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Abstract: The identification of the post-necking strain hardening behavior of metal sheet is important
for finite element analysis procedures of sheet metal forming process. The inverse modeling method
is a practical way to determine the hardening curve to large strains. This study is thus focused on
the evaluation of the inverse modeling method using a novel material performance test. In this
article, hot uniaxial tensile test of a commercially pure titanium sheet with rectangular section was
first conducted. Utilizing the raw data from the tensile test, the post-necking hardening behavior of
the material is determined by a FE-based inverse modeling procedure. Then the inverse method is
compared with some classical hardening models. In order to further evaluate the applicability of the
inverse method, biaxial tensile test at elevated temperatures was performed using a special designed
cruciform specimen. The cruciform specimen could guarantee that the maximum equi-biaxial
deformation occurs in the center section. By using the inverse modeling procedure, the hardening
curves under biaxial stress state are able to be extracted. Finally the stress-strain curves obtained
from the two experiments are compared and analysis studies are provided.

Keywords: finite element analysis; inverse modeling; post-necking hardening; biaxial tensile test;
elevated temperature

1. Introduction

Nowadays the Finite Element Analysis (FEA) is used widely in the design stage of sheet metal
forming operations with the aim of reducing the number of trial steps, controlling dimension accuracy
and finally obtaining high-quality sheet forming products [1] and is almost indispensable in the
manufacturing industries. The simulation of metal forming process is a highly non-linear problem
involving large material deformation and complex boundary conditions [2] which requires accurate
hardening behavior of the investigated sheet metal over a wide range of plastic strains. Till now the
most popular method to obtain the stress-strain relationship of metal sheet, represented either in
the form of a set of discrete data points or analytical constitutive models, is typically by conducting
standard uniaxial tensile test with rectangular cross-section [3,4]. The stress and strain values of
the uniaxial tensile test can be obtained by using an extensometer that measures the elongation of
a certain gauge length but the calculated stress value is accurate on the assumption that the test
specimen is subjected to homogeneous state of uniaxial loading, which means that the stress-strain
relationship identified by standard uniaxial tensile test is valid only before the so-called diffuse necking
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point. However, many sheet forming processes usually involve large deformation and can generate
strains far beyond the necking point, so the stress-strain curve up to the necking point is not sufficient
for numerical simulation procedures. Generally, the available pre-necking stress-strain curves are
extrapolated to large strains using different hardening models [5]. It is obvious that the predicted
post-necking hardening curve greatly depends on the choice of phenomenological constitutive models
and one model that is best fitted to a certain material may not suits for another [6].

Recently, numerous investigations have been made to acquire the hardening curve beyond
diffuse necking by many researchers [7–11]. The initial attempt was made by Bridgman [7], who
derived a set of analytical models for the distribution of stress and strain across the diffuse necking
region for a round bar. However, the correction and compensation for stress and stress values
of Bridgman’s method is based on the measurement of evolving geometrical parameters of the
necking area, which requires much experimental effort. Ling [8] and Zhang et al. [9] extended the
research of Bridgman by proposing new models for determining the post-necking hardening behavior
of strip specimen with rectangular section. Other researchers [10,11] further studied the necking
problem experimentally based on Bridgman’s work in more sophisticated ways. Currently, a new
optical-numerical measurement techniques, i.e., the Digital Image Correlation (DIC) method, is used
widely for obtaining full-field information for both in-plane displacements and strains of the test
specimen and has been applied by many researchers for determining the post-necking hardening
curve of uniaxial test [12,13], Scheider et al. [14] investigated the necking phenomenon based on
finite element analysis with the help of DIC technique and proposed a new post-necking model
which has a higher accuracy than Zhang’s [9] model. Another effort to identify the post-necking
stress-strain curve of uniaxial tensile test is concentrated on the inverse modeling procedures. In most
cases, the stress-strain points or the unknown parameters of constitutive model are determined
iteratively with the help of FEA or the Virtual Fields Method (VFM). The finite element based inverse
method is perhaps the most popular way in the iterative modeling procedures for determining
stress-strain curve after necking and substantial studies are focused on it. Kajberg et al. [2] combined
inverse modeling with in-plane displacement fields measured by DIC method and determined the
parameters of parabolic hardening model beyond necking point. Kamaya et al. [15] determined
the stress–strain curve including post-necking strain using hourglass type specimens of different
notch radius. Faurholdt [16] and Koc [17] respectively designed a least-square cost function which
represents the discrepancy between the experimental result and the FEM computed response. Other
researchers [3,18,19] focus on the non-linear VFM which could replace finite element method in the
inverse modeling process. The key point of VFM is to determine the hardening behavior by minimizing
the discrepancy between the internal and the external work in the region where the diffuse neck
develops [3]. The VFM-based inverse method was first proposed by Coppieters et al. [6] who identified
the parameters of the Voce and the Swift hardening laws for a mild deep drawing steel using tensile
test data from the pre- and post-necking region. Rossi et al. [18] presented a VFM-based procedure to
extract the constitutive parameters of a plasticity model at large plastic strains using three dimensional
displacement field. The proposed procedure method was then validated by conducting finite element
simulation of uniaxial tensile test. Due to the insufficient accuracy of the common hardening laws
when implementing VFM-based inverse modeling process, Coppieters et al. [3] proposed a p-model
which can reflect the accurate stress-strain relationship both in the pre- and post-necking region
of a cold rolled interstitial-free steel sheet. Kim et al. [19] applied the diffuse approximation (DA)
method to decrease the noise effect from the measured full-field displacements when characterizing
the post-necking strain hardening behavior using VFM.

