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Abstract: Magnesium silicate impregnated onto palm-shell waste activated carbon (PPAC)
underwent mild hydrothermal treatment under one-pot synthesis, designated as PPAC-MC. Various
impregnation ratios from 25 to 300% of MgSiO3 onto PPAC were tested. High levels of MgSiO3 led to
high Cu(II) adsorption capacity. A ratio of 1:1 (PPAC-MS 100) was considered optimum because of its
chemical stability in solution. The maximum adsorption capacity of PPAC-MS 100 for Cu(II) obtained
by isotherm experiments was 369 mg g−1. The kinetic adsorption data fitted to pseudo-second-order
model revealed as chemisorption. Increasing ionic strength reduced Cu(II) adsorption capacity due to
the competition effect between Na+ and Cu2+. In addition, PPAC-MS 100 showed sufficient adsorption
capacity for the removal of Zn(II), Al(III), Fe(II), Mn(II), and As(V), with adsorption capacities of
373 mg g−1, 244 mg g−1, 234 mg g−1, 562 mg g−1, 191 mg g−1, respectively. Three regeneration
studies were also conducted. PPAC-MS was characterized using Fourier Transformed Infrared
(FTIR), X-Ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Field Emission
Scanning Electron Microscope (FESEM). Overall, PPAC-MS 100 is a competitive adsorbent due to
its high sorption capacity and sufficient regeneration rate, while remaining economical through the
reuse of palm-shell waste materials.

Keywords: one-pot synthesis; palm shell waste activated carbon; magnesium silicate; adsorption;
potential toxic metals

1. Introduction

Copper is essential to life, but high concentrations have toxic effects on the environment and
living organisms [1]. In humans, it can cause the failure of the kidney and liver [2]. Copper is
commonly found in abandoned mining areas, electroplating wastewater, and other extant water bodies.
Potential toxic metals (PTMs) such as copper can accumulate in living organisms because they are not
biodegradable [3]. Several copper mining-factories operating in Malaysia discharge about 30 times
higher Cu(II) concentration than regulations allow (<0.2 mg L−1) [4].

Conventional treatment methods including chemical precipitation [5], adsorption [6] and
membrane separation [7] are widely applied to treat PTMs wastewater. Among these technologies,
adsorption technology is a promising method due to its low maintenance cost and high efficiency [8–10].
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However, the adsorption method suffers in terms of developing efficient adsorbents together
with reduction of removal capacity in the complex situation, while competing with chemical
components [11]. Therefore, it is necessary to develop efficient adsorbents which can be adapted to
complex conditions with efficient binding capacity for not only single-type metal adsorption, but also
complex PTMs compounds.

Porous materials have advantages in adsorption due to their higher surface area and the ability to
bind functional group on the surface [12]. Activated carbon is a type of porous material which is widely
used for micropollutant adsorption because of its high specific surface area, adequate pore structure,
and fast kinetic adsorption [13,14]. A great deal of research has investigated micropollutant removal
using modified activated carbon with amine groups [15,16], Fe2O3 impregnation [17,18], anionic
surfactants [19,20] and others. However, commercial active carbon is expensive, thus, several studies
have been conducted to find economical adsorbents such as bamboo [21,22], spent tea leaves [23],
nut shell [24,25], sawdust [26], and cotton hull [27]. In this study, palm shell waste activated carbon
(PPAC) was used, which is a cost-effective material [28].

The effectiveness of magnesium silicate (MgSiO3) for PTMs removal was recently studied [29],
and it was noted that MgSiO3 has the capability for ion exchange between Mg(II) and positively charged
metal ions. However, nano-sized materials do not have a practical implementation for wastewater
treatment because of separation difficulty in the treatment system and insufficient assessment of the
toxicity of nano-sized materials [30,31]. To improve metal removal efficiency and hydro conductivity,
several studies have examined chemical coatings such as iron oxide [32], silica [33], manganese
oxide [34], magnetite lanthanum oxide [28], and zinc chloride [35] on active carbon, which has
hydrophobic characteristics toward metal ions. However, MgSiO3 coated onto active carbon for
PTMs removal has not been studied. The main aim of this study is to develop a simple and novel
one-pot synthesis method for coating MgSiO3 onto surface of palm shell waste activates carbon (PPAC)
with mild hydrothermal treatment and to investigate the optimum impregnated weight ratio between
MgSiO3 and PPAC for Cu(II) removal. Fourier Transformed Infrareds (FTIR), X-Ray powder diffraction
(XRD), X-ray photoelectron spectroscopy (XPS) and Field Emission Scanning Electron Microscope
(FESEM) were used to determine its mechanisms and characteristics. The adsorption isotherm and
kinetic of Cu(II) removal of PPAC-MS 100, PPAC-MS 50, PPAC-MS 25 and PPAC were determined.
Additional objectives were to determine the influence of pH and ionic strength on Cu(II) adsorption
and examine the reusability of absorbent with magnesium solution and hydrochloride acid. Moreover,
the mechanism of copper removal was investigated using modified PPAC. Furthermore, potential
toxic metals (PTMs) such as Zn(II), Al(III), Fe(II), Mn(II) and As(V) removal were also conducted to
evaluate the adsorption performance of PPAC-MS through isotherm adsorption.

