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Abstract: The computational modeling of corrosion inhibitors at the level of molecular interactions
has been pursued for decades, and recent developments are allowing increasingly realistic models
to be developed for inhibitor–inhibitor, inhibitor–solvent and inhibitor–metal interactions. At the
same time, there remains a need for simplistic models to be used for the purpose of screening
molecules for proposed inhibitor performance. Herein, we apply a reductionist model for metal
surfaces consisting of a metal cation with hydroxide ligands and use quantum chemical modeling to
approximate the free energy of adsorption for several imidazoline class candidate corrosion inhibitors.
The approximation is made using the binding energy and the partition coefficient. As in some
previous work, we consider different methods for incorporating solvent and reference systems
for the partition coefficient. We compare the findings from this short study with some previous
theoretical work on similar systems. The binding energies for the inhibitors to the metal hydroxide
clusters are found to be intermediate to the binding energies calculated in other work for bare metal
vs. metal oxide surfaces. The method is applied to copper, iron, aluminum and nickel metal systems.

Keywords: quantum chemistry; adsorption energy; partition coefficient; computational design;
corrosion inhibitors

1. Introduction

Corrosion inhibitors, as defined by Obot [1], are substances that “when added in a small
concentration to an environment effectively [reduce] the corrosion rate of a metal exposed to that
environment”. Corrosion inhibitors are utilized heavily in oil and gas exploration and production,
water treatment and power generation industries [2]. Due to the commercial market for inhibitors,
roughly $2.5 bn estimated for 2017 in the US [1], there is a competitive drive to develop new inhibitors
with better performance. Furthermore, for the sake of asset management and reducing the health,
safety and environmental impacts of industrial practice, it is of importance to develop science-based
models for assessing and predicting the extent and longevity of action for those corrosion inhibitors
which are deployed [3]. For these reasons, the computational modeling of inhibitors, and particularly
computationally assisted inhibitor design, has been an intensive area of research for the past few
decades [4].

Computational modeling of inhibitors can provide several useful purposes:

a. Providing a framework for understanding the science of how functionality and tail groups
influence different aspects of the inhibition process [3]
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b. Serving as a component of an engine for design of new inhibitors (i.e., high throughput
computational design) [5,6]

c. Prediction of effectiveness of corrosion mitigation given an environment, metal surface to protect
and an inhibitor compound [7]

Currently, computational modeling of inhibitors falls mostly into category (a) and also partly in
category (b). Accomplishing purpose (c) requires a multiphysics paradigm that is still under active
development [3].

Many efforts have been made to accomplish purpose (b) using the quantitative structure active
relations (QSAR) technique, which have undergone many iterations as different molecular properties
become calculable with the maturation of quantum chemical codes [8–12]. For example, modern
QSAR approaches can now include many variables including adsorption energies and Fukui functions,
whereas the earlier approaches focused only on the energies of the frontier orbitals (EHOMO, ELUMO),
etc. [13]. They also may use support vector machines (SVM) [14] or deep neural networks [7] in
place of linear regressions to inhibitor efficiencies obtained from experiment. The increasing utility of
data analytics can be anticipated to drive further revolutions in this approach, which primarily uses
regression and correlations to define relations between molecular descriptors and inhibitor performance
under various conditions. Furthermore, molecular modeling tools that can incorporate dynamics
and realistic models for metallic and/or oxidized surfaces like LAMMPS [15], and VASP [16–18] are
now expanding what is possible under purpose (a), since now metal surfaces can be modeled with
great fidelity, with the emphasis now being placed on trying to better model defects and passive films,
as well as the electrochemical environment [14,19,20]. Descriptors derived from these calculations can
be applied into mechanistic based models or into the data analytic type approaches, such as QSAR [8],
SVM [14] and the use of deep neural networks [7].

It was observed in the work of Mondal and Taylor that there is no consensus for a strong correlation
between an individual molecular parameter and corrosion efficiency of an inhibitor compound [21].
A similar observation regarding the limit of “molecule-only” descriptors and QSAR models was
made by Kokalj [22]. This challenge was attributed to several factors, including the variations that can
result in measured corrosion inhibitor efficiencies due to differences in surface handling and solution
preparation, as well as the interactions between molecular parameters and metallic surface parameters
such as proportion of defect sites on the surface, surface crystallographic orientation, microstructure
and processing relations, etc. Furthermore, using an empirical correlation approach alone does not
lend itself to extrapolations; for this, a science based model is required that considers the various
processes that result in the direct or indirect inhibition of corrosion reactions [3]. Despite this assertion,
some considerable recent success has been made by Winkler et al. [23,24] and Chen et al. [25,26] to
use advanced machine learning methods to correlate a variety of molecular descriptors to different
observable indicators of corrosion protection (such as corrosion current density, corrosion potential,
and the anodic and cathodic Tafel slopes), and then to integrate these findings within a multiphysics
model for microclimate exposure performance in aluminum alloy systems.

