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Abstract: The flow behavior of the Al-Si-Mg alloy under uniaxial compression loading was
investigated at different strain rates (10’3 s1,1072s110°1 571, 100 s’l) at a wide range of
temperatures (573 K, 623 K, 673 K, 723 K, 773 K). The results showed that the peak stress increase with
the strain rate and decrease with the increase of temperature. According to the measured flow stress
curves, a modified Johnson-Cook (J-C) constitutive model taking strain rate effect on thermo softening
into account was proposed to delineate the flow behavior. The comparisons between the measured
flow curves and the predicted ones showed them to be very close and the average error is 1.65%.
The added experiments were also conducted for validating the modified model, and the predicted
data well agreed with the measured flow stress curves. That indicated the modified Johnson-Cook
model is reliable and can accurately delineate the flow behavior of Al-Si-Mg alloy.

Keywords: thermo-mechanical response; strain rate effect; modified Johnson-Cook (J-C) model;
Al-Si-Mg alloy

1. Introduction

Reducing weight of an automobile’s body can reduce pollutant emissions, improve fuel efficiency
and make driving safer. Almost all automobile manufacturers put their attention on weight
reduction [1,2]. The Al-Si-Mg system alloys are the most commonly used lightweight material because
of their excellent castability, corrosion resistance and the possibility of precipitation hardening [3-5].
However, the usage of those alloys is still limited as lower mechanical properties are induced by the
coarse casting dendritic microstructures and defects. Severe plastic deformation methods, such as
friction stir processing [4], equal channel angular pressing [6] and cryorolling [7], are found to
effectively eliminate those drawbacks. During those processes, a large amount of plastic deformation
is introduced into the material which refines its casting features, thereby improving the mechanical
performance of the material [8]. Thus, it is particularly significant to establish the optimal process
parameters for refining the microstructure and improving the mechanical property. A processing
map and the finite element method are the two common means to optimize the process parameters.
A precise relationship between the thermal mechanical behavior and external loading of the material
is the foundation for establishing an accurate processing map or a finite element model.

A constitutive model can be used for simulating the relationship of material thermo mechanical
behavior and external loading, which is greatly determined by the material crystal structure and
deformation conditions. A precise constitutive model is crucial in making an optimal forming process
or establishing a reliable finite element model. Lots of research has made efforts to comprehend
and model the thermo mechanical response at varied deformation conditions. Johnson and Cook
presented the Johnson-Cook (J-C) model for computing the various materials” flow behavior under
large strains, high strain rates and temperatures; the computed data were in good agreement
with the experimental results at cylinder impact conditions [9]. Zerilli and Armstrong proposed
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the dislocation-mechanics-based constitutive model for copper and iron, and found that materials
with different crystal structures have a different constitutive model due to the varied dislocation
properties [10]. Nemat-Nasser and Li developed a physically-based model for face centered cubic
(FCC) materials, the prediction data fitted the experimental data very well [11]. Khan and Liang
proposed a constitutive model that takes the influence of strain and strain rate on the work hardening
into account, the model had a good correlation with the measured data [12]. Yang et al. and Dong
et al. established the Arrhenius-type constitutive model of the GH4169 superalloy and Al-Mg-Si
aluminum alloy respectively, and the flow behaviors were accurately predicted in both studies [13,14].
An artificial neural network (ANN) was also used to predict the flow behavior and mechanical
performance as which can mimic complex and non-linear relationships. Lin et al. predicted the flow
behavior of the 42CrMo steel by ANN method, the absolute relative error for the test dataset was
4.56% [15]; Filippis et al. predicted the micro-hardness and ultimate tensile strength of the friction
stir-welding butt joints by the ANN method [16]. Furthermore, the ANN method can also be used for
optimizing the process parameters [17,18]. Those constitutive models can be divided into three classes:
physical based models, empirical phenomenological models, and ANN models [19]. Physical-based
models predict the thermo-mechanical behavior based on the mechanisms of dislocation motion
and microstructure evolution [20,21]. However, it is difficult to establish an accurate mathematical
relationship between the external loading and the dislocation motion or microstructure evolution.
Accordingly, many researchers put their efforts into developing phenomenological based models
because those models always characterize with a concise format and are easier to calibrate [22].