2. Materials and Methods

2.1. Materials

2.1.1. Preparation of Magnesium Silicate Impregnated on PPAC

PPAC (mesh size 200) activated by potassium hydroxide (KOH) was obtained from Bravo Green
Sdn. Bhd., Kuala Lumpur, Malaysia. Sodium Chloride (NaCl, purity > 99.0%), Copper sulphate (CuSO4,
purity > 99.0%), silicon powder (SiO2, purity > 99.0%), magnesium oxide (MgO, purity > 99.0%),
methanol, zinc nitrate (ZnNO3), iron sulphate (FeSO4, purity > 99.0%), manganese sulphate (MnSO4,
purity > 99.0%), sodium hydroxide (NaOH, purity > 99.0%) and nitric acid (HNO3 purity > 90.0%)
were obtained from R&M chemical (Selangor, Malaysia). Aluminum sulphate hydrate (Al2(SO4)3,
purity > 99.99%) and sodium arsenate (Na3AsO4, purity > 99.99%) were purchased from Sigma.
4.64 g of MgO and 6.76 g of SiO2 dissolved into 100 mL DI water were stirred continuously at
30 ◦C to obtain magnesium silicate gel. For each silicate gel, 3.3, 5.0, 6.7, 10.0, 20.0, and 40.0 g of
PPAC, respectively, were add and stirred for 1 h at 150 rpm. The amounts of PPAC were calculated
based on ratio (wt%) of (MgO + SiO2)/PPAC. Therefore, the ratio represents 300, 200, 150, 100,
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50, and 25 wt% of (MgO + SiO2)/PPAC, assigned as PPAC-MS 300, PPAC-MS 200, PPAC-MS 150,
PPAC-MS 100, PPAC-MS 50 and PPAC-MS 25. The impregnated product was transferred into a
stainless-steel Teflon-lined autoclave and treated at 150 ◦C for 10 h. The resulting product was
filtered through 0.45µm-pore Whatman filter paper and washed with distilled water several times.
After washing, the final impregnated product was dried in an oven at 70 ◦C for 24 h [36].

2.1.2. Optimization on Impregnated Ratio of MgSiO3 on PPAC

Examination of copper adsorption on PPAC-MS with impregnation ratios ranging from 0–300%
were carried out to investigate the optimum ratio of MgSiO3 impregnated on PPAC. The experiments
were conducted using 5 mg of PPAC-MS with 500 mg L−1 (pH 4.5) of 50 mL Cu(II) solution under
150 rpm for 24 h using PPAC-MS 300, PPAC-MS 200, PPAC-MS 150, PPAC-MS 100, PPAC-MS 50 and
PPAC-MS 25. After adsorption, the suspension was filtered using a 0.45 µm pore size syringe
filter. Then, Cu(II) concentration was determined using inductively coupled plasma optical emission
spectrometry analysis (ICP-OES, Optima 5300V, Perkin Elmer, Waltham, MA, USA).

2.2. Batch Experiments for Cu(II) Removal

2.2.1. Adsorption Isotherms

Adsorption isotherm explains the adsorption molecule on the surface of an absorbent. To compare
the Cu(II) removal capacity for PPAC-MS 100, PPAC-MS 50, PPAC-MS 25 and PPAC, adsorption
experiments were conducted at varying initial concentrations. Equilibrium isotherm experiments were
conducted with 5 mg of adsorbents with 50 mL Cu(II) solution under 150 rpm for 24 h [37]. Cu(II)
solutions with 50 mg L−1, 100 mg L−1, 200 mg L−1, 300 mg L−1, 400 mg L−1 and 500 mg L−1 were
prepared and the initial solutions were adjusted to pH 4.5 using 0.1 M Sodium Hydroxide (NaOH) and
0.1 M hydrochloric acid (HCl). After the isotherm experiments, the suspensions were filtered using
0.45 um pore size Whatman filter papers and Cu(II) concentrations were determined using ICP-OES
analysis as per ASTM D1967-18 [38].