A combination of the two approaches (empirical and science-based) was developed by
Mondal and Taylor [21]. The model uses small metal hydroxide “clusters” to simulate the chemistry
of a hydroxylated passive film, and their interactions with organic molecules. The adsorption energy
of candidate inhibitor molecules to the clusters was determined using density functional theory (DFT)
and related to the enthalpy for binding. The log P parameter (i.e., the partition coefficient [27]) for
the candidate molecule was also calculated using solvation free energy models and related to the
entropy of binding. The two terms were then used to calibrate a QSAR type model for the inhibitor
efficiency. This model is attractive for several reasons. First, it uses a model that is computationally
inexpensive compared to more comprehensive models of the metal surface; second, the model is
potentially more realistic as many metallic surfaces in practice will not be bare on the metallic surface
at the atomic level, but instead contain some extent of oxide or hydroxylation. Third, it does not rely
on finding correlations between molecular descriptors in isolation of an environment as in the QSAR



Metals 2018, 8, 81 3 of 15

and machine learning approaches, but can include the effects of solvation and surface binding, as well
as be varied according to the type of metal surface encountered. Finally, it employs some physics in
terms of relating the computed parameters directly to the free energy required to adsorb the inhibitor
molecule to the surface to be protected.

Only a few theoretical studies have focused directly on the interaction of inhibitor molecules
with oxidized surfaces. The interactions of imidazoline with Fe, Fe2O3 and Fe3O4 surfaces were
studied using classical molecular dynamics [28]. The imidazoline adsorbed in these calculations with
a flat geometry and large adsorption energies determined as −284, −226 and −157 kJ/mol for the
three surfaces, respectively. The use of classical molecular dynamics (MD), such as the COMPASS
forcefield, however, means that the energies may not be accurate, as very few potentials accurately
model surface/molecule interactions. The interactions of thiadazoles with Cu2O(111) were studied
using local density approximation (LDA) DFT (adsorption energies of −1.43 eV or −3.07 eV at low or
high coverage were reported) [29], as were the adsorption of glycine and methylamine on Al2O3 [30,31],
glycine on AlOOH [32], and various organic acids on ZnO(0001) with adsorption energies reported in
a range from −2.3 to −2.8 eV depending on the size of the carbon chain [33–36]. Some more complex
DFT calculations have examined inhibitor adsorption on metallic and oxidized surfaces in the presence
of solvent and electrochemical double layer effects [37]. Kokalj and co-workers have investigated
using DFT methods the interaction of benzotriazole molecule with Cu2O surface [38]. Two types of
surface diagrams were investigated (i) Cu2O coordinatively saturated (CSA) and (ii) coordinatively
unsaturated (CUS). Neutral benzotriazole binds weakly with saturated copper surface compared to
the unsaturated Cu-surface. A comparison between the current study and previous DFT studies of
benzotriazole on metallic Cu surfaces reveals that the bonding of benzotriazole to Cu2O surfaces
is not very different from that on metallic Cu surfaces, although some differences are significant.
Neutral BTAH binds considerably more strongly to Cu- unsaturated center sites on Cu2O(111) than to
metallic Cu surfaces, but deprotonated BTA binds significantly less strongly to coordinatively saturated
Cu sites on Cu2O surfaces than to metallic Cu surfaces. This article suggests that binding energy
with unsaturated Cu surface is so strong that it overcompensates for a thermodynamic deficiency
of stoichiometric ratio for Cu2O. The impact of van der Waals dispersion interactions on adsorption
bonding was also addressed, and their main effect is to strengthen the molecule–surface bonding;
this observation matches with the article published by Mondal and Taylor [21]. The binding energies
reported for BTAH to the Cu2O surface range from −0.4 to −0.7 eV (for oxygen terminated surface), to
−1.5 eV to uncoordinated Cu atoms and as much as −1.7 to −2.0 eV and −2.8 eV for the deprotonated
form on the saturated and unsaturated sites, respectively. When compared to the study of azoles on
Cu(111) and Al(111), the binding energies are significantly stronger for the oxide surface, with binding
energies between −0.22 and −0.69 eV for the metallic surfaces (weaker binding for azole rings with
more N atoms substituting for C) [39].