The J-C model is the widely used phenomenological-based model. In order to delineate the
thermal mechanical response more precisely, many modified J-C models have been proposed to satisfy
varied deformation conditions. Ravindranadh proposed a modified J-C model which took the effects
of work hardening and thermal softening into account, and the modified model successfully enhanced
the prediction accuracy of the flow behavior of the FeCoNiCr alloy [23]. Wang proposed a modified J-C
model that considered the coupling effects of strain, strain rate and forming temperature, the modified
model had a well agreement with the measured data of the 30Cr2Ni4MoV [24]. Tao established
a modified J-C model that considered the interaction of strain hardening and thermal softening
for simulating the flow behavior of the Ti-6Al-4V tube, the modified model had better prediction
precision [25]. Wang proposed a modified J-C model to predict the flow behavior of 35CrMo steel,
and the modified model possessed a higher fitting precision than the original one [26]. As face-centered
cubic material, aluminum alloys were proved to have thermal dependent strain rate sensitivity [27]
and the influence of strain rate on thermal softening was not considered in the above modified
models. However, the problems related to softening material behavior in numerical simulations,
such as pronounced mesh dependency and infinitely small softening zone with zero dissipated
energy, affected the efficiency and accuracy of the numerical simulations [28]. Aiming to eliminate
those problems, regularization techniques such as gradient-enhanced models or nonlocal integral
formulations were employed in finite element simulations [29-32].

In this study, quasi-static hot compression experiments of Al-Mg-Si aluminum alloy were
performed with different strain rates and temperatures, and the material responses at those deformation
conditions were researched. A modified Johnson-Cook model considering the strain rate effect on
thermal softening was established for this material. Finally, a comparison analysis of the flow curves
obtained by experiment and prediction was conducted.

2. Materials and Methods

The commercial casting Al-Mg-Si alloy was used, and its chemical composition is listed in Table 1.
Cylindrical specimens (& 10 mm x H 15 mm) were machined from a casting ingot. The isothermal
hot compression experiments were performed by a Gleeble-3800 thermo-mechanical (Northwest
Institute for Non-ferrous Metal Research, Xi’an, China) simulator with different temperatures (573 K,
623 K, 673 K, 723 K, 773 K) and strain rates (1073 s~1,1072 571,101 571, 10° s71). All samples were
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firstly heated to preset temperature with a 5 °C-s~! heating rate, and held for 2 min to eliminate the
temperature gradient inside the sample before the compression process. Aiming to impede oxidation
of the specimen surface, the chamber was in a vacuum state during the heating and compression
process. Two very thin tantalum plates were cohered at the end of the sample to minimize the friction
effect and prevent the adhesion of the specimen on the die. The test setup and the specimens are
illustrated in Figure 1.

Table 1. Chemical composition of the Al-Mg-S5i alloy (wt %).

Si Mg Fe Cu Mn Zn Cr Ti Al
743 0433 0295 0.170 0.0687 0.0193 0.0107 0.0128 Balance

Figure 1. (a) The test setup and (b) the specimens before, during and after the tests.

3. Results

The flow curves at various strain rates and temperatures are illustrated in Figure 2. As shown in
Figure 2, those curves are characterized with similar features at various compression strain rates and
temperatures. The true stress increases dramatically during the initial compression stage, and reaches
the peak value. Then, the true stress descends gradually and then reaches a plateau state. Those flow
stress features are the results of competing between work hardening and dynamic softening during the
isothermal compression. At the initial stage, the dislocations propagate and accumulate dramatically
at precipitate particles or impenetrable obstacles. The work hardening dominates the flow behavior
during this period and the true stress increases with strain. Meanwhile, the stored energy rapidly
accumulates with the increase of strain, which provides driving force for the dislocation climb
and dislocation glide. The dislocation climb and dislocation glide can lead to the annihilation of
dislocations, and that is deemed to be the softening process. When flow stress reaches the peak value,
an instantaneous equilibrium between work hardening and dynamic softening occurs. With a further
increase of deformation, the dynamic softening dominates the flow behavior, and the flow curves
descend. The latter plateau state can be attribute to the dynamic equilibrium between work hardening
and dynamic softening.
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Figure 2. Flow curves of A356 alloys obtained from compression tests: (a) 10°s~ L (b) 107 s7; ()
1072571 (d) 103 s~ L.

As shown in Figure 2, the flow curves are sensitive to the deformation condition, and that can
be attributed to the work hardening and dynamic softening. As there is not enough time for energy
accumulation and dislocation annihilation at a higher strain rate, the flow stress increases with strain
rate [33]. With increasing of the deformation temperature, the textural softening will lead to a decrease
in the stress for dislocation motion, while the stress needed to deform the material decreases [34].
Moreover, plenty of the strength phases will successive dynamic coarsening or dissolution at higher
temperature, which can also lead to a decrease of flow stress [35]. Thus, the flow stress decreases with
the increase of deformation temperature.