The FE-based and VFM-based method have been experimentally validated in the pre-necking
regime of uniaxial tensile test [20,21]. However, the evaluation of the inverse modeling methods by
an independent material test is much more difficult and is currently lacking [3], as in a tensile test,
the true strain at the smallest cross-section in the necked region may exceed 1.5 just before ductile
fracture happens [20]. So it is important to select a material performance test capable of achieving very
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large strains under uniform deformation. Coppieters et al. [3,22] used the multi-axial tube expansion
test designed by Kuwabara and Sugawara [23] to acquire uniaxial strain hardening behavior beyond
necking point for the validation study of the VFM-based method and good agreement was obtained.
However, very few investigation concentrates on the evaluation test at relatively high temperatures,
which is a main target of this research.

This study is focused on the evaluation of the inverse modeling method using a novel material
performance test at elevated temperature. In this article, hot uniaxial tensile test of a commercially pure
titanium sheet with rectangular section was first conducted. Utilizing the raw data from the tensile test,
the post-necking hardening behavior of the material is determined by an FE-based inverse modeling
procedure. In order to further evaluate the applicability of the inverse method, biaxial tensile test at
elevated temperature was performed using a special designed cruciform specimen. The cruciform
specimen could guarantee that the maximum equi-biaxial deformation occurs in the center section.
By using the inverse modeling procedure, the hardening curves under biaxial stress state are able to
be extracted. Finally the stress-strain curves obtained from the two experiments are compared and
analysis studies are provided.

2. Inverse Modeling Method

2.1. Experimental Details

The material used in this study is a commercial pure titanium (Grade 2). The titanium and Ti-alloys
are well known for their high strength-to-weight ratio, good heat and corrosion resistance [24], and
are used widely for high quality thin-walled components [25]. Specimens used in the hot tensile test
were machined by wire-electrode cutting with the geometry of the specimen illustrated in Figure 1.
The isothermal tensile tests were conducted on a ZWICK universal testing machine (constant-speed
loading, the maximum load capacity is 20 kN) at 500 ◦C and three different strain rates, 0.1 s−1,
0.02 s−1, 0.005 s−1. For a uniform temperature distribution, all specimens were held for 5 min before
deformation. The raw data from the hot tensile test of traction force versus elongation is plotted in
Figure 2. It is obvious from the figure that the tensile test specimen has a larger elongation and a
smaller maximum traction force when the deformation speed is lower, which is a typical character for
the titanium at elevated temperatures.
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Figure 2. Traction force versus displacement in tensile test. 
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Figure 2. Traction force versus displacement in tensile test.