In the present paper, we further investigate the utility of the model initially introduced by Mondal
and Taylor by extending to some other metal centers such as Al(OH)3, Cu(OH)2, Ni(OH)2 and Fe(OH)2.
The approach is complementary to some of the DFT approaches, for example those of Kokalj or
Costa [37,38], that modeled adsorption on metallic surfaces. It has been noted that discrepancies
between adsorption energies and actually reported inhibitor performance may be due to neglecting
the oxidized or partially oxidized surface. Hence, we study the adsorption interaction between metal
ion clusters with hydroxide and a series of inhibitors based on imidazole functionality for the metals
Ni, Cr, Fe, and Al. Not only can hydroxides model the hydroxylated surfaces of an oxide film under
acidic conditions, but they can also model low-coordinated defect sites, and/or corrosion products.
The data produced in this paper, therefore, can be used in a broader multiphysics model that includes
these effects as well as other phenomena such as partitioning, protonation effects, micelle formation,
fluid dynamics, etc. [3].
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2. Computational Methods

Adsorption of molecules on solid surfaces is favored when the overall free energy of the system
(∆G) decreases upon adsorption [40]. The equilibrium constant for adsorption, K, is given by the free
energy relation:

K = e−
∆Gads

0
RT . (1)

It is commonly assumed that the inhibition efficiency η will be proportional to the equilibrium
constant. A more detailed understanding of the formation of monolayers, bilayers, etc. on the surface
of the material and their ability to inhibit the corrosion reactions on the surface as well as the mass
transport across the double layer would be required to further explore the relations between the
equilibrium constant and the inhibition efficiency [3]. However, if we take this simple assumption, i.e.,
that inhibitor efficiency will increase with a stronger binding of the inhibitor compound to the surface,
approximating ∆Gads

0 from first-principles will allow comparison of model inhibitor molecules to one
another, and differences in expected efficiencies for different types of materials. In the present work,
the DFT-based computational model developed by Mondal and Taylor is employed to approximate the
free energy of adsorption by calculating the binding energy of imidazolium type corrosion inhibitors
with irreducible representations of metal hydroxides [21].

The different inhibitors employed in this study are shown in Figure 1. As imidazoles are
used in a variety of applications, we study imidazole and some of its derivatives: methylimidazole,
benzimidazole, L-histidine, and two long-chain imidazolines (with C14 and C16 tails). In this way,
we can explore the role of functionalization, as well as the variation in metal center.

The change in enthalpy of adsorption in this work will be approximated by the difference in
self-consistent DFT energies obtained from the electronic structure calculations [41]. There is an
entropic factor that is also involved in the adsorption process—an inhibitor in the bulk system is
surrounded by a cage of solvent molecules that will need to be ruptured, at least in part depending
on the nature of the inhibiting film that forms, for it to adsorb on the metal. In addition, the water
molecules on the surface shall be displaced and, once adsorbed, both the inhibitor molecules and
solvent will have reduced degrees of freedom. All these factors will affect the entropy of solvent and
inhibitor, which can either positively or negatively contribute to the overall change in free energy.
The change in entropy is approximated as a function of the hydrophobicity of the inhibitor molecule,
which is expressed as (Rlog P), where P represents the partition coefficient (nominally, this is reported
with respect to n-octanol, although herein we will consider other potential solvents) and R is the
universal gas constant. Under this interpretation, molecules with a high hydrophobicity will have a
higher value for log P, and, furthermore, will have a more positive change in entropy associated with
adsorption. We can express these contributions and our approximations mathematically below:

∆G0
ads = ∆H0

ads − T∆S0
ads, (2)

∆G0
ads

∼= Eads − RT ∗ (log P). (3)

All the calculations were performed with Gaussian 09W [42] on a desktop workstation with
two Intel Xeon E5-2697 processors (24 cores and 2.7 GHz base frequency). As discussed by
Mondal et al., a small cluster model of inorganic metal hydroxide is considered as a proxy for an oxide
covered metal surface [21]. Self-consistent field (SCF) energies for the inhibitor, metal hydroxide
(substrate) and the inhibitor+substrate complex were calculated after optimizing the respective
molecular geometries. B3LYP functional [43] and LaNL2DZ basis sets [44–46] were used for geometry
optimization, whereas the single point energies (SPE) of the optimized molecules were calculated
using the M06 functional [47–49] and 6-311G+(d,p) basis sets. The adsorption energies were obtained
using the following expression:

Eads = (SCFinhibitor + SCFsubstrate)− SCFinhibitor+substrate (4)
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The adsorption energy so determined will depend on the binding mode being considered.
For simplicity as well as consistency between the metal centers and molecules considered, all the
calculations were performed assuming the metal atom binds to the unsaturated nitrogen on
the imidazole ring. Molecular dynamics studies by Feng et al. [28] and Ramachandran and
Jovancicevic [50] as well as some experimental studies using the SERS technique (surface enhanced
Raman spectroscopy) [51] have shown that ring structures like imidazolines may also bind in a flat or
slightly tilted orientation whereby the π-aromaticity of the imidazole group and/or phenyl groups (in
the case of benzimidazole) can donate electron density to the surface. However, given the reductionist
nature of the present model, we do not consider that orientation. In addition, the challenges to
constructing adequate force fields for solid/liquid interfaces used in the MD studies [52], and the
assignments of orientations based on SERS spectra [53,54], may not be completely definitive as to
proving that the flat orientation is preferred. Furthermore, the investigation of Kovacevic et al. using
the dispersion corrected function PBE + D showed that the zero tilt (i.e., normal orientation as closest
to what we have simulated herein) system for imidazole was the lowest energy case on Cu(111) [55].
The binding modes considered are shown in Figure 2 for some of the model systems considered herein.

Partition coefficient represents the ability of an organic molecule to partition between a solvent
phase and aqueous phase. For the purpose of estimating the entropy of adsorption, it would be useful
to consider partitioning into a phase that resembles the particular environment of the inhibitor surface
films that occurs upon adsorption. Traditionally, the partition coefficient is defined as partitioning
between n-octanol phase and aqueous phase. For inhibitor molecules that have a similar size and
structure to n-octanol, this may be sufficient. However, it is a topic that could be considered in more
detail. Understanding partitioning has also been suggested to be of utility to the availability of chemical
inhibitors used in systems of mixed oil and water (i.e., crude oil flow in pipelines, for example) [56].
Considering the application of corrosion inhibitors in crude oil pipelines, it is relevant to look at the
partitioning with respect to a solvent having similar characteristics as crude oil. Dielectric constant is
one of the critical factors that affect a solvent’s ability to contain organic molecules. Hence, a partition
coefficient is also calculated with respect to hexane, which has a dielectric constant that is representative
of most crude oils. In this study, the partition coefficient was calculated using the expression:

log P = −∆∆G0
w

RT
, (5)

where, ∆∆G0
w = ∆G0

solv − ∆Gw
solv. (6)

The two terms on the right-hand side represent the free energy of solvation of the inhibitor
molecule in oil (o) (either n-octanol or hexane) and water (w), respectively. By comparing the log P
predictions for hexane with those obtained for n-octanol, we were able to provide some indication of
how the entropic terms as well as partitioning behavior might be influenced by only considering the
“standard” approach to log P, which is based on n-octanol. The solvation energies were determined
using the SMD implicit solvation method that is available in Gaussian-09W [57].
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Benzimidazole (BI); (E) Imidazoline based surfactant with –(CH2)13CH3 as tail (IMZ_C14); (F) 
Imidazoline based surfactant with –(CH2)15CH3 as tail (IMZ_C16).  

Figure 1. Molecular structure of different imidazole and imidazoline derivatives considered
for this study (A) Imidazole (IMZ); (B) 2-Methyl Imidazole (Me-IMZ); (C) L-Histidine (L-HIS);
(D) Benzimidazole (BI); (E) Imidazoline based surfactant with –(CH2)13CH3 as tail (IMZ_C14);
(F) Imidazoline based surfactant with –(CH2)15CH3 as tail (IMZ_C16).
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Gaussian-09W are done in vacuum without considering any external interactions. However, 
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the presence of water using an implicit solvation model may be more relevant and are shown in 
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Table 1. Calculated Binding Energy of different corrosion inhibitors onto various metal hydroxide 
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Figure 2. Binding Modes of different inhibitors onto different metal hydroxides (a) optimized structure
of IMZ_C14: Al(OH)3; (b) optimized structure of Me-IMZ: Ni(OH)2; (c) optimized structure of BI:
Fe(OH)3; (d) optimized structure of L-HIS: Cu(OH)2; (e) optimized structure of IMZ: Ni(OH)2.