4. Discussion

4.1. The Johnson-Cook (J-C) Model

The J-C model is employed in many finite element software for delineating the material responses
at different deformation condition. That is because it only has five material constant and is easy to
calibrate. The J-C model can be expressed as Equation (1):

0 = (mq + mpe™) (1 + myIn é*) (1 — T*mS) (1)

where o is equivalent (von Mises) flow stress, ¢ is the equivalent plastic strain, ¢* = ¢/¢ is the
dimensionless plastic strain rate, T =(T — Ty)/(Tm — Ty) is the homologous temperature, my, mjy,
ms, my and ms are the material constant. Those constants can be obtained based on the experimental
data, and the results are showed in Table 2. Comparisons between the experimental data and the
predictions are illustrated in Figure 3. It can be found that the original J-C model cannot accurately fit
the experimental data.
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Figure 3. Comparison between the experimental data and the predictions (a) 573 K; (b) 773 K.
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Table 2. The calculation results of the material constant.

mq my ms my ms

914 224 0.1667 0.0594 1.1228

4.2. The Modified Johnson-Cook Model

Obviously, the influence of strain rate and temperature are expressed by individual terms in
the original J-C expression. However, many experimental observations showed that some material,
especially FCC structured aluminum alloys, manifest thermal dependent strain rate sensitivity [27].
Therefore, the effect of strain rate on the thermo softening must be considered. Meanwhile,
the temperature-dependent term 1 — (I' — T;)/(Tm — T) in the original model cannot accommodate
the case when the current temperature is lower than the reference temperature as then the above term
within parenthesis becomes a negative number raised to the power m. Furthermore, aiming to fit
the flow curves more accurately, a quadratic polynomial is added in the work hardening term. Thus,
a modified J-C model is presented as Equation (2):

o= (m1 T pe + mae? + m4sm5) (1 +mgln é*) ((Tm — T)/ (T — T2))" @)

where mq, my, ms, my and msg are the material constants, the dimensions of the new material constants
mq, my, mz and my are MPa, and the material constant 5 is dimensionless; g is dimensionless strain
rate hardening coefficient; ¢" = ¢/¢& is relative strain rate for ¢g = 10° s~1; my is dimensionless thermo
softening exponent, and it will be represented by a function about the strain rate; Ty, T, T is the
melting temperature, current temperature and reference temperature respectively. Tp, is equal to
885.5 K and 573 K is taken as the reference temperature.

The parameters in the modified J-C model can be obtained systematically according to the
measured data during the compression tests as follows:

(1) mq, mp, m3, my and ms can be acquired by polynomial fitting with the experimental conditions
of ¢ =¢g=10s"1and T = T, = 573 K. At this condition, Equation (2) reduces to:

o= (m1 + moe + mze? + m4£m5) 3)

substituting equivalent plastic strain and equivalent stress under the deformation conditions, and the
values of mq, my, ms3, my and ms can be fitted as 95.63075 MPa, —126.84303 MPa, 27.18656 MPa, 110.7135
MPa and 0.6568, respectively.

(2) When T = T, =573 K, Equation (2) can be transformed as follows:

o/ (m1 + mye + mze? + rn4£’"5) —1=mglné" 4)

using the three different strain rates (except the reference strain rate) and the corresponding
stresses at different strains (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5) to draw
o/ (m1 + mye + mze? + m4sm5) —1vs. Iné" curves, as showing in Figure 4. It is clear that myq is
not a constant and varies with equivalent plastic strains. In other words, mg can be expressed by a
function of the equivalent plastic strain and strain rate.
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Aim to determine the specific expression of my, the relationships between mg and equivalent
plastic strain and In ¢” are curved and illustrated in Figure 5. From Figure 5a we can find that 4 can
be fitted very well by a quadratic polynomial of plastic strain. At the same time, from Figure 5b we
can find that m¢ can also be fitted very well by a quadratic polynomial of. Therefore, considering the
interaction between ¢ and In ¢", the mg can be expressed by a binary quadratic polynomial about ¢ and
In¢" as follows:

me = Fo+ Fie + B2 + BIné 4+ FyIne™ 4 FseIn &' )

where Fy—F5 are regression coefficients, and are shown in Table 3.
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Figure 5. The relationship between m¢ and plastic strain (a) and In ¢* (b).
Table 3. The regression coefficients of the fuction ms = (¢,In¢").
Fo Fq F; F3 F4 Fs
0.0409 0.14815 —0.08156 0.00178  0.00038367 0.00944
(3) After that, Equation (2) can be transformed as follows:
o/ (m1 + mye + mze? + m4£m5) (1 + mgIn é*) =((Tm —T)/(Tm — Tx))" (6)