2.2. FE-Based Inverse Modeling Procedure

An Epsilon high temperature extensometer was used in the tensile test to measure the uniform
deformation of the specimen, but the stress-strain curve of the material after necking is no longer
reliable and is thus calculated by an FE-based inverse modeling procedure in this research. Many
researchers [2,4,20] have proposed several FE-based inverse methods respectively and we used a
modified inverse method based on the early work of Joun [20].

By utilizing the commercial finite element software ABAQUS, the uniaxial tensile test can be
simulated and the force and elongation of the specimen can be calculated, so the main idea of the
inverse method is to iteratively improve the input stress-strain data of the numerical model to better
conform to the measured force and elongation

{
Pex

i , Uex
i
}

from the experiment. Supposing at the
Nth iterative step, the modified input stress-plastic strain data is (σN , εN), where σN = {σi}N and

εN =
{

ε
pl
i

}N
, i stands for each point of the hardening curve. When the largest plastic strain in the

specimen reaches a certain value of εi, the calculated reaction force and elongation by FEM simulation
are represented here as PFE

i and UFE
i respectively. In order to reduce the difference between the

calculated and measured force PFE
i , Pex

i at the same elongation Uex
i = UFE

i , the stress update algorithm
as expressed in Equation (1) is adopted [20] to calculate the new iterative stress value corresponding to
the plastic strain εi.

σnew
i = σold

i ·Pex
i /PFE

i (1)

A schematic diagram of the inverse method is shown in Figure 3, and the iterative procedure can be
summarized in the following:

(1) The initial guess of the stress-plastic strain data
{

σN
i , εN

i
}

(N = 1) pre-necking point is obtained
from the experiment using an extensometer. Although the measured hardening curve by using
extensometer has been proved accurate by some researchers [19], the iterative optimization
method in this research still covers both pre- and post-necking region of the hardening curve to
further exam the reliability of the inverse method.

(2) By conducting FEM simulation, the traction force and elongation of the specimen at the Nth step

can be calculated as
{

PFE
i,N , UFE

i,N

}
. In order to compare the simulation result with the experiment,

the experimental force value Pex
i at the same UFE

i,N = Uex
i is determined by interpolation.

By comparing the measured force Pex
i and predicted force PFE

i,N , the improved stress at plastic
strain εN

i is corrected as σN+1
i = σN

i ·Pex
i /PFE

i,N .
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(3) Calculate the new simulation model using the updated input hardening curve
{

σN+1
i , εN+1

i

}
and

extract the (N + 1)th force and elongation data of the specimen
{

PFE
i,N+1, UFE

i,N+1

}
.

(4) After several iterative steps, the predicted force and elongation data will get close to the
experimental result. In order to evaluate the discrepancy between the calculated and the measured
data, the relative mean square error Φ is calculated in this research, which has the expression as
described in Equation (2).

Φ =
√

∑ (PFE
i,N − Pex

i )
2/M/(∑ Pex

i /M) (2)

where M is the total number of the data points.
(5) If the relative mean square error Φ is lower than 0.3%, the last stress-plastic strain data

{
σN

i , εN
i
}

is
then regarded as the final effective hardening curve determined by the inverse modeling method,
else go back to step (2).

Throughout the inverse modeling procedure, the elongation and traction force of the specimen
are the only two necessary measured data sets from uniaxial tensile test, which are easy to be obtained.
However, there is a problem arise from this method: When the elongation of the specimen gets to the
value of Uex

i in the tensile test, the actual maximum plastic strain in the specimen is denoted as εex
i here,

but without the application of the DIC method, the εex
i value cannot be determined from experiment,

then the stress value σN
i in the numerical simulation is corrected using Equation (1) at the elongation

UFE
i = Uex

i corresponding to plastic strain εN
i which may be different from the εex

i value. But it will
be discovered later that this discrepancy between the two plastic strain values from experiment and
simulation is not important for the final convergence and accuracy of the determined hardening curve,
which will be introduced in Section 3.
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3. Analysis of the Method

