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Abstract: Shot peening is a well-known surface treatment method used for fatigue life improvement
of cyclically loaded structural components. Since three main variables are considered in the peening
process (peening intensity, coverage and peening media type), there is no direct way to choose
the best combination of treatment parameters for the best performance, thus it has to be based on
experience and laboratory tests. When shot peening is performed with inadequate parameters, or the
peening process is not stable in time (decrease of the peening pressure, deterioration of the peening
media and so on), it can result in significant degradation of the treated component fatigue properties,
what is commonly called as the “overpeening” effect. When a premature fatigue fracture occurs in
operation, the fracture surface analysis is usually the most important method of revealing the damage
mechanism. This work is aimed at the study of the relation between the shot peening parameters and
the fatigue fracture surface character on an AW 7075 aluminium alloy with an objective of identifying
marks of overpeening and investigating the fatigue crack initiation mechanism. After performing
the tests, it was observed that shot peening with optimized parameters creates a surface layer that is
able to change the mechanism of the fatigue crack propagation and improve fatigue strength. On the
other hand, using extensive peening parameters decrease the fatigue strength due to the creation of
surface cracks and surface layer delamination.
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1. Introduction

Shot peening is currently well recognized and the most widely applied surface strengthening
technique for fatigue life improvement [1]. In many studies, the positive effect on fatigue life of all
sorts of engineering materials, such as steels [2–4], aluminium [5,6], magnesium [7,8], titanium [9] and
nickel [10] alloys, was proven. The fatigue life improvement is a result of a complex modification of
the surface layer’s structural state by increasing the dislocation density (deformation strengthening),
grain refinement, and by accumulation of the compressive residual stresses, which slow down the
fatigue crack initiation process and increase the resistance to fatigue crack propagation in the early
stages of fatigue damage [11,12].

Since it was found out that a significant part of the residual stresses relax during the cyclic
loading [13] and the residual stress loss does not correspond to fatigue life improvement, another
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mechanism of surface modification had to be considered to explain this uncertainty and it has been
proven in many studies that this mechanism is grain refinement [2,5,13,14]. The new generation of
shot peening was developed putting emphasis on the grain refinement process and that treatment is
commonly called severe shot peening (SSP). It is characterized by the use of unconventionally severe
parameters which are able to introduce significant grain refinement and create a nanostructural surface
layer with superior mechanical properties when compared to the coarse grained equivalent [2,5,14–17].
This treatment is often able to provide superior fatigue life improvement than conventional
shot peening [5,18].

The fatigue life improvement results by conventional shot peening and the severe shot peening
treatment are very sensitive to the process parameters used, usually quantified by Almen intensity and
coverage. However, using inappropriately severe parameters can lead to an effect called “overpeening”,
which causes significant degradation of the surface layer and consequently of fatigue properties [5,19,20].
Even when there is a basic knowledge of the surface defects after extensive shot peening, described as
burrs, folds and micro cracks [21], only limited information is available on degradation mechanisms
that cause the decrease in fatigue life. One of the possibilities for studying them is to analyze the
fracture surfaces after the fatigue test, looking for various marks and characteristics of fatigue crack
initiation. Knowledge about the relation between the shot peening parameters and the fracture surface
character, mainly in the stage of fatigue crack initiation, provides essential information for quality
control and failure analysis when it is necessary to evaluate a posteriori the quality of the shot-peening
technological process.

The aim of this research was to analyze the dependence of the fatigue life of AW 7075 aluminium
alloy on the shot peening parameters and, consequently, on the fracture surface character. The main
focus was given to the surface-layer integrity and fatigue crack initiation and propagation in the shot
peened surface layer.

2. Materials and Methods

As experimental material, the AW 7075 T6511 aluminium alloy was used, in the form of extruded
bars 15 mm in diameter. The T6 heat treatment for this alloy, according to [22], consists of solution
heat treatment at 482 ◦C for 2 h, quenching in water, and aging at 130 ◦C for 24 h (T6 temper).
The Tx511 refers specifically to plates, rolled or cold-finished rods and bars, to die or ring forgings
and to rolled-ring products that are stretched to relieve residual stresses and that may receive
minor straightening after stretching to comply with standard tolerances [23]. Mechanical properties
(Table 1 [5]) fulfilled the required conditions according to the materials datasheet.

