
metals

Article

Effect of Nb on δ Phase Precipitation and the Tensile
Properties in Cast Alloy IN625

Yiqiang Mu 1,2, Changshuai Wang 2, Wenlong Zhou 1 and Lanzhang Zhou 2,*
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;

yqmou@imr.ac.cn (Y.M.); wlzhou@dlut.edu.cn (W.Z.)
2 Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China; cswang@imr.ac.cn
* Correspondence: lzz@imr.ac.cn; Tel.: +86-133-3244-9701

Received: 5 January 2018; Accepted: 18 January 2018; Published: 24 January 2018

Abstract: Cast alloy IN625 is a candidate Ni-base alloy for advanced ultra-supercritical (A-USC)
power plants. The aim of this study was to investigate the influences of Nb on δ phase precipitation
and the tensile properties in this alloy. The results show that the δ phase is easy to precipitate after
long-term aging at 700 ◦C (the service temperature of A-USC power plants) and it is strongly affected
by the content of Nb in the alloy. The strength of alloys after aging at 700 ◦C for 10,000 h increases
with the increasing Nb content and also increases sharply when compared to that of as-heat-treated
alloys. The increase in strength is found to be primarily associated with the precipitation of the
δ phase.
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1. Introduction

Advanced ultra-supercritical (A-USC) power plant is a term used to designate a coal-fired power
plant design with a maximum steam temperature of 700 ◦C or above. Its goal is to reduce CO2

emissions from coal-fired electric generating plants with improved thermal efficiency. As any type
of martensitic advanced ferritic steel cannot meet the demand of A-USC power plants, high-strength
Ni-base alloys are required. However, cast nickel-based superalloys, which possess high strength,
creep resistance, and weldability, are typically not available, particularly those with good ductility and
toughness that are weldable in thick sections [1]. To address those issues related to large castings in
A-USC power plants, cast analogs of wrought nickel-based superalloy IN625 are selected as candidate
materials for their good high strength, excellent fabricability, and outstanding corrosion resistance [1–8].
Although there are many studies in the literature on alloy IN625, most of the reports are about wrought
alloy IN625 [7–22]. So, studies on cast alloy IN625, such as the one presented in this paper, is needed
to investigate its potential application in A-USC power plants.

According the studies on wrought alloy IN625, the δ phase is observed to precipitate easily after
long-term aging at 700–760 ◦C (the service temperature of A-USC power plants) [9–13], although it
is initially designed as a solid solution hardening alloy [14]. The δ phase is an equilibrium phase
corresponding to the γ′ ′ phase with a composition of Ni3Nb and an orthorhombic (D0a) crystal
structure [15–18]. The δ particles have needle, plate, as well as globular morphologies [19–22].
The normal form of the δ phase generally nucleates at grain boundaries, but at relatively high
temperatures (850–900 ◦C) also forms in an intragranular fashion [19,23]. However, studies on the δ

phase precipitation in cast alloy IN625 are scarce [24]. Moreover, increasing the Nb concentration is
found to increase the driving force to form the δ phase [25], so it is excepted the fraction of the δ phase
can be controlled by changing the Nb content. There is no available data about the effect of Nb on δ

phase precipitation in cast alloy IN625. Considering the abovementioned information, this work aims
to determine the effects of Nb on δ phase precipitation and the tensile properties in cast alloy IN625.
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2. Materials and Methods

The nominal compositions of the experimental alloys used in this study are listed in Table 1.
The alloy with a low Nb content cannot meet the strength requirement for A-USC power plants, while a
high Nb content is bad for the processability of the alloy. Therefore, the Nb contents were chosen to
be 3.15 wt. %, 3.8 wt. %, and 4.5 wt. %, respectively. The alloys were prepared by vacuum induction
and then solution-treated at 1200 ◦C for 1 h followed by air cooling (AC). The high solution anneal
used in this work is employed to develop the maximum softness for producing the large casting used
in A-USC power plants. The alloys were aged at 700 ◦C for up to 10,000 h, with a primary aim of
observing the δ precipitation after long-term aging at the service temperature of A-USC power plants.