Taking the natural logarithm on both side of Equation (6):

In [0‘/ (ml + mye + mze? + m4em5> (1 + mgIn é*ﬂ =myIn((Ty — T)/ (T — Tt)) (7)
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Using the different plastic strains (0, 0.2, 0.5) and the flow stresses at four
deformation temperatures (623 K, 673 K, 723 K, 773 K), the relationships between
In[o/ (my + mpe + mze + mye™ ) (1+mglné’)] and In((Tm —T)/(Tm —Tr)) can be obtained,
as shown in Figure 6. According to Figure 6, it could be observed that the thermo softening exponent
my is varied with plastic strain, temperature, as well as strain rate.

0.0
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Figure 6. The relationships between In[o/(my + mpe + mae? + mye™s) (14 meIné’)] and
(T — T)/ (T — T,)).

Aiming to determine the specific fuction expression of the thermo softening exponent my,
the relationships between m; and plastic strain, In((Tyn — T)/(Tm — T¢)) and In¢" are curved and
illustrated in Figure 7. From Figure 7a we can conclude that my can be fitted very well by a cubic
polynomial of variable plastic strain. From Figure 7b,c we can find that my can be fitted very well by
a quadratic polynomial of variable In((Tm — T)/(Tm — Tr)) and In ¢’, respectively. Therefore, the m;
can be expressed by a ternary polynomial about &, In((Ty — T) /(T — Tr)) and In ¢” as follows:

my = (Mp + Mye + Mae? + M3e® + MyIn((Tom — T)/ (T — Tr))) + Ms In((Ten — T)/ (Ten — T))*+
MgIné* + MyIné” + MgeIn((Tm — T) /(T — T2)) + MoeIné* + MigIn((T — T) /(T — Te)) In&*+  (8)
Myreln((Tpy — T)/(Tn — Ty)) In&"

where My—Mj are regression coefficients.
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Figure 7. The relationship between m and plastic strain (a), In((T; — T)/ (T — T;)) (b) and In ¢" (c).

Substituting the values of my at the four strain rates four deformation temperatures (623 K, 673 K,
723 K, 773 K) and the corresponding flow stress at different strains (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) into
Equation (8), the regression coefficients can be determined by regression method and the results are

shown in Table 4.

Table 4. The regression coefficients of the fuction my = (&, In((Tm — T)/(Tm — Tt)), In&").

M, M, M, M; M, Ms Mg M; Mg Mo My My
1.317 —0.103 1.877 —2.128 —-0.508 —-0.714 —-0.07 —0.006 0.1188 —0.085 0.075 —0.123
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Using the parameters in Tables 2 and 3, the unique flow curves of Al-Si-Mg alloy at different
deformation conditions can be calculated by the modified Johnson-Cook model, and comparisons
between the experimental results and calculated data are shown in Figure 8. As illustrated in Figure 8,
the calculated data can fit the material responses, such as yield stress, work hardening, flow stress and
thermo softening very well.
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Figure 8. Comparison between the measured data and calculated data by the modified Johnson-Cook
(J-C) model (a) 573 K; (b) 623 K; (¢) 673 K; (d) 723 K and (e) 773 K.

Aiming to assess the precision of this modified model, the average error between the calculated
true stress 0. and experimental obtained true stress oe can be computed as follows:

1N
error = N;KO‘C — 0O¢)/ 0e| X 100% )

Extracting the flow stress values of both calculation results and the measured data at four strain
rates and five deformation temperatures (573 K, 623 K, 673 K, 723 K, 773 K) with different equivalent
plastic strains (0, 0.1, 0.2, 0.3, 0.4, 0.5), the error can be calculated by employing Equation (9). The error
of the modified model is 1.65%. Furthermore, the compression tests were conducted at 320 °C with
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157! and at 400 °C with 0.5 s~!. The comparison results between the experimental data and the
predictions by the modified model are illustrated in Figure 9. All that indicates that this modified
model makes an accurate simulation of the material responses under a quasi-static loading state at a
wide range of temperatures, and can be used to make a metal forming process and establish a finite
element model.
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Figure 9. The comparison results between the experimental data and the predictions.
5. Conclusions

In the present paper, the quasi-static loading responses of Al-Si-Mg alloy are studied by hot
compression experiments. It can be observed from the experimental results that the flow stress
increases with strain rate and decreases with increasing deformation temperature. According to the
experimental data, a modified J-C model taking the strain rate effect on thermo softening into account
is proposed. Its calculation results agree well with the measured flow stress. The average error of the
modified model is 1.65%.
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