Table 1. Mechanical properties of AW 7075 aluminium alloy. Reproduced with permission from
Trško, L.; Guagliano, M.; Bokůvka, O.; Nový, F.; Jambor, M.; Florková, Z. J. Mater. Eng. Perform.
Published by Springer Nature, 2017 [5].

Ultimate Tensile Strength UTS (MPa) Ductility A (%) Reduction of Area Z (%) Hardness HV10

631 4.9 15.7 175

The microstructure of extruded bars (Figure 1) was revealed by etching with Fuss solution (7.5 mL
HF + 25 mL HCl + 8 mL HNO3 + 1000 mL H2O) and has a strong deformation (laminar-kind) texture
caused by the extrusion process. It is formed by solid solution of zinc in aluminium and a great number
of large or very fine intermetallic phases. Typically, AW 7075 has a chemical composition including
up-to 10 alloying elements. These elements include primarily Zn, Mg and Cu; however, appreciable
and specific amounts of Fe, Si, Cr, Ti, Zr and Mn are often present (both as deliberate additions and as
impurities). Over the past three decades, the microstructure of AW 7075 has been well characterized,
along with the corresponding physical metallurgy. The literature gives evidence supporting the
presence of the following intermetallic phases in 7xxx series alloys (not all are simultaneously present,
and temper and precise composition will regulate their types and shape): MgZn2, Mg2Si, Al20Cu2Mn3,
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Al12Mn3Si, Al7Cu2Fe, Al2Cu, Al2CuMg, Al3Fe, Al12Mg2Cr, Al20Cu2Mn3, Al6Mn, Al3Ti, Al6Zr, Mg2Al3,
Al32Zn49, and Mg(AlCu) [22,24,25]. Due to deformation texture created during the extrusion process,
the particles of intermetallic phases are mainly aligned in lines, when referred to the longitudinal cut
(Figure 1a). On the cross cut, the cut lines of intermetallic phases appear as clusters distributed in the
volume of material (Figure 1b).
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Figure 1. Microstructure of AW 7075 aluminium alloy—(a) longitudinal cut; and (b) cross cut.

One of the basic conditions for assuring the repeatability of the shot peening process is to evaluate
the velocity of the shot stream (peening intensity) and the ratio between the surface of the material
covered by dimples after the hitting of the peening media and the original surface (peening coverage).
Shot peening intensity is measured by the standardized Almen test, which is referred to intensity
at saturation, measured as the height of the arc created on a shot peened metal strip. Shot peening
coverage is analyzed by optical methods. Coverage of 98% is a degree of coverage that can still
be assessed visually. The corresponding duration of the shot peening process after which the 98%
coverage degree is obtained is frequently called the shot peening time t98%. The required duration
of the treatment is the product of the shot peening time t98% and a security factor S, usually 2 times
t98%, which ensures that the surface of the component has a coverage of at least 100%. This means
that every point of the surface is covered by a shot peening impact dimple. Higher coverage degrees
are created analogically by multiplication of the time for 100% coverage. For more information about
the shot peening intensity and coverage measurement refer to [1].

To provide a systematic analysis of the shot peening influence on the fatigue life of the AW 7075
aluminium alloy, air blast shot peening with five increasing peening intensities and coverages was
performed (Table 2). Full fatigue life results were published in [5], while this work is focused only on
the fatigue fracture surface character of the peened material. Treatment with each intensity was done
on two ultrasonic fatigue test specimens used for fatigue tests at 20 kHz frequency (Lasur, Asnières,
France) [26] (Figure 2). Dimension marked “A” defines the length of the shot peened surface area and
dimension marked “B” was adjusted to harmonize the resonance frequency of the specimen with the
resonance frequency of the ultrasonic horn used [2,26]. Fatigue tests were carried out at two loading
stress levels: σa = 185 MPa and σa = 176 MPa. The parameters of the shot peening treatments are given
in Table 2 together with the resulting surface roughness (also the roughness of the not-peened (NP)
specimen is included). The gauge length surfaces of the not-peened specimens were ground with the
SiC paper and polished with diamond metallography emulsion with diamond particle size of 0.7 µm.
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Figure 2. Geometry and dimensions of AW 7075 aluminium alloy specimens for fatigue tests.
Dimensions are given in mm.