Metallographic samples were prepared for observation in a JSM-6301F Scanning Electron
Microscope (SEM, Jeol Instruments, Tokyo, Japan) equipped with energy dispersive spectroscopy
(EDS, Oxford Instruments plc, Oxfordshire, UK) in the as-heat-treated and as-aged conditions.
Confirmation of the identification of the phases was performed using a TECNAI G2 F30 transmission
electron microscope (TEM, FEI, Hillsboro, AL, USA). Tensile tests at 700 ◦C were carried out on a
Shimadzu AG-250KNE test machine (Shimadzu Corporation, Tokyo, Japan). The cylindrical, threaded
tensile test rods with a gauge length of Φ5 mm × 25 mm machined from the thermally exposed bars
were prepared as Standard GB/T 4338-2006 [26]. Each datum is an average of at least two tensile
tested values.

Table 1. The nominal compositions of the experimental alloys (wt. %).

Alloy Nb Mo Cr C Ni

3.15Nb 3.15 9 21.5 0.05 Bal.
3.8Nb 3.8 9 21.5 0.05 Bal.
4.5Nb 4.5 9 21.5 0.05 Bal.

3. Results and Discussion

3.1. Microstructure Evolution

The micrograph in Figure 1a shows the equiaxed structure of the experimental alloys as-cast.
EDS-measured compositions (wt. %) at different positions and partition coefficients are summarized
in Table 2. The segregation level of alloying elements in as-cast structures can be expressed by the
partition coefficient between the interdendritic region and the dendrite core: K = CD/CI , where CI
and CD are the concentration of the element in the interdendritic region and in the dendrite core,
respectively. It is noteworthy that the content of Nb has a marked impact on the segregation level of
Nb [27]. The segregation level of element Nb increases with the increasing Nb content. The general
microstructures of the Nb series of alloys after solution-treatment are shown in Figure 1b. The materials
are found to be rather free of any grain boundary or matrix precipitation, except for a few isolated
blocky precipitates in the interdendritic region. EDS quantitative results (Figure 1d) of the phases
show that it is enriched in Nb and C, which are believed to be primary carbides. At this condition,
no δ phase is observed in the experimental alloys.
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Figure 1. The structure of alloys as-cast (a), as-heat-treated (b), and EDS (energy dispersive 
spectroscopy) results of MC type carbide(NbC) (c,d). 

Table 2. EDS results and calculated partition coefficients for as-cast IN625. 

Alloy 3.15Nb 3.8Nb 4.5Nb 
Element Nb Mo Cr Ni Nb Mo Cr Ni Nb Mo Cr Ni 
CD, wt. % 1.8 8.5 22.9 66.9 1.9 7.5 23.0 67.6 1.9 7.5 23.0 66.9 
CI, wt. % 5.1 9.9 20.8 64.2 5.8 10.1 21.0 63.1 7.2 10.2 20.3 62.3 

K 2.83 1.16 0.91 0.96 3.05 1.34 0.91 0.93 3.60 1.31 0.87 0.93 

The micrographs in Figures 2 and 3 show the microstructures of the 3.15Nb, 3.8Nb, and 4.5Nb 
alloys after aging at 700 °C for 500 h and 3000 h. Following aging for 500 h, a few small δ phase 
precipitates are observed along NbC carbides (Figure 2b,c) and the grain boundaries (Figure 2d) in the 
3.8Nb and 4.5Nb alloys, while no δ phase precipitates are found in the 3.15Nb alloy (Figure 2a). This 
suggests that a greater addition of Nb can promote the precipitation of the δ phase. The initial 
precipitation positions of the δ phase are believed to be along the grain boundaries and NbC carbides, 
which are further verified by the microstructures of 3.15Nb, 3.8Nb, and 4.5Nb alloys aged for 3000 h 
(Figure 3). Identification of the δ phase is based on the TEM and the EDS results presented in Figure 4. 

The micrographs in Figure 5 show the microstructures of the 3.15Nb, 3.8Nb, and 4.5Nb alloys 
aged at 700 °C for 5000 h and 10,000 h. Prolonged aging of the experimental alloys at 700 °C resulted 
in a significant increase in volume fraction of the δ phase precipitates for all of the Nb series of alloys. 
The increasing fraction of the δ phase precipitates corresponds to increases in the overall Nb content. 
In order to provide a visualized description of the relations between the addition of Nb content and 
the δ precipitation in the experimental alloys, the volume fraction of the δ precipitate is measured 
using Image-Pro Plus 6.0 software (Media Cybernetics Inc., Rockville, MD, USA) from the scanning 
electron microscope (SEM, Jeol Instruments, Tokyo, Japan) micrographs. Considering that the δ 
precipitates in the alloy are mostly concentrated in the interdendritic regions due to the segregation 
of Nb (as shown in Figure 6), it may provide accurate statistics if the magnification of the micrographs 
is small enough and appropriate to clearly detect the δ precipitates for analysis. The results are plotted 
as a function of aging time and Nb content (Figure 7). The volume fraction of the δ precipitation 
increases with both the aging time and Nb content. The effect of Nb content on the fraction of the δ 
phase corresponds to its effect on the Nb segregation degree. The more seriously the element Nb 
segregates, the more Nb can segregate at excess vacancies, dislocations, and extrinsic stacking faults 
in the γ matrix [14]. This results in the reduction of the critical nucleus free energy, and further 
promotes the precipitation of the δ phase. 