Values for qe were calculated as follows [39]:

qe =
(Co − Ce)V

M
(1)

where qe is the adsorption capacity of solute absorbed at equilibrium (mg g−1), Ce is the equilibrium
concentration (mg L−1), initial solution concentration (mg L−1), M is the mass of absorbent (g) and V is
the volume of solution (L). The isotherm data experiments were fitted to the Langmuir and Freundlich
isotherms models.

The linear form of the Langmuir model is derived as follows [19]:

Ce

qe
=

1
QmaxKL

+
Ce

qe
(2)

where Qmax is the maximum adsorption capacity (mg g−1) and KL (L mg−1) is the Langmuir constant
related to the energy of adsorption. When adsorption is performed using a monolayer and uniform
surface, the Langmuir model fits the isotherm data. Maximum adsorption capacity was achieved when
all sorption sites were saturated. The linear form of Freundlich isotherm was calculated as follows [40]:

log qeq = log KF +
1
n

log Ceq (3)

where KF and n are Freundlich isotherm constants related to adsorption capacity and adsorption
intensity, respectively.
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2.2.2. Adsorption Kinetics with Ionic Strength Effect

Kinetic adsorption experiments were conducted with 5 mg of absorbent with 50 mL of pollutant
at 150 rpm at room temperature. 0 M, 0.01 M and 0.1 M NaCl with 500 mg L−1 of Cu(II) solution at
pH 4.5 were prepared to investigate the influence of ionic strength on Cu(II) removal. Samples were
collected at 30, 60, 90, 120, 150 and 180 minutes and analyzed for Cu(II) concentration. To analyze
the kinetic adsorption process, the pseudo-first and pseudo-second order kinetics models were used.
The pseudo first-order kinetic model is expressed as follows [25]:

log (qe − qt) = log qe −
K1

2.303
t (4)

The pseudo second-order kinetic model is expressed as:

t
qt

=
1

K2qe2 +
t
qe

(5)

where qe (mg g−1) is the adsorption capacity at equilibrium, qt (mg g−1) is the amount of solute
absorbed at time t, and K1 (min−1) and K2 (g mg−1 min−1) are the reaction rate constants for the
pseudo first-order and pseudo second-order kinetic models, respectively.

2.2.3. pH Effect on PPAC-MS-100 for Cu(II) Removal

Adsorption experiments were carried out to determine the influence of pH on copper removal for
PPAC-MS 100. 100 mg L−1 of Cu(II) solution was prepared and the initial pH levels were adjusted
to 2, 3, 4, 5, 6 using 0.1 M of NaOH and 0.1 M of HCl. Adsorption experiments were conducted with
5 mg of absorbent with 50 mL of Cu(II) solution under 150 rpm for 24 h at room temperature. Samples
were filtered through 0.45 µm pore size of Whatman filter and underwent ICP-OES analysis for Cu(II)
concentration tracing.

2.2.4. Regeneration of PPAC-MS 100 for Cu(II) Adsorption

Three cycles of regeneration were performed to investigate the reusability of PPAC-MS 100 for
Cu(II) removal. 5 mg of PPAC-MS 100 was added to a 50 mL solution containing 400 mg L−1 of
Cu(II) in pH 4.5 and shaken at 150 rpm for 24 h. After adsorption, the suspensions were filtered and
treated with 50 mg L−1 of Mg(II) solution or 0.1 M HCl solution, shaken under 150 rpm for 1 h at room
temperature. The absorbent was washed several times with distilled water and dried in an oven at
70 ◦C for another adsorption cycle.

2.3. Adsorption Study of Dissociated PTMs by PPAC-MS 100

Langmuir and Freundlich isotherm modelling has been used to investigate adsorption capacities
of PPAC-MS 100 to 5 types of different PTMs. 5 mg of PPAC-MS 100 were added to the solution: Zn(II)
from 50 to 600 mg L−1, Al(III) 50–500 mg L−1, Fe(II) from 50 to 600 mg L−1, Mn(II) from 50–500 mg L−1

and As(V) from 25 to 400 mg L−1. 5 mg of PPAC-MS 100 was placed in 50 mL centrifuge tube at
150 rpm for 24 h at room temperature. The initial pH of the solution was not adjusted. After the
suspension was filtered, the concentration of the pollutant was determined using ICP-OES.

