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Abstract: Microstructures and mechanical properties of Mg-9Al/Ti metallurgical bonding prepared
by liquid-solid diffusion couples were investigated. The results indicate that a metallurgical bonding
was formed at the interface Mg-9Al/Ti, and the Mg17Al12 phase growth coarsening at the interfaces
with the increase in heat treatment time. Push-out testing was used to investigate the shear strength
of the Mg-9Al/Ti metallurgical bonding. It is shown that the shear strength presents an increasing
tendency with the increased heat treatment time. The sequence is characterized, and the results
show that the fracture takes place along the Mg-9Al matrix at the interface. The diffusion of Al
and Ti elements play a dominant role in the interface reaction of Mg-9Al/Ti metallurgical bonding.
By energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and thermodynamic analysis,
it was found that Al3Ti is the only intermetallic compound at the interface of Mg-9Al/Ti metallurgical
bonding. These results clearly show that chemical interaction at the interface formation of Al3Ti
improves the mechanical properties of Mg-9Al/Ti metallurgical bonding.

Keywords: magnesium; titanium; metallurgical bonding; interface; mechanical properties

1. Introduction

Magnesium alloys, as the lightest metal structural materials, have high specific strength, excellent
castability, and easy recyclability. However, the application of commercially available Mg alloys
is limited to applications because of their lower strength [1–3]. Titanium alloys have been widely
used due to their high specific strength, notable impact toughness, excellent corrosion resistance
and significant thermal stability [4]. However, the high production cost restricts their widespread
applications [5]. Bimetal materials have been widely used in many industrial fields because they
combine several promising properties that cannot be provided by monolithic materials. Mg and Ti
bimetal materials have drawn great attention due to its unique properties, which can combine low
density of magnesium and extraordinarily high specific strength and significant thermal stability
of Ti [6].
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In the past several years, it has been reported that Al/Mg, Mg/Mg and Al/Ti bimetal
materials have already been fabricated by accumulative roll-bonding [7], extrusion forming [8], laser
welding–brazing [9], and so forth. However, these methods still have much room for improvement as
their processing procedures are very complex and the products usually have lower interface bonding
strength and little opportunity for mass production. In recent years, the liquid-solid casting process
method has been also utilized to produce Al/Mg [10], Mg/Mg [11] and Al/Ti [12] bimetal materials,
which exhibits excellent industrial application prospects for the preparation of bimetallic materials
due to the low production costs, simple production procedure and high interface bonding strength of
the products. However, so far, Mg/Ti bimetal materials prepared by the liquid-solid casting process
method have not been reported yet.

Obtaining a perfect metallurgical bonding in the interface between Mg and Ti is very important
to guarantee the excellent mechanical properties for the Mg/Ti bimetallic materials. However, Mg
and Ti are not phase formation. Furthermore, the solid solution between Mg and Ti is very low [13].
These indicate that no interfacial reaction or atomic diffusion occurs between Mg and Ti. Hence,
an intermediate element must be added to react with Mg and Ti or solid solubility in Mg and Ti. Al
is the dominant alloying element to improve the mechanical properties of Mg alloys and Ti alloys,
which can form intermetallic compounds during solidification due to the reaction of Al with Mg
or Ti. The hybrid structure of (Mg-Al)-Ti dissimilar metal by welding has been investigated by the
welding-brazing method [14–16]. Brazing interfaces were composed of intermetallic compound
Ti3Al, which was resistance to the crack propagation and improvement of mechanical properties.
Therefore, a perfect metallurgical bond can be formed at the interface between Mg-Al alloy and Ti by
the liquid-solid casting process, but the formation of Mg-Al alloy and Ti metallurgical bonding has not
been declared yet.

Based on this condition, Mg-9Al alloy and Ti were studied in this paper to produce excellent
metallurgical bonding by the liquid-solid diffusion couples. The microstructure and mechanical
behaviors at the interface of Mg-9Al/Ti metallurgical bonding are further discussed.