Table 2. Parameters of performed shot peening treatments and resulting surface roughness.

Label Shot Type Almen Intensity (0.001 inch) Coverage (%) Roughness Ra (µm) Roughness Rz (µm)

NP - - - 0.125 0.913
SP1 CEZ 100 8.3 N 100 2.614 14.304
SP2 CEZ 100 9.6 N 650 3.493 20.767
SP3 S110 6.9 A 100 3.849 20.712
SP4 S170 14.4 A 100 7.553 34.217
SP5 S170 14.9 A 650 7.971 35.793

3. Results

3.1. Fatigue Life Analysis

According to the results of the fatigue tests (Figure 3) the lightest peening intensity (8.3 N/100%)
increased the fatigue life of AW 7075 aluminium alloy with respect to the mechanically polished
specimens. Based on the promising increase of the fatigue life of the previous treatment, the parameters
for severe shot peening were chosen by a slight increase of the intensity to 9.6 N and significant increase
of the coverage to 650%. This treatment provided even higher fatigue life increase, as can be seen in
Figure 3. The higher peening intensity, 6.9 A/100%, had an opposite effect and caused a decrease of the
fatigue life slightly under the level of the NP specimens. The higher peening intensity, 14.4 A/100%,
again decreased the fatigue life and caused specimens to fracture after a number of cycles much
lower than after treatment with 8.3 N/100% and even below the polished specimens. To answer
the question whether shot peening with even higher parameters than 14.4 A/100% will not create a
much deeper residual stress field that could again increase the fatigue life, the severe shot peening
parameters of 14.9 A/650% were chosen. However, from the results in Figure 3, it is obvious that it
had about the same degradation effect as the previous treatment (14.4 A/100%) and the degradation
effect was saturated [2].

It is necessary to note that to provide full information about the influence of the shot peening
treatment with particular parameters on the fatigue life using only two specimens is not sufficient.
However, in an extruded material with no significant surface defects (as was observed in Figure 1)
acting as nuclei for the fatigue crack initiation, it was enough for basic evaluation about the process
parameters influence and later on these results were confirmed by the surface characteristics and the
fracture surface analysis. This was confirmed by [27] where fatigue tests in the low-cycle, high-cycle
and ultra-high cycle regions were carried out and the whole S-N curve is characteristic with low-scatter
data. Also, results of the fatigue tests of the NP material in the high- and ultra-high cycle regions,
provided in [5], confirmed the low scatter of the fatigue tests results in conditions of ultrasonic
fatigue testing.
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Figure 3. Dependence of fatigue life on the shot peening intensity and coverage of AW7075
aluminium alloy.

3.2. Surface Layer Characterization

To analyze the character of the surface layer and see the level of the plastic deformation, a
longitudinal cut was made of one fractured specimen for each surface treatment (including polished
specimen—NP), etched with the Fuss solution and analyzed by means of a scanning electron
microscope (SEM). Note that the voids visible in the microstructure of Figures 4–9 are etched
intermetallic particles. The surface layer of the NP specimen (Figure 4) shows a very shallow
deformed surface layer, which is a result of plastic deformation introduced during the machining
of the specimen’s gauge length. Shot peening by 8.3 N intensity, with coverage of 100%, created a
shallow but continuous and uniformly deformed surface layer with a thickness of approximately
30 µm (Figure 5). The surface layer after treatment with the 9.6 N intensity with coverage of 650%
(Figure 6) again created a shallow and uniformly deformed surface layer which was very similar to the
surface layer obtained after the previous shot peening treatment (Figure 5). Again, the visible depth of
the affected surface layer was approximately 30 µm. The surface after the first two treatments was
without the presence of any defects; however, an increased surface roughness was notable compared
to the ground and polished specimen. Increasing the peening intensity to 6.9 A with coverage of 100%
(Figure 7) and 14.4 A with coverage of 100% (Figure 8) respectively, increased the affected surface
layer depth to approximately 100 µm; however, the severe plastic deformation caused creation of
folds and micro cracks. Treatment with the 14.9 A intensity and coverage of 650% (Figure 9) caused
a creation of a deformed surface layer almost twice as thick as the previous treatment and reaches
almost 200 µm. It also caused a total devastation of the surface and layers of the material started to
separate. Summarization of the depth of the affected surface layers by all types of surface finishing is
provided in Table 3.