2.4. Material Characterization

Surface functionalize groups were determined via Fourier Transformed Infrareds (FTIR)
spectroscopy with a scanning range of 450 cm−1 to 4000 cm−1. The characteristic textural structures of
the pores of PPAC-MS 100, PPAC-MS 50, PPAC-MS 25 and PPAC were determined using a nitrogen gas
adsorption analyzer (Mircrmeritics ASAP2020, Tristar II 3020, Norcross, GA, USA) to measure surface
area, pore volume, and pore size distribution with relative pressure from range 0 to 1 p/po. Pore size
distribution was calculated with Brunauer-Emmett-Teller (BET) and Barrett Joyner-Halenda (BJH)
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equation. Moreover, the surface area was determined by Langmuir, BET and BJH equation. The surface
morphologies of PPAC and PPAC-MS were determined with a Field Emission Scanning Electron
Microscope (FESEM-EDX) (FEG Quanta 450, TSS Microscopy, Beaverton, OR, USA), EDX-OXFORD
instrument (Abingdon, UK) and Hitachi SU8010 (Ibaraki, Japan). An X-Ray powder diffraction (XRD)
pattern was obtained using X-Ray Diffractometers (Empyrean, Malvern Panalytical, Royston, UK)
with an operational voltage of 40 kV and 40 mA current and Cu Kα radiation (λ). The XRD data was
recorded in the range of 10–80◦ at 0.02 step size. The XRD raw data was evaluated using Highscore
software (Plus version, Malvern Panalytical, Royston, UK). X-ray photoelectron spectroscopy (XPS)
measurements were performed with ULVAC-PHI Quantera II using Al-Kα radiation (1486.6 eV)
operated at 15 kV.

3. Results and Discussion

3.1. Optimization on Impregnated Ratio of MgSiO3 on PPAC

To determine optimum ratio between MgSiO3 and PPAC, several weight ratios of MgSiO3/PPAC
(0, 25, 50, 100, 150, 200 and 300 wt%, of MgSiO3 impregnated onto PPAC) were tested for Cu(II) removal.
The results for effect of impregnation ratio on Cu(II) removal is illustrated in Figure 1. In Figure 1, it is
clear that impregnation ratio and Cu(II) removal capacity promoted a direct proportional relationship,
the experimental results indicated that increasing impregnation ratio will also increase Cu(II) removal
capacity. The highest impregnation ratio shows the highest Cu(II) removal capacity. The main removal
mechanisms were adsorption and precipitation, as verified through FTIR, FESEM-EDX, XRD, and XPS
(see details in Section 3.7 Material Characteristics). Material synthesis difficulty was encountered when
the impregnation ratio went beyond 300% due to segregation between PPAC and excess MgSiO3 gel.
Moreover, the gradient in the Figure 1 curve decreases from 2.096 to 0.684 when the impregnation
ratio is over 100%. Experimental results indicate that Cu(II) removal capacity had fewer increments
when the impregnation ratio was greater than 100% due to the limitation of impregnation area on
PPAC. Furthermore, MgSiO3 leached from the PPAC-MS when the impregnation ratio was higher
than 100%. Therefore, the following examination of Cu(II) adsorption will focus on 0–100% of MgSiO3

impregnation ratio.
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increase of Cu(II) removal capacity. Initial working solution prepared in pH 4.5 and the solution pH 
increased to pH 7–8 after Cu(II) isotherm adsorption experiments. This reveals that MgSiO3 plays an 
important role in Cu(II) removal capacity. Thus, PPAC-MS 100 showed the highest Cu(II) removal 
capacity compared to PPAC-MS 50, PPAC-MS 25 and PPAC because it had the highest MgSiO3 
impregnation ratio. Compared to the other absorbent media (Table S2 in SI), PPAC-MS 100 showed 
high Cu(II) adsorption capacity except powdered MgO [41]. Although many factors contribute to 
adsorption performance, including surface area and impregnation compound on based material 
[42–44], it is clear that granular adsorbent has greater practical implementation for water treatment, 
but the available sorption area is lower than nano-particles [45]. Furthermore, because KOH has 
high efficiency for PTMs adsorption, PPAC activated by KOH may enhance Cu(II) removal.  

Figure 1. Adsorption isotherms of Cu(II) by different impregnation ratio of MgSiO3 on PPAC.