2. Experiments

Mg-9Al (Mg-9 wt.%Al) casting ingots and Ti rods with dimensions of Φ 8 mm × 100 mm were
used. The surface of Ti rods was polished with 1000-grit SiC papers before application and subsequently
treated with acetone cleaning. Then, Mg-9Al ingots were put in a stainless-steel crucible with Φ 34 mm
× 90 mm (showed in Figure 1), which was kept in a resistance furnace under a protective atmosphere
of CO2 + 0.5 vol.% SF6. Mg-9Al alloy was held at 700 ◦C for melting. After melting, Ti rod was
rapidly submerged into the molten Mg-9Al alloy. A steel cover was set on top of the crucible when
the insert experiment was carried out so that the Ti rod would be kept vertical and centered (shown
in Figure 1). Next, the liquid-solid diffusion couples of Mg-9Al/Ti were formed. Diffusion couples
were kept at 700 ◦C for 0 min, 30 min and 60 min. After that, diffusion couples were furnace cooled to
room temperature.
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The samples were cut from the middle part of the diffusion couples perpendicular to the rod
axis with a thickness of 9 mm. Each sample was ground with ground papers from 400 to 1000 grit
to cross-sectional scanning electron microscopy (SEM, TESCAN VEGA 3 LMH, TESCAN Co., Brno,
Czech) examinations. SEM equipped with energy-dispersive spectroscopy (EDS) (Oxford Instrument
Technology Co., Ltd., Oxford, UK) was employed to determine the concentration profiles of the
interfaces and phase composition of the interface. Additionally, the phase structure for the fractured
specimen of the interface was determined by X-ray diffraction (XRD, D/Max 2500PC, Dandong
Fangyuan Instrument Co., Ltd., Dandong, China).

The shear strength of the metallurgical bonding interface was investigated by push-out testing
(NEW SANSI CMT-5105, XinSanSi (Shanghai) Enterprise Development Co., Ltd., Shanghai, China).
The schematic diagram is illustrated in Figure 2. The supporting platform is a diameter of a centered
circular hole of 10 mm. The diameter of the steel cylinder was 6 mm. The loading rate of cross-head
was 1 mm/min. Shear strength of the metallurgical bonding interfaces was calculated by the
following equation:

τ =
Fmax

2πrt
(1)

where Fmax is the maximum load, r is the radius of Ti insert, and t is the specimen thickness.
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3. Results and Discussion

3.1. The Microstructure of the Interface

Cross-sectional backscattered electron (BSE, TESCAN Co., Brno, Czech) micrographs at the
interface of Mg-9Al/Ti metallurgical bonding prepared by the liquid-solid diffusion couples at different
heat treatment times are presented in Figure 3. It can be noted that the Mg17Al12 phase in the Mg-9Al
matrices are attached to the surface of Ti rods. The Mg17Al12 phases growth coarsened with the
increase of heat treatment time at the interfaces. The Mg17Al12 phases are distributed along the grain
boundaries of Mg-based matrix. They increased with increasing temperature, and the grain boundaries
wetting transitioned from incompletely wetted to completely wetted by the Mg17Al12 phase. Because
the contact angle between Ti and Mg17Al12 phase decreases with increasing temperature [17], and the
reversible grain boundary(GB) transitioned from incomplete to complete, wetting by a liquid phase
always proceeds with increasing temperature. This is due to the temperature dependence 2σSL(T)
always being more steep than the dependence σGB(T), as the liquid phase possess higher entropy
in comparison to the solid one [18]. Figure 3a shows a cross-sectional BSE micrograph image at the
interface of Mg-9Al/Ti at 700 ◦C for 0 min. Obviously, a gap was established at the interface between
Mg-9Al alloy and Ti rod. In addition, the cross-sectional BSE micrograph images at the interface of
Mg-9Al/Ti at 700 ◦C for 30 min and 60 min are indicated in Figure 3b,c. The specimens formed a
complete metallurgical bonding at the Mg-9Al/Ti interface.
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Figure 3. Cross-sectional backscattered electron (BSE) micrographs of interfaces between Mg-9Al
matrix and Ti rod obtained at 700 ◦C for (a) 0 min, (b) 30 min, (c) 60 min.