Table 3. Depth of strengthened surface layer after various surface finishing.

Surface Finishing Approximate Depth of Affected Layer (µm)

NP 15
8.3 N/100% 30
9.6 N/650% 30
6.9 A/100% 100
14.4 A/100% 100
14.9 A/650% 200
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3.3. Fracture Surface Analysis

In all the AW 7075 aluminium alloy specimens, fatigue cracks were initiated on the free surface and,
initially, the crack propagated almost perpendicular to the direction of the loading force. After reaching
several tenths of micrometers, the orientation of the crack propagation started to change to an angle of
45◦ up to 60◦ with respect to the vector of the loading force. This behavior was the best documented
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on a longitudinal cut of the NP fatigue specimen with an initiated fatigue crack, propagated to
approximately half of the cross section (Figure 10).Metals 2018, 8, x FOR PEER REVIEW  9 of 19 
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Figure 10. Character of the fatigue crack initiation and propagation in NP fatigue test specimen
(σa = 176 MPa, Nf = 6.8 × 107 cycles), longitudinal cut. Reproduced with permission from Trško, L.;
Guagliano, M.; Bokůvka, O.; Nový, F.; Jambor, M.; Florková, Z. J. Mater. Eng. Perform. Published by
Springer Nature, 2017 [5].

After the comparison of the close-up views of all types of the fatigue specimens, which were
all tested at the stress amplitude level of σa = 185 MPa (Figure 11), it is obvious that the fatigue
crack propagation character is common to all of those specimens and the angle of propagation is
approximately the same. The difference in the ratio between the surface fractured by the fatigue
damage and the final rupture is caused by different times after which the length of the crack shifted
the ultrasonic system out of resonance frequency.

When comparing the crack initiation sites on the NP and 8.3 N/100% shot peened specimens,
despite the change of the surface character these have the same appearance and no difference in crack
propagation in the strengthened surface layer can be observed as well (Figure 12).

On the fracture surface of a specimen treated with 9.6 N intensity and coverage of 650%, the
fracture of the surface layer had a different appearance than the rest of the fracture surface. In addition,
the orientation of the crack propagation in that surface layer was different, and it seems to be
perpendicular to the original surface of the specimen (Figure 13).

After careful observation of the area close to the fatigue crack initiation site, two more, very narrow
fatigue cracks initiated below the dominant one were found. Those cracks copy exactly the shape of
the dominant crack, which means that the horizontally initiated crack is perpendicular to a vector
of the applied force and then the crack propagation deviates towards the specimens’ longitudinal
axis (Figure 14a, marked with white arrows). After taking a closer look at the detail of the initiated
crack (Figure 14b), it can be seen that the crack has no preferential orientation in relation to the surface
dimples (shot peened surface morphology) and the crack propagates through the bottom of the dimples
and also through the raised edges of the dimples.