Metals 2018, 8, 741 6 of 19

3.2. Adsorption Isotherms for Cu(II)

Cu(II) adsorption values for PPAC-MS 100, PPAC-MS50, PPAC-MS 25 and PPAC were fitted to
Langmuir and Freundlich isotherm model to describe the interactive behavior between absorbent
and pollutant. Figure 2 compares the Langmuir and Freundlich isotherm curves for PPAC-MS
100, PPAC-MS 50, PPAC-MS25 and PPAC. Table S1 displays the adsorption isotherm parameters.
The adsorption capacities from the experiment for Cu(II) removal were 369 mg g−1 for PPAC-MS 100,
285 mg g−1 for PPAC-MS50, 220 mg g−1 for PPAC-25, and 165 mg g−1 for PPAC. Isotherm results
show that increasing impregnation ratios of MgSiO3 result in the release of Mg2+ and OH− release
and an increase of Cu(II) removal capacity. Initial working solution prepared in pH 4.5 and the
solution pH increased to pH 7–8 after Cu(II) isotherm adsorption experiments. This reveals that
MgSiO3 plays an important role in Cu(II) removal capacity. Thus, PPAC-MS 100 showed the highest
Cu(II) removal capacity compared to PPAC-MS 50, PPAC-MS 25 and PPAC because it had the highest
MgSiO3 impregnation ratio. Compared to the other absorbent media (Table S2 in SI), PPAC-MS
100 showed high Cu(II) adsorption capacity except powdered MgO [41]. Although many factors
contribute to adsorption performance, including surface area and impregnation compound on based
material [42–44], it is clear that granular adsorbent has greater practical implementation for water
treatment, but the available sorption area is lower than nano-particles [45]. Furthermore, because KOH
has high efficiency for PTMs adsorption, PPAC activated by KOH may enhance Cu(II) removal.
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Figure 2. Adsorption isotherms of Cu(II) on PPAC and PPAC-MS 25, PPAC-MS 50 and PPAC-MS 100
with Langmuir modeling and Freundlich modeling.

According to the coefficient of determination (R2) in Table S1, the adsorption of Cu(II) by PPAC-MS
50, PPAC-MS 25 and PPAC fitted well to Langmuir isotherm while PPAC-MS-100 fitted better with
Freundlich isotherm. Theoretically, the Langmuir model is suitable for monolayer adsorption on
homogenous surfaces [46], whereas the Freundlich model assumes the multilayer adsorption on
heterogeneous surfaces [47]. The Langmuir isotherm model suggests the monolayer coverage of Cu(II)
binding onto PPAC-MS 50, PPAC-MS 25 and PPAC surface homogeneously, while heterogeneous
adsorption occurs on the PPAC-MS 100 surface with multiplayer coverage of Cu(II). Moreover, for the
Freundlich isotherm constant, the n values presented in Table S1 for PPAC-MS 100 above describe the
favorability of Cu(II) adsorption [41,48].

3.3. Adsorption Kinetics with Different Ionic Strength

Examination of kinetic adsorption studies were carried out using PPAC-MS 100, PPAC-MS 50,
PPAC-MS 25 and PPAC with different ionic strengths of 0 M, 0.01 M, and 0.1 M NaCl. The kinetic
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experiment results were fitted into pseudo first order modeling and pseudo-second-order modeling,
as illustrated in Figure 3. Kinetic constants for pseudo first-order and second-order are summarized in
Table S3. The kinetic experiment data was fitted using pseudo second-order modeling, with R2 from
0.972 to 0.996. Furthermore, the kinetic results indicate that the overall adsorption process is closer to
the chemisorptions process than the physisorption process [49], meaning that MgSiO3 may be a main
component for Cu(II) adsorption rather than PPAC.Metals 2018, 8, x FOR PEER REVIEW  8 of 20 
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As shown in Figure 3, ionic strength significantly influences the adsorption capacity of Cu(II).
In terms of varying ionic strength conditions, Cu(II) removal capacity decreases when ionic strength
increases. This phenomenon can be explained by the positively charged sodium ion contributing
repulsive force at the outer layer of the absorbent and repelling positively charged copper ion [50].
Therefore, the available sorption surface decreases, resulting in a decrease of Cu(II) adsorption capacity.

Moreover, the adsorption reached equilibrium at 60 min for all absorbents at 0 M, 0.01 M and
0.1 M ionic strengths. It was found that higher ionic strength concentrations can increase the adsorption
equilibrium rate. This phenomena can be explained by the competitive effect between the Cu(II) and
Na+ to compete for available adsorption site [51]. The adsorption rate may increase when the ionic
strength increases.