3.1. Convergence Analysis

The improved stress-plastic strain curves of some iterative steps by the inverse modeling method
at different strain rates are illustrated in Figure 4. It is obvious from the figure that the stress-strain
data measured by the extensometer is identical with the pre-necking curve obtained by the inverse
method, which means that the inverse method is reliable and accurate in the pre-necking region.
The flow stress demonstrates a relatively stable hardening rate after diffuse necking point and no
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work-softening is observed in each condition. At strain rate of 0.005 s−1, the proposed algorithm
converges to the final optimized curve after twelfth iteration. The eleventh improved and the twelfth
improved curve are very close with each other, implying that the discrepancy of the traction force
between values predicted by the FEA and by experimental measured data is very small in the last
numerical simulations. From Figure 4b,c, we can see that the final effective stress-strain curve is
obtained after the ninth and seventh iterative step respectively. It can be found from the figure that
the approximation process is not monotonous, for example, at strain rate of 0.005 s−1, the updated
hardening curve of each step does not get close to the final curve from one side, on the contrary, the
improved hardening curves appear on both side of the final curve, this is due to the uncertainty of the
relationship between the elongation and maximum plastic strain of the test specimen. At strain rate of
0.005 s−1 and 0.1 s−1, diffuse necking will occur at plastic strain of around 0.23 and 0.12 respectively,
which indicates that a lower strain rate will guarantee a more uniform deformation of the specimen.
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Figure 5 shows the calculated plastic strain corresponding to a certain elongation in each
conditions. As has mentioned earlier, the proposed inverse modeling process does not take into
consideration of the relationship between the maximum strain and the elongation of the specimen.
However, after several iteration steps, the predicted plastic strain corresponding to different elongation
in each condition all converges to a certain value, which means that the internal relation between
the two variables could be automatically obtained by the proposed iterative procedure without the
application of any non-contact optical measurement. Furthermore, it can be found from Figure 5a that
the algorithm will take more iteration steps to get close to the final strain value if the elongation of the
specimen is larger. Comparing Figure 5a,b it can be discovered that when the specimen is stretched by
10 mm, the corresponding maximum plastic strain is 0.2 and 0.37 at strain rate of 0.005 s−1 and 0.1 s−1

respectively, which again demonstrates that the specimen with a lower strain rate will deform more
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uniformly than the one with a higher strain rate. The curves of the relative mean square error Φ versus
iterative step at different conditions are plotted in Figure 6, the Φ values of each inverse modeling
procedure all drop to less than 0.3% after a certain number of iteration steps.Metals 2018, 8, x FOR PEER REVIEW  7 of 15 
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3.2. Comparison with Classical Hardening Laws

In this research, the flow stress of the material in the uniaxial tensile test is represented by a
set of discrete points. During the iterative steps, every stress-strain point in the hardening curve is
corrected based on Equation (1) by comparing the discrepancy of the FEM result with the experimental
data. When performing the inverse modeling procedure, other researchers [6,19] tend to assume
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that the hardening curve after necking point could be described by some kind of hardening laws.
In their approaches, the inverse modeling procedure is aimed at obtaining the best parameters for each
hardening mode which can best fit to the experimental data, so the accuracy of these approaches greatly
depend on the property of the selected hardening models. In order to evaluate the predicting ability
of some classical hardening laws for describing the flow behavior of material under uniaxial tensile
test. The stress-plastic strain curve obtained by the proposed inverse modeling process was fitted using
three classical constitutive models, i.e., the Swift, Voce and Ludwik model with the expressions listed in
Table 1.

Table 1. Other phenomenological constitutive models.

Model Expression

Swift σ = K(p + ε0)
n

Voce σ = σs − (σs − σ1)enp

Ludwik σ = σ0 + Kpn

where σ is the Cauchy stress, p is the plastic strain and the others are the fitting parameters.

Figure 7 shows the comparison of the stress-plastic strain curve at strain rate of 0.005 s−1 obtained
by the proposed inverse modeling method with the hardening curves fitted by the Swift, Voce and
Ludwik model. The parameters of each hardening law are calculated using the Levenberg-Marquardt
(L-M) algorithm with the parameter values for each model listed in Table 2. It is obvious that none
of the selected three model can best describe the hardening behavior of the material. The flow stress
curve by the inverse method presents a relatively stable hardening rate beyond the diffuse necking
point, however, all the three fitted curves demonstrate a decreasing hardening rate and the accuracy
of the pre-necking hardening curve is not very high except the Ludwik model as illustrate in the local
view of Figure 7. In other words, if the stress-strain curve in the proposed inverse modeling method
is represented by the selected hardening laws and the parameter of the model is then updated based
on some type of optimization algorithm in each iterative step, the convergence condition cannot be
finally satisfied.