3. Results

Using the above methodology, the adsorption of the various imidazolium type inhibitors onto
Fe(OH)3, Al(OH)3, Ni(OH)2 and Cu(OH)2 were explored. All the calculated adsorption energies and
the hydrophobicity parameters are shown in Tables 1–3. By default, all the energy calculations in
Gaussian-09W are done in vacuum without considering any external interactions. However, practically,
solvent plays a crucial role in inhibitor adsorption—hence binding energy calculations in the presence
of water using an implicit solvation model may be more relevant and are shown in Table 2. The free
energies of adsorption calculated as per Equation (3) are shown in Tables 4 and 5.

Table 1. Calculated Binding Energy of different corrosion inhibitors onto various metal hydroxide
substrates in the absence of any external interaction.

Binding Energy in Vacuum (kJ/mol)

Metal Hydroxide
Corrosion Inhibitor

IMZ (A) Me-IMZ (B) BI (C) L-HIS (D) IMZ_C14 (E) IMZ_C16 (F)

Cu(OH)2 103 110 107 92 125 125
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Table 1. Cont.

Binding Energy in Vacuum (kJ/mol)

Metal Hydroxide
Corrosion Inhibitor

IMZ (A) Me-IMZ (B) BI (C) L-HIS (D) IMZ_C14 (E) IMZ_C16 (F)

Fe(OH)3 139 157 146 158 – –
Al(OH)3 148 163 152 189 195 195
Ni(OH)2 176 186 183 209 202 200

From Table 1, it is evident that inhibitors bind to nickel hydroxide better than other metals
considered, for all of the inhibitors studied. Note that the C14 and C16 substituted imidazolines
could not be converged for the Fe(OH)3 case due to issues with obtaining a stable solution to the
electronic structure problem that we were unable to solve within the project timeline. Likewise, copper
hydroxide has the weakest binding energy than the other metals. Aluminum and iron have similar
tendencies, although the binding is stronger to Al(OH)3 than Fe(OH)3. The binding energies are
of a similar strength, between 92 and 209 kJ/mol. The strongest binding interaction observed here
is between L-histidine and nickel hydroxide, whereas the weakest is that between L-histidine and
copper hydroxide. The binding energies for C14 and C16 imidazolines are essentially indistinguishable,
within the level of chemical accuracy, indicating that any differentiation between performance of those
inhibitors must be due to the entropic effect, or potentially molecular packing in the monolayer and/or
bilayer films. In all cases, benzimidazole and methyl imidazole are slightly stronger binding inhibitors
than imidazole, with benzimidazole being the strongest of the three. For Fe, Al, and Ni, L-histidine
is substantially more effective, whereas, for Cu, it is substantially less effective. A more detailed
examination of the electronic structure and properties (i.e., hardness, electronegativity, electrostatic
potential, etc.) would be required to assess the theoretical reasons underlying these trends.

Table 2. Calculated Binding Energy of different corrosion inhibitors onto various metal hydroxide
substrates in the presence of water.

Binding Energy in Presence of Water (kJ/mol)

Metal Hydroxide
Corrosion Inhibitor

IMZ (A) Me-IMZ (B) BI (C) L-HIS (D) IMZ_C14 (E) IMZ_C16 (F)

Cu(OH)2 87 91 84 88 95 97
Fe(OH)3 81 89 78 97 – –
Al(OH)3 152 161 151 165 177 183
Ni(OH)2 169 172 165 177 178 180

Table 2 presents the same adsorption energies as shown in Table 1, but calculated in the presence
of an implicit solvent medium (water). The effect of solvation varies according to the metal ion
considered. For Cu(OH)2, the binding energies are weakened by 10–30 kJ/mol, depending on the
inhibitor. For Fe(OH)3, the binding energies are weakened by about 50–60 kJ/mol. For Al(OH)3,
the binding energies vary only slightly by 5–10 kJ/mol, sometimes stronger and sometimes weaker.
For Ni(OH)2, the binding energies are weaker by around 8–20 kJ/mol. Generally, including the effect of
hydration seems to have only a slight impact on the calculated adsorption energies, with the exception
of Fe(OH)3, which should be investigated further. The general observation of weaker binding is
associated with the net decrease in solvation accessible area, particularly considering that the area
no longer available to the solvent after binding is associated with the chemically active sites of the
metal hydroxide complex and the inhibitor molecule, which would be most attractive to interactions
with water molecules. Including solvation also creates a slightly greater distinction in the binding
energies between the C14 and C16 imidazoline groups, presumably due to the effect of the difference in
hydrophobicity between the two molecules on the enthalpy of solvation.
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Table 3. Calculated values of log P using free energy of solvation.