3.4. Influence of pH on Cu(II) Removal Using PPAC-MS100

The influence of the pH value on Cu(II) adsorption capacity by PPAC-MS 100 was investigated
in a range of pH 2–6, as shown in Figure 4. The Cu(II) adsorption capacity increases when the pH of
initial solution increased. It can be explained that the PPAC-MS surface tends to be protonated by
hydrogen ion (H+) which promoted the competition between H+ and Cu(II) at low pH. Al-Homaindan
et al. (2014) have also explained that the reduction of metal sorption could be a result of the available
sorption area for metal being occupied by proton in low pH. Therefore, adsorption capacity for Cu(II)
was reduced at pH 2 because hydrogen ions (H+) tend to compete with positively charged copper ions
in solution. However, high initial solution might lead to metal ion precipitation to form insoluble salts
because of the low amount of proton and high amount of OH− ion [52]. Therefore, Cu(II) removal
capacity increases with an increase in the pH of the initial solution.
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3.5. Regeneration PPAC-MS 100

A regeneration study of PPAC-MS 100 on Cu(II) removal was conducted using a comparison
study of Mg(II) and HCl solution as desorption reagents. PPAC-MS 100 could be regenerated three
times, and the final adsorption capacity in the third cycle decreased 40% for Mg(II) solution and 60%
for HCl solution in Figure 5. Using Mg(II) solution for the Cu(II) desorption process, competition
occurred between Cu(II) and Mg(II) as the main reasons for desorption [53]. Mg(II) tends to replace
Cu(II) to form CuO on the surface of absorbents. When using HCl as a desorption reagent, high H+

concentrations mainly cause metal desorption [54]. PPAC-MS 100 removed Cu(II) three times better
than metal desorption reagents, indicating the economic benefits of using a palm-shell waste material.
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3.6. Adsorption Studies on Zn(II), Al(III), Fe(II), Mn(II) and As(V)

PPAC-MS 100 was used to remove five different PTMs in solution, as shown in Figure 6.
Table S4 summarizes the Langmuir and Freundlich adsorption constants for dissociated PTMs. PTMs
adsorption capacity (mg g−1) for Zn(II), Al(III), Mn (II), Fe(II) and As(V) were 373 mg g−1, 244 mg g−1,
234 mg g−1, 562 mg g−1, and 191 mg g−1, respectively. Overall, the sequence of adsorption capacities
of PPAC-MS 100 for different PTMs ion is as follows: Fe(II) > Zn(II) > Al(III) > Mn(II) > As(V).
For elements Al(III), Mn(II), Fe (II) and As(V), adsorption data fitted well to Langmuir isotherm,
while Zn(II) adsorption fitted well to the Freundlich isotherm. PPAC-MS 100 was efficient in the
removal of cation and also anion metal species.
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3.7. Copper Removal Mechanisms and Material Characterizations

The removal mechanisms of Cu(II) by PPAC-MS were verified using FTIR, BET, XRD, FESEM-EDS,
XRD and XPS. The functional groups of the adsorbents surface were identified through FTIR,
as depicted in Figure 7. The main findings are for both the Cu-O band after treatment and Mg-O (or
Mg-OH) band in PPAC-MC. The adsorption peaks of Cu-O were observed at 500 cm−1 after treatment,
indicating the presence of Cu(OH)2 [55]. In PPAC-MS 100, vibration of the Si-O-Si, Mg-OH, and Mg-O
groups was observed at peak 1004 cm−1 [56], 1410 cm−1 [57], and 680 cm−1 [58]. The peak of 820 cm−1

also proves the existence of Mg-O group [58,59], but this peak may overlap with wide vibration of
Si-O-Si at 1004 cm−1 [56]. After adsorption onto PPAC-MS 100, the intensity of Si-O-Si bond for
PPAC-MS 100 reduced at peak 1004 cm−1, while C-H stretching disappeared, suggesting that the
CuO precipitant covered the overall surface. PPAC and PPAC-MS 100 exhibited a broad peak at 3737,
3729 and 3854 cm−1 assigned to OH stretching vibration. Additionally, C-H stretching vibration peaks
were found at 2924/2853 cm−1 on PPAC and PPAC-MS 100 [60]. C=C group and C-O-H group were
found at 1556 cm−1 and 1448 cm−1 on PPAC [61]. After impregnation of MgSiO3 on PPAC, the C-O-H
group and C=C bond remain, but are shifted to 1555 cm−1 and 1435 cm−1. Overall, the FTIR results
verify Cu(II) adsorption by Cu-OH bonding onto the surface of PPAC-MS.