Metals 2018, 8, x FOR PEER REVIEW  8 of 15 

 

material under uniaxial tensile test. The stress-plastic strain curve obtained by the proposed inverse 

modeling process was fitted using three classical constitutive models, i.e., the Swift, Voce and 

Ludwik model with the expressions listed in Table 1. 

Figure 7 shows the comparison of the stress-plastic strain curve at strain rate of 0.005 s−1 

obtained by the proposed inverse modeling method with the hardening curves fitted by the Swift, 

Voce and Ludwik model. The parameters of each hardening law are calculated using the 

Levenberg-Marquardt (L-M) algorithm with the parameter values for each model listed in Table 2. 

It is obvious that none of the selected three model can best describe the hardening behavior of the 

material. The flow stress curve by the inverse method presents a relatively stable hardening rate 

beyond the diffuse necking point, however, all the three fitted curves demonstrate a decreasing 

hardening rate and the accuracy of the pre-necking hardening curve is not very high except the 

Ludwik model as illustrate in the local view of Figure 7. In other words, if the stress-strain curve in 

the proposed inverse modeling method is represented by the selected hardening laws and the 

parameter of the model is then updated based on some type of optimization algorithm in each 

iterative step, the convergence condition cannot be finally satisfied. 

Table 1. Other phenomenological constitutive models. 

Model Expression 

Swift npK )( 0   
Voce np

1ss e)(    
Ludwik n

0 Kp   
* where σ  is the Cauchy stress, p  is the plastic strain and the others are the fitting parameters. 

0.0 0.2 0.4 0.6 0.8 1.0
0

40

80

120

160

200

S
tr

e
ss

  
/M

P
a

Plastic strain

 Inverse modeling method
 Swift model
 Voce model
 Ludwik model

 

 

 

Figure 7. The entire stress-plastic strain curve fitted by classical hardening laws. 

Table 2. Parameter values for each constitutive models. 

Model Swift Voce Ludwik 

Parameter 
� = 202.93 �� = 230.84 �� = 55.620 
�� = 0.03435 �� = 66.31 � = 152.73 
� = 0.3586 � = −1.812 � = 0.5318 

As has mentioned earlier, the hardening curve to large strain range can be obtained by 

extrapolating the available pre-necking stress-strain curves using different hardening models, this 

method is once very popular in the past when few available experiment could be applied to 

determine the post-necking hardening curve of sheet metal. However, the reliability of the 

extrapolation method is greatly dependent on the phenomenological constitutive model that is 

selected. In order to demonstrate this point, we further investigate the extrapolation properties of 

the selected three phenomenological models with the parameter values listed in Table 3. Using the 

Figure 7. The entire stress-plastic strain curve fitted by classical hardening laws.

Table 2. Parameter values for each constitutive models.

Model Swift Voce Ludwik

Parameter
K = 202.93 σs = 230.84 σ0 = 55.620

ε0 = 0.03435 σl = 66.31 K = 152.73
n = 0.3586 n = −1.812 n = 0.5318
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As has mentioned earlier, the hardening curve to large strain range can be obtained by extrapolating
the available pre-necking stress-strain curves using different hardening models, this method is once
very popular in the past when few available experiment could be applied to determine the post-necking
hardening curve of sheet metal. However, the reliability of the extrapolation method is greatly
dependent on the phenomenological constitutive model that is selected. In order to demonstrate
this point, we further investigate the extrapolation properties of the selected three phenomenological
models with the parameter values listed in Table 3. Using the pre-necking stress-plastic strain data, the
three fitted curves are plotted in Figure 8. It can be seen that the three hardening models can describe
the pre-necking hardening behavior of the material with very good accuracy, but after diffuse necking
occurs, the constitutive models show very different hardening behavior compared with the optimized
curve, the Swift and Voce model seem to underestimate the flow stress curve a lot whereas the fitted
curve by the Ludwik model falls on the upper side of the flow stress curve. Actually, none of the
selected hardening laws could describe the flow stress curve with relatively stable hardening rate. Thus
it can be concluded that if the extrapolated hardening curve is used in the FEA procedure to represent
the mechanical behavior of the material, unreliable numerical simulation results may be obtained.