Corrosion Inhibitor
Hydrophobicity (log P)

with Reference to n-Octanol with Reference to Hexane

IMZ (A) 0.04 −4.2
Me-IMZ (B) −0.16 −5.28

BI (C) 1.73 −2.02
L-His (D) −3.76 −16.31

IMZ_C14 (E) 11.26 2.73
IMZ_C16 (F) 13.62 6.1

In Table 3, we present the log P values as computed for two different reference solvents (n-octanol
vs. hexane). The partition coefficients in all cases are considerably higher for n-octanol, with the
highest values observed for C14 and C16 chains of imidazoline. In both cases the trends are the same.
Negative log P values indicate a preference for the molecule to dissolve in water, whereas positive log
P values indicate that the molecule will be more likely to dissolve in the solvent. Thus, functionalization
of imidazole by methyl or histidine makes it more water soluble, as compared to n-octanol. On the
other hand, with respect to hexane, all but the very long chains are water soluble. This is insightful with
respect to the hydrophobicity and its impact on the entropy of adsorption. According to this theory,
the entropy of adsorption should be more favorable for C16 > C14 >> benzimidazole > imidazole >
methylimidazole > L-histidine. If the environment of the inhibitor/metal interface is more hydrophobic
(i.e., more like hexane than n-octanol), then the impact of this entropic differentiation will be more
pronounced. Likewise, there will be impacts on the inhibitor availability in a mixed hydrocarbon/water
environment, such as in oil and gas pipeline systems.

Table 4. Free Energy of adsorption (kJ/mol) of different corrosion inhibitors on to various metal
hydroxide substrates at 298 K in presence of water. Binding Energies from Table 2 and log P values
with reference to n-octanol from Table 3 are used.

Metal Hydroxide
Free Energy of Adsorption at 298 K (kJ/mol)

IMZ (A) Me-IMZ (B) BI (C) L-HIS (D) IMZ_C14 (E) IMZ_C16 (F)

Cu(OH)2 −88 −91 −88 −79 −122 −131
Fe(OH)3 −81 −88 −83 −87 – –
Al(OH)3 −152 −161 −155 −156 −205 −217
Ni(OH)2 −169 −172 −169 −168 −206 −214

Using the relations for enthalpy and entropy of adsorption as described in the methods section,
it is possible to approximate the free energy of adsorption for the inhibitors on the different
metal centers. In Table 4, we present the free energies of adsorption at 298 K using the calculated
binding energies obtained in the presence of implicit solvent (water), and the partition coefficients
determined using the n-octanol reference state. In this table, it is clear that, in all cases, the free
energy of adsorption is negative, significantly more so for the long chain inhibitors, and less so
for the cases of the copper and iron hydroxides. Including the entropic configuration changes
the order of preference from the case where only enthalpies are considered. For example, in the
case of nickel hydroxide, binding strength varies as BI < IMZ < Me-IMZ < L-HIS < C14 < C16
when only enthalpies are considered. When considering the free energies, the order changes such
that L-HIS < IMZ < BI < Me-IMZ << C14 < C16. That is, the superiority of the long chain inhibitors
becomes more pronounced, and the role of the tail group in influencing the entropic factor changes the
subtle differentiation between the smaller molecule imidazoles.
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Table 5. Free Energy of adsorption (kJ/mol) of different corrosion inhibitors on to various metal
hydroxide substrates at 298 K in presence of water. Binding Energies from Table 2 and log P values
with reference to hexane from Table 3 are used.

Metal Hydroxide
Free Energy of Adsorption at 298 K (kJ/mol)

IMZ (A) Me-IMZ (B) BI (C) L-HIS (D) IMZ_C14 (E) IMZ_C16 (F)

Cu(OH)2 −77 −78 −79 −47 −101 −112
Fe(OH)3 −70 −76 −73 −56 – –
Al(OH)3 −142 −148 −146 −125 −183 −199
Ni(OH)2 −158 −159 −160 −136 −185 −195

In Table 5, the same kind of free energy analysis is performed as in Table 4, but using the hexane
derived log P values. The binding free energies are not as strong in this case, given the change of
reference solvent, but the trends remain the same.