Figure 4a shows a magnified image of the interface between Mg-9Al matrix and Ti after 60 min at
700 ◦C. The intermetallic compounds have developed around the Ti rod at the interface that can be
observed. The composition of point A was analyzed by EDS in Figure 4b. The EDS result is taken from
the testing position A denoted in Figure 4a. The composition of Al is 57.12 at.% and Ti is 39.45 at.% for
point A. The ratio of Al/Ti is 3.06. It can be inferred that the intermetallic compound is Al3Ti. This is in
agreement with the reports of Jie et al. [19] and Li et al. [20] that formation of Al3Ti between liquid Al
and solid Ti, but the results are inconsistent with Cao et al. [14] and Tan et al. [15,16] studies. Therefore,
further proof is needed. As can be seen in Figure 4a, there are a large number of nanostructures at
the interface. It is reported in the literature that these nanostructures will accelerate the diffusion of
adatoms and improve the wettability of the interface [21–23].
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Figure 4. (a) The high magnification image of the interface between Mg-9Al matrix and Ti rob obtained
after 60 min at 700 ◦C, (b) Energy-dispersive spectroscopy (EDS) result of the point A.

The interface of Mg-9Al matrix and Ti rob obtained after 60 min at 700 ◦C was analyzed using
EDS through line scan in Figure 5. At the interface between Mg-9Al matrix and Ti rod, the element
Ti tends to decrease at the interface when approaching Mg-9Al matrix. The concentration of Ti in
Mg17Al12 phase is obviously higher than that of Mg matrix. Moreover, at the interface between Mg-9Al
matrix and Ti rod, the elements of Mg and Al vary clearly, indicating the decreasing tendency when
approaching Ti side. Therefore, it can be inferred that the diffusion of Al and Ti elements may play an
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important role during the interface of Mg-9Al/Ti metallurgical bonding. Moreover, because of the
interdiffusion between Al and Ti, the Al3Ti compound is formed at the interface.Metals 2018, 8, x FOR PEER REVIEW  5 of 13 
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Figure 5. Line scan curves of the interface between Mg-9Al matrix and Ti rod obtained after 60 min
at 700 ◦C.

The concentration profiles of the interface between Mg-9Al matrix and Ti rod annealed after 60 min
at 700 ◦C showed in Figure 6 which are line scan results in Figure 3c. The trend of element distribution
is consistent with the results of Figure 5. According to Hall’s method [24], the impurity diffusion
coefficients of Mg in Ti and Al in Ti, and Ti in Mg-9Al. The results are 1.70(±0.02) × 10−15 m2/s,
3.77(±0.12) × 10−15 m2/s, 1.60(±0.23) × 10−14 m2/s, respectively. It can be seen that the diffusion of
Al in Ti is faster than the Mg in Ti. Ti diffuse in Mg-9Al is faster than Al and Mg impurity diffusion in
Ti, which may be related to the state of Ti and Mg-9Al alloy. So the diffusion of Al and Ti elements
play an important role during the interface of Mg-9Al/Ti metallurgical bonding.
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3.2. Mechanical Behaviors

Figure 7 shows the load-displacement curves. It is noticeable that the shear strength of Mg-9Al/Ti
metallurgical bonding presents an increasing tendency for the extension of the heat treatment time.
The average shear stress at the interface can be evaluated by Equation (1). Results of shear strength for
Mg-9Al/Ti metallurgical bonding under different heat treatment time are listed in Table 1. It can be
seen that the shear strength of the Mg-9Al/Ti metallurgical bonding with the increase of heat treatment
time in this study, and the maximum value is 56 MPa.
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Table 1. Shear strength of Mg-9Al/Ti metallurgical bonding with different heat treatment time.

Sample Maximum Stress (N) Maximum Shear Strength (MPa)

0 min-1# 3478 16
0 min-2# 3482 16
30 min-1# 7086 32
30 min-2# 7742 35
60 min-1# 12,174 54
60 min-2# 12,531 56

Figure 8a–c shows SEM fractographs on the Ti insert of the Mg-9Al/Ti metallurgical bonding
push-out samples obtained by different heat treatment time. It can be seen that the surface roughness
of the Ti rod face increase with the increase of heat treatment time. Figure 8d shows the magnified
image of the fracture surface of Ti side at 700 ◦C for 60 min. The fracture is characterized by long
grooves, all with the same orientation parallel to the push-out direction, characteristic of a ductile
fracture. Figure 8e–f shows EDS analyses of the point B and C in Figure 7d. So the point B is Mg-9Al
matrix, the point C is the interface of Mg-9Al/Ti metallurgical bonding. Figure 9 shows the distribution
of Mg, Al and Ti elements for the fracture surface of Ti side at 700 ◦C for 60 min. It is observed that the
Al element in Mg-9Al matrix diffuses into the Ti rod. Those are indicating that the shear stress has
been greatly improved when Al and Ti interdiffuse and chemical interaction occurs between Mg-9Al
and Ti, and grain boundaries between Ti and Mg-9Al wetting transition from incompletely wetted
to completely wetted by Mg17Al12 phase. So Mg-9Al/Ti metallurgical bonding becomes firm and
impervious with heat treatment time.