Table 3. Parameter values for each constitutive models.

Model Swift Voce Ludwik

Parameter
K = 178.75 σs = 121.25 σ0 = 53.437

ε0 = 0.00731 σl = 57.37 K = 169.21
n = 0.2375 n = −15.000 n = 0.5186
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4. Evaluation by Biaxial Tensile Test

4.1. Experimental Details of the Biaxial Tensile Test

The biaxial tensile test of metal sheet is becoming increasing popular recently in sheet metal
forming industries [26,27]. As in sheet metal forming operations, the material is often subjected
to deformation in more than one plane or axis. So the mechanical properties obtained by uniaxial
tensile test are inadequate for predicting the material’s deformation under states of biaxial stress [28].
Hannon et al. [28] reviewed several types of biaxial tensile test machines developed by Makinde [29],
Kuwabara [30], etc. However, in the current literatures, few biaxial tensile test equipment could handle
the testing procedure of metal sheet at relative high temperatures (e.g., above 400 ◦C). Lang et al. [31]
developed a servo-hydraulic 100-kN hot biaxial tensile test machine in 2015 (as shown in Figure 9) on
which the biaxial test was performed. The maximum displacement of each axis is 100 mm with the
displacement control accuracy of each axis higher than 0.02 mm. The heating furnace is placed at the
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center of the pedestal, it could generate and maintain a constant temperature from room temperature
to 800 ◦C.Metals 2018, 8, x FOR PEER REVIEW  10 of 15 
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Figure 9. Biaxial tensile test machine.

The design of biaxial test specimen is a challenging task, many cruciform specimens have been
proposed to obtain the biaxial stress state of the test material at the center section of the specimen
and to avoid stress concentrations outside the gauge area [28,32], but up to now, there is no standard
specimen geometry in the literature [33], which makes it difficult to compare test results from different
research institutes. In this study, a special designed thickness-tapered cruciform specimen is adopted
in the test as illustrated in Figure 10. To concentrate strains in the central zone, the central region of
the specimen is machined to make the upper surface of the test piece be part of a sphere with the
radius of around 250.4 mm. The minimum thickness in the center is 0.2 mm, which could ensure
that the final failure occurs in this section. In order to avoid strain localization at the junction of two
arms, the rounding radius at the intersection of two arms is made 12 mm. The hot biaxial tensile test
was performed at the same condition with the hot uniaxial tensile test, i.e., at 500 ◦C and at different
strain rates (0.1 s−1, 0.02 s−1 and 0.005 s−1). It should be noted that the accurate strain value of the
test specimen is difficult to be acquired, so the relatively consistent strain rate is achieved with the
application of finite element analysis which will be discussed in Section 4.2. The result of the test is
plotted in Figure 11. We can observe that the material presents a rate-dependent property as well at
equi-biaxial tensile condition. The fractured specimen after the test is shown in Figure 12. It can be
discovered that the special designed specimen with a reduced center section could guarantee that the
maximum deformation occurs in the center.

Metals 2018, 8, x FOR PEER REVIEW  10 of 15 

 

 

Figure 9 Biaxial tensile test machine. 

The design of biaxial test specimen is a challenging task, many cruciform specimens have been 

proposed to obtain the biaxial stress state of the test material at the center section of the specimen 

and to avoid stress concentrations outside the gauge area [28,32], but up to now, there is no 

standard specimen geometry in the literature [33], which makes it difficult to compare test results 

from different research institutes. In this study, a special designed thickness-tapered cruciform 

specimen is adopted in the test as illustrated in Figure 10. To concentrate strains in the central zone, 

the central region of the specimen is machined to make the upper surface of the test piece be part of 

a sphere with the radius of around 250.4 mm. The minimum thickness in the center is 0.2 mm, 

which could ensure that the final failure occurs in this section. In order to avoid strain localization 

at the junction of two arms, the rounding radius at the intersection of two arms is made 12 mm. The 

hot biaxial tensile test was performed at the same condition with the hot uniaxial tensile test, i.e., at 

500 °C and at different strain rates (0.1 s−1, 0.02 s−1 and 0.005 s−1). It should be noted that the accurate 

strain value of the test specimen is difficult to be acquired, so the relatively consistent strain rate is 

achieved with the application of finite element analysis which will be discussed in Section 4.2. The 

result of the test is plotted in Figure 11. We can observe that the material presents a rate-dependent 

property as well at equi-biaxial tensile condition. The fractured specimen after the test is shown in 

Figure 12. It can be discovered that the special designed specimen with a reduced center section 

could guarantee that the maximum deformation occurs in the center. 