Nitrogen adsorption-desorption isotherms of PPAC-MS 100, PPAC-MS 50, PPAC-MS 25 and
PPAC were measured to further illuminate pore characteristics (Figure 8A). The quantity adsorbed
volume decreases with the increase of MgSiO3 ratio. This is due to the increase of Mg compound on
the surface of PPAC (Figure 9J,K,I). Therefore, an increase in MgSiO3 ratio may enhance the adsorption
capacity of Cu(II), but results in the decrease of the adsorbed volume. Because of this phenomenon,
it is important to find an optimal ratio between MgSiO3 and PPAC. Based on the International Union
of Pure and Applied Chemistry (IUPAC) classification, PPAC, PPAC-MS 25 and PPAC-MS 50 were
classified as type I isotherms [28]. The type I isotherms exhibited with a low slope at 0.8–1.0 of p/po

and characteristics of a highly microporous material. On the other hand, PPAC-MS 100 exhibited
significant characteristics of type IV isotherms with a high slope in 0.8–1.0 p/po, indicating the filling of
the mesopore by capillary condensation [62]. PPAC-MS 100 exhibited an H4 hysteresis loop associated
with the parallel line on nitrogen adsorption-desorption curve.
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Figure 8B depicts the pore size distribution for PPAC, PPAC-MS25, PPAC-MS 50 and PPAC-MS 100.
All adsorbents had a similar peak at 32 Å. MgSiO3 impregnation enhances the mesopore and macropore
from at 140–370 Å. Przepiórski, et al. [63] reported carbon material coating with magnesium oxide
capable of creating more mesopores under thermal treatment. Table S4 lists the textural characteristics
for all absorbents on the total surface area, BET surface area, micropore surface area, total pore volume
and micropore volume. MgSiO3 impregnation ratio increased, while the total surface area and BET
surface area decreased. The surface textural characteristics are listed in Table S5. Compared to PPAC,
average pore width and pore volume increase after MgSiO3 is impregnated. Although the BET surface
area and pore volume of modified activated carbon are less than those of PPAC, Cu(II) removal capacity
for modified activated carbon is better than PPAC. Thus, the results prove that magnesium silicates
play a significant role in Cu(II) removal.

The FESEM images and EDX of PPAC, PPAC-25, PPAC-MS 50 and PPAC-MS 100 were also
analyzed (refer Figure 9). The FESEM images illustrate that PPAC exhibited micro and mesopore
structure (Figure 9A,B). After MgSiO3 impregnation on PPAC, thin sheet structure form on top of
PPAC-MS 100, PPAC-MS 50 and PPAC-MS 25 homogeneously. Interestingly, after impregnation with
MgSiO3, the pore structures remained without blocking. FESEM results (Figure 9) reveal the plate-like
thin sheet structure formed by interwoven of the MgSiO3 plate within 14 nm diameter. The EDX
results show that PPAC-MS 100, PPAC-MS 50 and PPAC-MS 25 had different amounts of Si, Mg, and O
compound, which means that MgSiO3 is impregnated on the surface. In another FESEM result (refer
Figure 10), the surfaces of PPAC-MS 100 and PPAC became rough and the pores filled with a small
crystal plate structure. Compared to PPAC-MS 100, the crystal plate structure is lesser on the surface
of PPAC. In the EDX results, Cu and O were detected for both absorbents. Therefore, Cu(II) in solution
was successfully removed by adsorption on the surface of PPAC and PPAC-MS 100.
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XRD analysis was performed to investigate the chemical compound of PPAC and PPAC-MS
100 before and after adsorption (Figure 11). The XRD pattern suggests that the PPAC sample has
asymmetric peaks from 25–50◦ as indexed to Graphite (ISCD: 88813). Meanwhile, the PPAC-MS shows
peaks at 20.07◦, 33.39◦, 46.4◦ and 60.14◦ corresponding to MgSiO3 and peaks at 38.09◦, 58.79◦ and 62.29◦