Metals 2018, 8, 778 7 of 13

Metals 2018, 8, x FOR PEER REVIEW  7 of 13 

 

  

  

  

Figure 8. BSE fractographs of Ti rod for (a) 0 min, (b) 30 min, (c) 60 min; (d) magnified image of the 

Ti rod for 60 min; (e) EDS of the point B; (f) EDS of the point C. 

Figure 8. BSE fractographs of Ti rod for (a) 0 min, (b) 30 min, (c) 60 min; (d) magnified image of the Ti
rod for 60 min; (e) EDS of the point B; (f) EDS of the point C.

To understand the mechanism of crack formation and propagation during shear strength tests,
it is necessary to identify where the crack initiation occurs. Figure 10 illustrates the cross-sectional BSE
image of the Mg-9Al/Ti metallurgical bonding interface for 60 min. It can be found that the fracture
takes place along the Mg-9Al matrix of the interface.
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To characterize the intermetallic compounds formed at the interface of the Mg-9Al/Ti
metallurgical bonding, X-ray diffraction was carried out for the Mg-9Al/Ti metallurgical bonding
fractured surfaces for heat treatment at 700 ◦C for 60 min. The XRD patterns are shown in Figure 11.
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According to the XRD patterns, Mg, Ti, Mg17Al12 and Al3Ti on both fractured surfaces of the Mg-9Al
and Ti fractured surface. However, Mg and Mg17Al12 patterns of the Ti fracture surfaces were higher
than the Ti patterns at the Mg-9Al fracture surfaces. The result showed that the fracture path is
propagated through the Mg-9Al matrix. Al3Ti were formed via the reaction of Al and Ti at the interface.
This is in agreement with the EDS results of the interface between Mg-9Al and Ti matrices obtained
after 60 min at 700 ◦C.
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3.3. Thermodynamic Analysis of Intermetallic Compounds Formation at the Interface

From Mg-Ti binary phase diagram, Mg and Ti hardly forms a chemical reaction. However, the Al-Ti
binary phase diagram is shown in Figure 12. It can be seen that several intermetallic compounds, namely,
AlTi, Al2Ti, Al5Ti2, Al3Ti and AlTi3. Therefore, Mg-Al and Al-Ti intermetallic compounds are likely
to form in the interface of Mg-9Al/Ti metallurgical bonding. The thermodynamics is an important
factor in determining whether an intermetallic compound can be formed. The Miedema’s model for
the enthalpy of formation is used to calculate the standard molar enthalpies of formation of Mg-Ti,
Mg-Al and Al-Ti binary systems [9,16]. These calculations indicate that the standard molar enthalpy of
Mg-Ti binary system was positive, but Al-Mg and Al-Ti binary systems were negative. The standard
molar enthalpy of Al-Ti binary system was more negative than that of Al-Mg binary system, which
indicates that Al-Ti intermetallic compound prefers to be formed at the interface of the Mg-9Al/Ti in
the same condition.
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Previous studies involving the synthesis of titanium aluminides through powder metallurgical
routes showed that Al3Ti forms prior to the formation of any other titanium aluminides belonging to
the binary Ti–Al system [25]. Formation of Al3Ti has also been reported during the interaction between
solid Ti and liquid Al [26]. However, the reason was not evaluated clearly. The possible reason for the
preference can be explained by considering the thermodynamic drive force at the Mg-Al/Ti interface.
This is based on the temperature dependence of Gibbs free energy of formation of various Al-Ti
compounds from the literature [27,28]. In previous studies, the sublattice model (Wagner–Schottky
model) was used to calculate Gibbs free energies of formation of AlTi3, AlTi, Al3Ti, Al2Ti and Al5Ti2.
The final expressions obtained for Gibbs free energies of formation for the compounds are presented
in Table 2. The values of Gibbs free energies are calculated in the temperature range of 373–1073 K
and the results obtained are shown in Figure 13. It can be found in this figure that in this temperature
range, the Gibbs free energy of the Al3Ti is lower than the AlTi and AlTi3, and is higher than the Al2Ti
and Al5Ti2, but the Al2Ti and Al5Ti2 must react with AlTi through a series of reactions. So Al3Ti is
expected to be the first phase to form in the Al-Ti system. This is in agreement with the EDS and XRD
results of the interface between Mg-9Al and Ti obtained at 700 ◦C after 60 min. However, there was
only a small number of Al diffusion to the Ti rod in this study, so the formation of Al3Ti compound
was less.