Fatigue fracture of a specimen treated with the 6.9 A intensity with the coverage of 100% reveals
more details of the fatigue crack initiation (Figure 15). In Figure 15a, the fatigue fracture character
of the area close to the fatigue crack initiation can be seen; the strong influence of the deformation
texture on the short cracks’ propagation is obvious. Short fatigue cracks during their propagation
had extremely small increments (approximately 0.1 µm), which is best documented in Figure 15b.
Around the fatigue crack initiation site of this specimen, a net of secondary cracks surrounding the
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area of the main crack initiation site can be observed (Figure 16). Those cracks were present only under
the initiation site and, according to Figure 17, all of them were created by forking of the main crack.
The fracture appearance of the treated surface layer was also slightly different than the inner part of
the fatigue fracture surface, as can be seen in Figure 17.Metals 2018, 8, x FOR PEER REVIEW  10 of 19 
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Figure 11. Macro views of fatigue fractures of specimens loaded at stress level σa = 185 MPa, SEM.
(a) NP, σa = 185 MPa, Nf = 2.6 × 107 cycles; (b) 8.3 N/100%, σa = 185 MPa, Nf = 1.0 × 108 cycles;
(c) 9.6 N/650%, σa = 185 MPa, Nf = 1.6 × 108 cycles; (d) 6.9 A/100%, σa = 185 MPa, Nf = 2.4 × 107 cycles;
(e) 14.4 A/100%, σa = 185 MPa, Nf = 4.9 × 106 cycles; (f ) 14.9 A/650%, σa = 185 MPa,
Nf = 7.3 × 106 cycles.
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Figure 12. Fatigue crack initiation sites of fatigue test specimens: (a) NP , σa = 185 MPa,
Nf = 2.6 × 107 cycles; (b) 8.3N/100%, σa = 185 MPa, Nf = 1.0 × 108 cycles, SEM.
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Figure 14. Multiple initiated fatigue cracks (a); and in detail (b); specimen treated with 9.6 N/650% 
parameters, σa = 185 MPa, Nf = 2.5 × 107 cycles, SEM. Reproduced with permission from Trško, L.; 
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Figure 13. Fatigue crack initiation site of 9.6 N/650% shot peened specimen (a); and different character
of fatigue crack propagation in the strengthened surface layer—the crack path with respect to the
specimen’s surface is marked with arrows (b); σa = 185 MPa, Nf = 1.6 × 108 cycles, SEM. Reproduced
with permission from Trško, L.; Guagliano, M.; Bokůvka, O.; Nový, F.; Jambor, M.; Florková, Z. J. Mater.
Eng. Perform. Published by Springer Nature, 2017 [5].
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Figure 14. Multiple initiated fatigue cracks (a); and in detail (b); specimen treated with 9.6 N/650%
parameters, σa = 185 MPa, Nf = 2.5 × 107 cycles, SEM. Reproduced with permission from Trško, L.;
Guagliano, M.; Bokůvka, O.; Nový, F.; Jambor, M.; Florková, Z. J. Mater. Eng. Perform. Published by
Springer Nature, 2017 [5].
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Figure 15. Fatigue crack propagation character near the fatigue crack initiation site (a); and extremely
small propagation increments of fatigue crack (b); specimen treated with 6.9 A/100% parameters,
σa = 185 MPa, Nf = 2.4 × 107 cycles, SEM.
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Figure 16. Net of secondary cracks surrounding the area under the fatigue crack initiation site (a);
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Figure 17. Different appearance of the strengthened surface layer on the fracture surface (a); and
forking of the main crack in the area of fatigue crack initiation (b); specimen treated with 6.9 A/100%
parameters, σa = 185 MPa, Nf = 2.4 × 107 cycles, SEM.

Observation of the fracture surface of the specimen peened with the 14.4 A intensity with coverage
of 100% reveals that the net of the secondary cracks under the initiation site is even more prominent
(Figure 18). The fracture of the surface layer has also a different character and it is much deeper than in
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previous treatments (Figure 19a). In addition, in a small number of places it was observed that whole
material layers on the surface started to peel off from the specimen due to the applied cyclic loading
(Figure 19b).
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Figure 18. Net of secondary cracks under the fatigue crack initiation site (a); in detail (b); specimen
treated with 14.4 A/100% parameters, σa = 185 MPa, Nf = 4.9 × 106 cycles, SEM.
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Figure 19. Different character of crack propagation in the strengthened surface layer (a); and
peeling-off surface layer (b); specimen treated with 14.4 A/100% parameters, σa = 185 MPa,
Nf = 4.9 × 106 cycles, SEM.

The fracture surface of a specimen after the most severe shot peening treatment with the intensity
of 14.9 A and coverage of 650% also shows a net of secondary cracks under the area of initiation
(Figure 20). Again, a deep surface layer had a different fracture character than the rest of the fracture
surface (Figure 21a), but the thickness of this layer, of a different appearance, seems not to be as
uniform as in previous cases. Whole layers of material peeled off from the surface of the specimen, as
can be seen in Figure 21b.
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Figure 20. Net of secondary cracks under the fatigue crack initiation site (a); in detail (b); specimen
treated with 14.9 A/650% parameters, σa = 185 MPa, Nf = 7.3 × 106 cycles, SEM.
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Figure 21. Different character of crack propagation in the strengthened surface layer (a); and peeling-off
surface layer (b); specimen treated with 14.9 A/650% parameters, σa = 185 MPa, Nf = 7.3 × 106 cycles,
SEM. Reproduced with permission from Trško, L.; Guagliano, M.; Bokůvka, O.; Nový, F.; Jambor, M.;
Florková, Z. J. Mater. Eng. Perform. Published by Springer Nature, 2017 [5].