(ISCD: 171782) assigned as magnesium hydroxide (ICSD: 34401). SiO2 was also detected on PPAC-MS
100 at peaks of 24.7◦ and 58.79◦. This result proves that MgSiO3 was successfully impregnated on
PPAC after hydrothermal treatment. Compared to PPAC, the graphite peak in PPAC-MS 100 is weak
but still extant because the MgSiO3 might not fully occupy PPAC-MS 100. After Cu(II) adsorption,
PPAC and PPAC-MS 100 present significant peak at 69.1◦ and 76.3◦ assigned as CuO (ISCD: 628614).
This proves that the precipitation might involve Cu(II) removal on PPAC and PPAC-MS 100.
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To understand the electron structure of Cu(II) compound form on PPAC and PPAC-MS 100 after
adsorption, Cu core level XPS spectra were studied. Wide scan analysis and Cu core level XPS spectra
for PPAC and PPAC-MS 100 are depicted in Figure 12. Wide scan XPS spectrum of PPAC indicates O,
C and Cu existence while Si, O, Cu, Mg existence on PPAC-MS 100. As shown in Figure 12 the peaks
at 935 eV and 953 eV and 937 eV and 955 eV are associated with the binding energy of Cu 2p3/2 and
Cu 2p1/2 for PPAC and PPAC-MS 100. A Cu component with low binding energy of Cu 2p3/2 can
be assigned as a tetracoordinated Cu(I) ion species, while PPAC-MS 100 and PPAC Cu component
can be assigned as an acta coordinated Cu(II) ion species because the Cu 2p3/2 for PPAC-MS 100
and PPAC is located above 935 eV [64]. Bivalent CuO was also observed on PPAC and PPAC-MS
100 (Figure S1 at SI). Therefore, it is proven that CuO was formed on the PPAC and PPAC-MS 100
surface. Moreover, a satellite peak appeared at the Cu core level XPS spectra for both PPAC and
PPAC-MS 100. The appearance of the satellite peak indicates that CuO has a d9 configuration in a
ground state between Cu 2p3/2 and Cu 2p1/2 peak [65].
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PPAC and PPAC-MS 100. The appearance of the satellite peak indicates that CuO has a d9 
configuration in a ground state between Cu 2p3/2 and Cu 2p1/2 peak [65].  
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Based on the characterization of materials, Cu(II) removal can be proposed as adsorption
together with ion-exchange and precipitation for PPAC-MS 100. First, dissolution of Mg(OH)2

releases hydroxide and Mg(II) ions to the surface of impregnated PPAC-MS 100 caused the pH
of solution increases. Thus, Cu(II) may form precipitation at this stage. Results for XPS and XRD have
sufficient agreement to support the observation that CuO component was precipitated and adsorbed
on PPAC-MS 100. Second, ion exchange can occur between Mg and Cu ions on the absorbent surface.
Thus, the mechanism of Cu(II) removal by PPAC-MS can be considered adsorption together with
precipitation and ion-exchange. The adsorption of Cu(II) ion on PPAC is strongly influenced by the pH
of the solution. PPAC is activated by KOH, OH- release and increased pH, resulting in precipitation.
Additionally, the negatively charged C-O group can attract positively charged Cu(II) ions in adsorption
as detected on PPAC through FTIR analysis.

4. Conclusions

PPAC impregnated with MgSiO3 was prepared using mild hydrothermal treatment and exhibited
good Cu(II) removal. A porous structure remained after MgSiO3 impregnation on PPAC, forming a thin
layer sheet structure as observed via FESEM. The PPAC, PPAC-MS25 and PPAC-MS50 isotherm data
fitted well with Langmuir isotherm model with the Cu(II) removal capacity of 165 mg g−1, 220 mg g−1,
285 mg g−1. The highest Cu(II) adsorption capacity of 369 mg g−1 for PPAC-MS 100 fitted well with
the Freundlich isotherm model. Pseudo 2nd order fitted well to all kinetic adsorption data, describing
a chemisorption-dominated adsorption process. Kinetic data revealed that Cu(II) adsorption capacity
decreased when ionic strength concentration increased. Additionally, an increase in ionic strength
resulted in a Cu(II) sorption rate increase. PPAC-MS 100 regenerated using HCl and Mg2+ solution
exhibited a good result on Cu(II) removal for three cycles. As an absorbent, PPAC-MS100 has a
strong affinity for the removal of Zn(II), Al(III), Fe(II), Mn(II), and As(V), with adsorption capacities of
373 mg g−1, 244 mg g−1, 234 mg g−1, 562 mg g−1, and 191 mg g−1, respectively. Therefore, PPAC-MS
100 is a promising high-efficiency absorbent for wastewater treatment.
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