thus, the predictive capability of
the model is fully confirmed, suggesting that it could be profitably used in hot working studies.

Figure 9. Compression data for 0.55%Mg [28] and creep data for 0.48%Mg [4]. The model curves were
calculated by Equations (10)–(11), (21)–(24).
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Figure 10. Compression data for 2.2%Mg [28] and creep data from [1,29]. The curves were calculated
as in Figure 9.

Figure 11. Compression data for 5.5%Mg [28] and creep data from [1,30]. The curves were calculated,
as in Figure 9.

5. Conclusions

A unified approach has been presented to describe the high-temperature secondary strain rate
dependence on applied stress and temperature for Al-Mg single-phase solid solution alloys in creep
and hot working conditions. The physically based constitutive equations proposed contain three
important parameters: internal stress, which represents the stress that is required to move a dislocation
in the matrix, the strengthening contribution due to solute atom-dislocation interactions (drag stress),
and the strain hardening constant CL, which, in combination with free dislocation density, determines
the dislocation mean free path. Once the effect of break-away of dislocations from solute atmospheres
has been described by a specific relationship, the model proposed does not require any variation
in the constitutive equations to describe the whole experimental range of steady-state creep rate,
nor data-fitting, which is a notable advancement over other phenomenological equations.
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2. Čadek, J. Creep in Metallic Materials; Elsevier: Amsterdam, The Netherlands, 1988; pp. 160–175.
ISBN 9780444989161.

3. Kassner, M.E.; Pérez-Prado, M.T. Fundamentals of Creep in Metals and Alloys; Elsevier: Amsterdam,
The Netherlands, 2004; pp. 11–120. ISBN 9780080436371.

4. Oikawa, H.; Honda, K.; Ito, S. Experimental study on the stress range of class I behaviour in the creep of
Al-Mg alloys. Mater. Sci. Eng. 1984, 64, 237–245. [CrossRef]

5. Sato, H.; Maruyama, K.; Oikawa, H. Effects of the third element on creep behaviour of Al-Mg and α-Fe-Be
sold solution alloys. Mater. Sci. Eng. A 1997, 234–236, 1067–1070. [CrossRef]

6. Horita, Z.; Langdon, T.G. High temperature creep of Al-Mg alloys. In Strength of Metals and Alloys, Proc.
ICSMA7; McQueen, H.J., Bailon, J.P., Dickson, J.I., Jonas, J.J., Akben, M.G., Eds.; Pergamon Press: Oxford,
UK, 1986; pp. 797–802. ISBN 0080316409.

7. Fernández, R.; González-Doncel, G. A unified description of solid solution creep strengthening in Al-Mg
alloys. Mater. Sci. Eng. A 2012, 550, 320–324. [CrossRef]

8. Sandström, R. Influence of phosphorus on the tensile stress strain curves in copper. J. Nucl. Mater. 2016, 470,
290–296. [CrossRef]

9. Sandström, R.; Andersson, H.C.M. Creep in phosphorus alloyed copper during power-law breakdown.
J. Nucl. Mater. 2008, 372, 76–88. [CrossRef]
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