The secondary initiated fatigue crack (Figure 22a) was extremely narrow and had a width of
barely 1 µm (Figure 22b). Again, the net of secondary cracks, copying the boundary between the
affected surface layer and the core of the material, evolved and resulted in the separation of the treated
surface layer from the specimen due to the cyclic loading (Figure 23).

Surface treatment by shot peening affects only the surface layers of material, so fatigue crack
propagation in the core of the specimen had completely the same character in all the studied specimens,
and the most characteristic figures from all of them were chosen for the best description of the
fatigue crack propagation mechanism. During the fatigue crack propagation, the friction between
the two fracture surfaces at high frequencies caused the creation of fretting damage on the surfaces
(Figure 24a). Those damaged parts of the surface oxidized very quickly (Figure 24b) which resulted
in a strong degradation of the fracture surface. Due to this oxidation, it was possible to study the
fatigue propagation mechanism mainly on the boundary with the final rupture, where the material
was not exposed to such a high number of cycles to create fretting damage. Fatigue cracks propagated
by the transcrystalline fracture mechanism of a “band” character, which is caused by the laminar
character of the microstructure after extrusion (Figure 25a). Striations, perpendicular to the direction
of the fatigue crack growth direction, were present very rarely and their clear observation was possible
only on one of the specimens in the crack initiation area (Figure 25b). After a closer investigation
of the stable fatigue crack propagation area, it was noticed that the surface was covered with very
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fine “wrinkles” created by the fracture along precipitates (Figure 26a), and many intermetallic phases
present in the material were separated from the matrix (Figure 26b). The surface of the final rupture
was characterized by the transcrystalline ductile fracture with coarse and fine dimple morphology.
The coarse dimples (Figure 27a) were created by fractures around intermetallic phases and fine dimples
around precipitates (Figure 27b).
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parameters, σa = 185 MPa, Nf = 7.3 × 106 cycles, SEM.
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4. Discussion

Surface treatment by shot peening can significantly improve the fatigue properties of structural
materials by the creation of a plastically deformed and grain-refined surface layer. The process of the
creation of this layer with superior mechanical properties is characterized by three main mechanisms:
work-hardening (increase in the dislocation density); introduction of compressive residual stresses;
and grain refinement [1,2,4,5,8,14–18,28].

Fatigue test results of AW 7075 aluminium alloy justify a deeper analysis of the influence of the
shot peening intensity and coverage on the fatigue lifetime and fracture surface character. Figure 3
shows the trend of the fatigue life of AW 7075 with respect to the peening parameters. The highest
increase of the fatigue strength was achieved with 9.6 N/650% parameters, and further increase of
the peening intensity and coverage caused a rapid drop of the fatigue strength even below that of the
not-peened material.

The fatigue fracture surface analysis of specimens from AW 7075 aluminium alloy showed that
in the process of fatigue crack initiation, the short crack propagation and the direction of the crack
propagation are strongly affected by the material’s microstructure. The multiple changes of the crack
orientation at the beginning of the fatigue damage process were caused by the deformation texture
created during the extrusion process. When a crack hits a deformed row with different crystallographic
orientation and slightly different mechanical properties, the crack path changes to the direction with
the less resistance to crack propagation. The deviation of the fatigue crack orientation of about 45◦

up to 60◦ with respect to the vector of the loading force is probably also related to the deformation
texture and the vector of maximal shear stress in the cross section. This behavior was also observed
in other work dealing with the fatigue of wrought aluminium alloys, but the reason is still not fully
understood [29–32].