4. Discussion

The key objective of this work was to explore the potential for using hydroxide clusters as simple
models to enable fast analysis and generation of some parameters related to the effectiveness of
potential inhibitor molecules to bind to hydroxylated surface films on various metals. The clusters
studied—Ni(OH)2, Cu(OH)2, Al(OH)3, and Fe(OH)3—consist of a metal cation coordinated to two or
three hydroxide species. The charge state of the clusters was overall neutral in charge, and the model
inhibitors were considered to coordinate through the lone pair of electrons on the nitrogen atom in
the imidazole unit. In such a representation, the metal clusters could resemble the undercoordinated
exposed metal ions at the surface of an oxide film [38], or metal atoms that are coordinated to a
hydroxylated surface of a metallic surface, which have been shown in prior work to have some
partially cationic character [58]. Furthermore, the small metal hydroxide clusters studied herein are
of the kind that has been proposed as a precursor to corrosion product formation [59]. As this brief
discussion shows, there are different degrees as to which the cluster model can estimate each of the
aforementioned cases, and further work would need to be done to draw some more quantitative
similitudes. Similar analogies have been made to surface adsorption of oxygen as well as hydrogen to
metal surfaces, where to some extent the adsorption energies, bond lengths and charge states have a
semi-quantitative resemblance with their counterpart quantities in the solid-state oxide or hydride
phases (i.e., adsorption energies, the scaled bulk formation energies, the bond lengths, the lattice
parameters, the charge states, and the formal oxidation states in the ionic structures). Indeed, some of
the first explorations of corrosion with quantum chemical techniques by Dr. Anderson in 1980 used
cluster representations of Pt-H2O and Fe-OH as surrogates for the surfaces [59].

Some fundamental electronic properties of the imidazoline derivatives studied herein were computed
by density functional theory and reported by Kovacevic et al. in 2011 [39,60]. These parameters included
the hardness, electronegativity, and dipole moment. For all three molecules, the values were similar with
some differentiations. For hardness, imidazole > methylimidazole > benzimidazole; for electronegativity,
benzimidazole > imidazole > methylimidazole; and for the dipole moments, methylimidazole > imidazole
> benzimidazole. Hardness is relevant to the second derivative of the energy with respect to the
charge, whereas electronegativity reflects the first-order derivative. The dipole moment reflects the
electrostatic interaction. Generally, it is observed in the binding energies in Table 1 (which are most
comparable to the data reported by Kovacevic [60] et al. that methylimidazole has the strongest
binding, and imidazole the least strong, whereas, when there will be a complex interaction of these
electronic trends, the predominance of methylimidazole suggests that the dipole moment contribution
is a major factor. This seems reasonable because the interactions between the metal hydroxide clusters
(which are neutral in charge, and do not involve the formation of covalent bonds) will be more on the
level of physisorptions, and thus controlled by electrostatic effects as well as dispersion (which was
not covered in this work, since the dispersion interactions are expected to be more considerable when
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the broader molecular surface area is modeled to interact with a larger scale model for the metal or
oxide surface).

The data reported herein can also be compared to some of the available experimental and
theoretical literature available for the inhibitors and metal centers studied (or similar systems).
Sun reported the adsorption energies of imidazole and benzimidazole on Cu(111) surface from
density functional theory and found adsorption energies of −0.61 and −0.52 eV [61]. In the binding
energies reported in Table 1, we find that the adsorption energies for the Cu(OH)2 cluster are stronger
by a few tenths of an eV, and also that benzimidazole is slightly more strongly adsorbed than imidazole.
Hence, hydroxylated copper ions appear to have a stronger affinity for the inhibitors than the unreacted
elemental metallic copper surface.

Jiang et al. studied benzotriazole adsorption on Cu2O(111) surfaces and for low coverage obtained
binding energies of −1.37 and −1.43 eV [62]. This surface will be more similar to the Cu(OH)2 case
studied herein, where a binding energy of 107 (−1.1 eV) kJ/mol was found. Kovacevic et al. in
2011 found that imidazole had a binding energy of around −0.7 eV in the dilute limit of adsorption,
and similarly for Al(111) (our value for imidazole on Al(111) is −1.5 eV and for Cu(111) is −1.1 eV) [39].
Thus, as anticipated in our preceding discussion, the use of a metal hydroxide cluster appears to
be intermediate to that of the oxide surface and the metal surface in terms of comparative strength
of adsorption.