 

Figure 10. Specimen geometry of the biaxial tensile (unit: mm), where A-A is the cross section. Figure 10. Specimen geometry of the biaxial tensile (unit: mm), where A-A is the cross section.



Metals 2018, 8, 1044 11 of 15
Metals 2018, 8, x FOR PEER REVIEW  11 of 15 

 

0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

A
ve

ra
g
e
 T

ra
ct

io
n
 F

o
rc

e
  
/N

Displacement  /mm

 strain rate=0.1s-1

 strain rate=0.02s-1

 strain rate=0.005s-1

 

 

 

Figure 11. Specimen geometry of the biaxial tensile (unit: mm). 

 

Figure 12. Fractured specimen after biaxial test (a) 0.1 s−1 (b) 0.02 s−1 (c) 0.005 s−1. 

4.2. FE Analysis of Biaxial Tensile Test 

The accurate stress and strain of the special designed cruciform specimen is difficult to be 

calculated. So we adopted FE analysis to evaluate the hardening curves at biaxial stress state. The 

isotropic elastic-plastic numerical model is established by using the commercial FEA program 

ABAQUS as shown in Figure 13. The cruciform specimen is modeled with 8-node linear reduced 

integration element (C3D8R). Due to the symmetrical properties of the specimen, only one-quarter 

of the model is modeled (Figure 13). Figure 14 shows the von Mises equivalent stress distribution of 

the specimen when the displacement of each axis reach 3.0 mm. The simulation result also 

demonstrates that the central section of the specimen experiences the maximum deformation. In 

addition, with the help of FEA, the relationship between the grip displacement and maximum 

strain could be established. Using Equation (3), the relatively accurate strain rate could be achieved 

by controlling the grip speed. 

v·dU/εddt/dU·dU/εddt/εdε ===  (3) 

where U  is the grip displacement and v is the grip speed. 

Figure 11. Specimen geometry of the biaxial tensile (unit: mm).

Metals 2018, 8, x FOR PEER REVIEW  11 of 15 

 

0.5 1.0 1.5 2.0 2.5 3.0
0

500

1000

1500

2000

2500

A
ve

ra
g
e
 T

ra
ct

io
n
 F

o
rc

e
  
/N

Displacement  /mm

 strain rate=0.1s-1

 strain rate=0.02s-1

 strain rate=0.005s-1

 

 

 

Figure 11. Specimen geometry of the biaxial tensile (unit: mm). 

 

Figure 12. Fractured specimen after biaxial test (a) 0.1 s−1 (b) 0.02 s−1 (c) 0.005 s−1. 

4.2. FE Analysis of Biaxial Tensile Test 

The accurate stress and strain of the special designed cruciform specimen is difficult to be 

calculated. So we adopted FE analysis to evaluate the hardening curves at biaxial stress state. The 

isotropic elastic-plastic numerical model is established by using the commercial FEA program 

ABAQUS as shown in Figure 13. The cruciform specimen is modeled with 8-node linear reduced 

integration element (C3D8R). Due to the symmetrical properties of the specimen, only one-quarter 

of the model is modeled (Figure 13). Figure 14 shows the von Mises equivalent stress distribution of 

the specimen when the displacement of each axis reach 3.0 mm. The simulation result also 

demonstrates that the central section of the specimen experiences the maximum deformation. In 

addition, with the help of FEA, the relationship between the grip displacement and maximum 

strain could be established. Using Equation (3), the relatively accurate strain rate could be achieved 

by controlling the grip speed. 

v·dU/εddt/dU·dU/εddt/εdε ===  (3) 

where U  is the grip displacement and v is the grip speed. 