The shot peening treatment of the AW 7075 aluminium alloy with intensity of 8.3 N and coverage
of 100% did not result in significant changes in the fatigue crack initiation and propagation processes.
The fatigue crack propagation in the surface layer (Figure 12b) had similar character as the NP specimen
(Figure 12a) so the increase of the fatigue life was mainly related to the compressive residual stress
introduced during the treatment which delayed the fatigue crack initiation. Increasing the peening
intensity to 9.6 N and the coverage to 650% created a work hardened surface layer (visible in Figure 6)
with a different fatigue crack propagation character (Figure 13b) than for the core of the material, which
corresponds to a surface layer with a higher resistance to fatigue crack propagation. This treatment
also resulted in increasing the number of initiated fatigue cracks; however, this was not caused by
the reduced surface integrity and creation of micro cracks after the peening process, because no such
damage was observed before fatigue loading (Figure 6). The impact dimples, created on the peened
surface (an increase of the surface roughness visible in Table 1) were, in fact, small surface notches
with very similar geometry. Since the fatigue crack initiation in the smooth specimens represents
more than 90% of all the loading cycles necessary for its fracture, multiple fatigue-crack initiation
means that those cracks had to be initiated after a similar number of loading cycles. The reason is that
dimples after the shot peening treatment served as fatigue crack initiation points with very similar
stress conditions (defined by the similar dimple geometry, which depends on the peening media shape
and size) for fatigue crack initiation, so multiple fatigue cracks were initiated at a very similar number
of cycles. Due to the continuous cyclic loading, one of the cracks starts to become dominant and
predetermine the specimen’s fatigue lifetime. The initiated secondary fatigue cracks were very narrow
(Figure 24) due to the compressive residual stress under the surface, which was closing those cracks in
the early stages. The fact that even after a significant increase of the surface roughness, the fatigue
life increased, means that the compressive residual stress field and grain refinement were still able to
delay crack initiation and partially slow down crack propagation in the first stage of fatigue damage.

All the higher peening intensities and coverages had a strong negative effect on the fatigue life
(Figure 3), which can be explained by the creation of micro cracks in the surface layer and peeling-off
material from the specimen’s surface (Figures 7–9). Further impact of the peening media, after
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exhaustion of the material’s plastic deformation ability, caused crack creation and delamination of the
surface layer, because the material was not able to accumulate more energy and this energy was used
for the creation of free surfaces. Again, the difference in the fatigue fracture character in the surface
layers was observed, what is a result of intensive surface hardening, with an almost complete loss of
the material’s ductility (Figures 19a and 21a). The treatments with higher peening parameters also
increased the number of initiated fatigue cracks and the non-uniform appearance of the surface layer
with different fracture characteristics was observed due to the layers of material completely peeled off
from the surface of the loaded specimen.

In previous work [2], the creation of micro cracks in the surface layer after severe shot peening of
a low-alloyed steel was also observed; however, a positive influence of the treatment on the fatigue
lifetime was still recorded. This means that even when some cracks on the surfaces are created, the
strengthened layer under their tip can restrain their propagation. Thus, it does not necessarily mean
that every time the peening treatment results in creation of micro cracks on the surface, the parameters
used have to be considered as too extensive and the surface as overpeened. However, the peeling off
of large parts of the strengthened surface layer as in Figures 8 and 9 results in non-uniformity of the
layer and the process parameters could be considered as too severe. On the other hand, the ductility of
the core material plays a role in the fatigue crack propagation process, when the more ductile material
can still retard crack growth or stop the crack due to the absorbtion of the energy necessary for crack
growth introduced by the cyclic loading.

5. Conclusions

The premature fatigue fracture of a shot peened component can be caused by using unnecessarily
severe treatment parameters. This cannot just be a result of using the unoptimized surface parameters,
but could also be caused by process inhomogeneity, or when the shot peening is performed on a
component with a complicated shape where some parts of the surface are exposed to the peening
process for a longer time or at different angles.

Increased surface roughness and multiple fatigue crack initiation on the peened surface certainly
do not mean that the peening process was performed wrongly, and uniformity and consistency of
the strengthened surface layer in critical places have to be evaluated as criteria for proper surface
quality. The presence of a crack on the AW 7075 aluminium alloy surface after shot peening means
that unnecessarily extensive shot peening parameters were used, and this treatment will not have a
beneficial effect on the fatigue life of the peened component.
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