A study by Mobin reported adsorption free energy values for L-histidine adsorption on mild
steel at 0.1 M H2SO4 solution [63]. According to the Pourbaix diagram, the oxide is unstable in acidic
conditions, although potentially some sub monolayer or monolayer film of water and/or hydroxide
may be present on the surface [64]. The reported free energy of adsorption is −13 to −29 kJ/mol,
based on a fitted isotherm model that relates the reduction in corrosion activity to the extent of surface
coverage (which may not be an exact assumption). This adsorption free energy can be compared to
the −87 or −56 kJ/mol as determined in this work (for the Fe(OH)3 model, with either n-octanol or
hexane as the reference solvent for log P).

Mendes et al. used the DFT method with a slab model for the iron surface to compute
adsorption energies for imidazole, but their adsorption energies are extremely high −569 kJ/mol for
the perpendicular orientation on the surface [65]. The strongest binding energy reported in this work
is around −200 kJ/mol, and a review of other studies of inhibitors reveals that this value by Mendes
appears to be highly anomalous. On the other hand, Milosev et al. studied directly the adsorption of
imidazole, methylimidazole and benzimidazole on Fe(110) and found adsorption energies of values
−0.83, −0.86 and −0.76 eV, respectively [66]. These values are about half of the binding strength of the
values reported for Fe(OH)3 cluster in this work: −1.4, −1.6, −1.5 eV, respectively.

Feng et al. explore adsorption of imidazoline derivatives on Fe, Fe3O4 and Fe2O3, reported
binding energies of −284 kJ/mol, −157 kJ/mol and −226 kJ/mol [28]. These adsorption energies are
considerably stronger (2×) than from this work (−139 kJ/mol) for the Fe(OH)3 cluster. One significant
reason for this is likely due to the long chains on the substituted imidazolines, which were laid out
on the metal or oxide surfaces in the molecular dynamics model, thus contributing a large number of
dispersion (van der Waals) interactions that, although small in individual value, can add up to a more
considerable binding interaction.

Very little work has been done to examine the role of organic inhibitors on Al or Ni. A review of
organic corrosion inhibitors for aluminum and aluminum alloys has recently been made available by
Xhanari [67]. Most of the references are quite new, indicating that this problem has become an increased
topic of interest. As seen in the results presented in the present work, both Al and Ni have high free
energies of adsorption for the inhibitors studied in this work, implying that organic chemical inhibitors
may be extremely practical in these systems. However, the general review of inhibiting treatments in
acidic environments by G. Schmitt covers a broad range of metals and compounds [68], and it was
mentioned in that review that inhibitors that work well in iron and copper systems are less effective
for Al and Ni. Unlike iron, Al and Ni both have highly corrosion resistant oxide films, and suffer
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more from localized corrosion and stress-corrosion cracking, rather than uniform corrosion [69–71].
Therefore, it may be more important in these systems to study the interactions of inhibitors with
critical defect sites in these oxide films, their ability to displace aggressive ions, such as chloride,
and their adsorption on bare metallic surfaces that may be exposed in aggressive pitting environments.
Typically for systems such as high-strength aluminum alloys, inorganic inhibitors have been used such
as chromate and molybdate; however, concerns about their toxicity have led to a search for new, more
environmentally friendly alternatives.

5. Conclusions

In this work, we have applied an innovative model for using first-principles modeling to infer
thermodynamic properties related to the adsorption of inhibitor molecules onto metal centers. We have
extended the original work by considering other metal centers, as well as performing some variations
on the model decisions such as including the role of an aqueous environment, and considering the
use of a solvent other than n-octanol for the partition coefficient. The results demonstrate that there
is some sensitivity to these model choices, although generally the trends and predictions remain the
same. The binding energies calculated by this method are intermediate between those reported for
adsorption on metallic surfaces without defects or surface films, and those reported for adsorption
on oxide surfaces. Whereas the results of this study are not conclusive, they provide some additional
reference information for corrosion inhibitor properties with respect to copper and iron systems,
as well as providing a basis for future work to explore the utility of organic corrosion inhibitors on
metals and/or alloys containing aluminum and nickel.

In our opinion, the next extension of such studies should examine how the adsorption properties
change as the metal cluster is expanded to include two, three or more metallic centers, thus
building more reliable representations of an oxide film. In this way, what is the minimum number
of metal centers required to obtain a converged solution to the problem of finding a minimum,
irreducible unit for rapid screening of potential inhibitor molecular candidates could be determined.
The inhibitor–inhibitor and inhibitor–solvent interactions will also need to be taken into account in
more extended studies. Further validation of this model against experimental data is also required to
determine how the free energies of adsorption from this model system may be scaled or otherwise
interpreted to compare to ‘real world’ systems.
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