Figure 12. Fractured specimen after biaxial test (a) 0.1 s−1 (b) 0.02 s−1 (c) 0.005 s−1.

4.2. FE Analysis of Biaxial Tensile Test

The accurate stress and strain of the special designed cruciform specimen is difficult to be
calculated. So we adopted FE analysis to evaluate the hardening curves at biaxial stress state.
The isotropic elastic-plastic numerical model is established by using the commercial FEA program
ABAQUS as shown in Figure 13. The cruciform specimen is modeled with 8-node linear reduced
integration element (C3D8R). Due to the symmetrical properties of the specimen, only one-quarter of
the model is modeled (Figure 13). Figure 14 shows the von Mises equivalent stress distribution of the
specimen when the displacement of each axis reach 3.0 mm. The simulation result also demonstrates
that the central section of the specimen experiences the maximum deformation. In addition, with the
help of FEA, the relationship between the grip displacement and maximum strain could be established.
Using Equation (3), the relatively accurate strain rate could be achieved by controlling the grip speed.

.
ε = dε/dt = dε/dU·dU/dt = dε/dU·v (3)

where U is the grip displacement and v is the grip speed.
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4.3. Validation of the Inverse Model

Figure 15 shows the improved stress-plastic strain curves of the investigated material in the biaxial
tensile test by the inverse modeling method as described in Section 2.2. The hardening curves of the
uniaxial tensile test obtained by the inverse method at corresponding conditions are also plotted in the
figure. In order to reduce the iteration steps, the post-necking hardening curve calculated in Section 3
is regarded as the initial guess in the iterative step. We can see from the figure that the iterative process
converges to a certain value after two or three steps. At strain rate of 0.1 s−1 and 0.02 s−1, the flow
stress of the biaxial test obtained by the inverse method is close to the uniaxial test result. It should be
noted that the achieved minimum relative mean square errors Φ are 0.97%, 1.01% and 2.94% for strain
rate of 0.1 s−1, 0.02 s−1 and 0.005 s−1 respectively, which is much larger than the optimized values
calculated in Section 3. In other words, the proposed inverse modeling method is able to obtain the
hardening curve using complex specimens such as the special designed cruciform test piece, but the
precision is not very high.
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Figure 15. Improved stress-plastic strain curves and uniaxial test data at different strain rates. (a) 0.1 

s−1 (b) 0.02 s−1(c) 0.005 s−1. 

5. Conclusions 

The post-necking hardening behaviors of uniaxial tensile test and biaxial tensile test are 

determined by using the inverse modeling method. The following conclusions can be derived from 

this study: 

(1). By using the proposed inverse method, the internal relation between the plastic strain and 

elongation of the uniaxial tensile test could be automatically obtained without the application of any 

non-contact optical measurement. 

(2). If the stress-strain curve in the inverse modeling method is represented by simple classical 

hardening laws, the convergence condition of the inverse iteration procedure cannot be finally 

satisfied. 

(3). The extrapolated hardening curve using phenomenological constitutive models greatly 

depends on the model that is selected and it will be in poor accuracy for predicting the post-necking 

hardening curve of metal sheet. 

(4). The proposed inverse modeling method could be used to obtain the hardening curve of 

metal sheet using complex specimens such as the special designed cruciform test piece, but the 

calculation accuracy is not very high. 
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5. Conclusions

The post-necking hardening behaviors of uniaxial tensile test and biaxial tensile test are
determined by using the inverse modeling method. The following conclusions can be derived from
this study:

(1). By using the proposed inverse method, the internal relation between the plastic strain and
elongation of the uniaxial tensile test could be automatically obtained without the application of any
non-contact optical measurement.

(2). If the stress-strain curve in the inverse modeling method is represented by simple classical
hardening laws, the convergence condition of the inverse iteration procedure cannot be finally satisfied.

(3). The extrapolated hardening curve using phenomenological constitutive models greatly
depends on the model that is selected and it will be in poor accuracy for predicting the post-necking
hardening curve of metal sheet.

(4). The proposed inverse modeling method could be used to obtain the hardening curve of metal
sheet using complex specimens such as the special designed cruciform test piece, but the calculation
accuracy is not very high.
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