Table 2. Temperature dependence of Gibbs free energy of formation of various Ti-A1 compounds, data
from ref. [21].

Compound Free Energy of Formation, ∆G

AlTi3 −9,633.6 + 6.70801T
AlTi −37,445.1 + 16.79376T
Al3Ti −40,349.6 + 10.36525T
Al2Ti −43,858.4 + 11.02077T
Al5Ti2 −40,495.4 + 9.52964T
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3.4. The Metallurgical Reaction Mechanism of the Solid/Liquid Interface

Metallurgical reaction mechanism of Mg-9Al/Ti interface by liquid-solid diffusion couples was
clarified with the schematic diagram shown in Figure 14. Under the experimental temperature, the Ti
rods were rapidly submerged into the molten Mg-9Al alloy. Mg and Ti did not react with each other.
However, Al and Ti can be the formation of several A1-Ti intermetallic compounds. The Al atoms
diffuse from the molten Mg-9Al alloy filler to the liquid/solid interface and Ti substrate. Al atoms were
mixed with Ti atoms for the Ti substrate and diffusing from Ti substrate at the liquid/solid interface,
indicated in Figure 14a,b. Tan et al. [16] found that for the same Ti content, the chemical potential of Al
decreased as the Al molar fraction increased. For the same Al content, the chemical potential of Al
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decreased with the reduction of Ti molar fraction. Therefore, low Al and high Ti content promoted
the diffusion of Al atom from molten to the liquid/solid interface and Ti substrate [29]. The Al atom
in the Ti substrate and solid/liquid interface was saturated inducing the precipitation of Al3Ti phase
indicated in Figure 14c. When the temperature decreased to 325 ◦C, the eutectic reaction occurred
with α-Mg+Mg17Al12 [30], as shown in Figure 14d. As a result, the couple could form a complete
metallurgical bonding formed at the Mg-9Al/Ti interface.
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Figure 14. Schematic diagram of the metallurgical reaction mechanism of the solid/liquid interface.
(a,b) diffusion of Ti atoms and Al atoms at the interface, (c) precipitation of Al3Ti phase in the Ti
substrate and solid/liquid interface, (d) solidification of interfacial zone.

4. Conclusions

In this paper, the effects of different heat treatment time on the microstructures, mechanical
properties, and fractographies of the Mg-9Al/Ti metallurgical bonding by liquid-solid diffusion
couples were investigated. The obtained results can be summarized as follows.

(1) The Mg17Al12 in the Mg-9Al matrices was attached to the surface of Ti rods. Grain boundaries
Ti and Mg-9Al wetting transition from incompletely wetted to completely wetted by Mg17Al12

phase. A metallurgical bond was established at the interface between Mg-9Al alloy and Ti
matrices. The impurity diffusion coefficients of Mg in Ti and Al in Ti, and Ti in Mg-9Al are
1.70(±0.02) × 10−15 m2/s, 3.77(±0.12) × 10−15 m2/s, 1.60(±0.23) × 10−14 m2/s, respectively.
The diffusion of Al and Ti elements play an important role during the interface of Mg-9Al/Ti
metallurgical bonding.

(2) Shear strength of Mg-9Al/Ti metallurgical bonding was presented an increasing tendency in
perfect accordance with heat treatment time. Shear strength could reach the maximum value of
56 MPa. The fracture was took place along Mg-9Al matrix at the interface. Shear stress greatly
improves when Al and Ti interdiffused and chemical interaction occurs between Mg-9Al and Ti.

(3) By EDS and XRD analysis, these results were found that Al3Ti is the only intermetallic compound
at the interface of the Mg-9Al/Ti compound castings. Gibbs free energies of formation of AlTi3,
AlTi, Al3Ti, Al2Ti and Al5Ti2 were calculated. The result was shown that Al3Ti is expected to be
the first phase to form in the Al-Ti system.
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