Figure 1. The structure of alloys as-cast (a), as-heat-treated (b), and EDS (energy dispersive
spectroscopy) results of MC type carbide(NbC) (c,d).

Table 2. EDS results and calculated partition coefficients for as-cast IN625.

Alloy 3.15Nb 3.8Nb 4.5Nb

Element Nb Mo Cr Ni Nb Mo Cr Ni Nb Mo Cr Ni
CD, wt. % 1.8 8.5 22.9 66.9 1.9 7.5 23.0 67.6 1.9 7.5 23.0 66.9
CI, wt. % 5.1 9.9 20.8 64.2 5.8 10.1 21.0 63.1 7.2 10.2 20.3 62.3

K 2.83 1.16 0.91 0.96 3.05 1.34 0.91 0.93 3.60 1.31 0.87 0.93

The micrographs in Figures 2 and 3 show the microstructures of the 3.15Nb, 3.8Nb, and 4.5Nb
alloys after aging at 700 ◦C for 500 h and 3000 h. Following aging for 500 h, a few small δ phase
precipitates are observed along NbC carbides (Figure 2b,c) and the grain boundaries (Figure 2d) in
the 3.8Nb and 4.5Nb alloys, while no δ phase precipitates are found in the 3.15Nb alloy (Figure 2a).
This suggests that a greater addition of Nb can promote the precipitation of the δ phase. The initial
precipitation positions of the δ phase are believed to be along the grain boundaries and NbC carbides,
which are further verified by the microstructures of 3.15Nb, 3.8Nb, and 4.5Nb alloys aged for 3000 h
(Figure 3). Identification of the δ phase is based on the TEM and the EDS results presented in Figure 4.

The micrographs in Figure 5 show the microstructures of the 3.15Nb, 3.8Nb, and 4.5Nb alloys
aged at 700 ◦C for 5000 h and 10,000 h. Prolonged aging of the experimental alloys at 700 ◦C resulted
in a significant increase in volume fraction of the δ phase precipitates for all of the Nb series of alloys.
The increasing fraction of the δ phase precipitates corresponds to increases in the overall Nb content.
In order to provide a visualized description of the relations between the addition of Nb content and the
δ precipitation in the experimental alloys, the volume fraction of the δ precipitate is measured using
Image-Pro Plus 6.0 software (Media Cybernetics Inc., Rockville, MD, USA) from the scanning electron
microscope (SEM, Jeol Instruments, Tokyo, Japan) micrographs. Considering that the δ precipitates in
the alloy are mostly concentrated in the interdendritic regions due to the segregation of Nb (as shown
in Figure 6), it may provide accurate statistics if the magnification of the micrographs is small enough
and appropriate to clearly detect the δ precipitates for analysis. The results are plotted as a function of
aging time and Nb content (Figure 7). The volume fraction of the δ precipitation increases with both
the aging time and Nb content. The effect of Nb content on the fraction of the δ phase corresponds
to its effect on the Nb segregation degree. The more seriously the element Nb segregates, the more
Nb can segregate at excess vacancies, dislocations, and extrinsic stacking faults in the γ matrix [14].
This results in the reduction of the critical nucleus free energy, and further promotes the precipitation
of the δ phase.



Metals 2018, 8, 86 4 of 9

Metals 2018, 8, x FOR PEER REVIEW  4 of 9 

 

 
Figure 2. The precipitation of the δ phase along NbC carbides in alloy 3.15Nb (a), 3.8Nb (b), and 4.5Nb 
(c), and the grain boundaries in alloy 4.5Nb (d) after aging at 700 °C for 500 h. 

 
Figure 3. SEM micrographs of the δ phases along the grain boundaries for aging at 700 °C for 3000 h 
in alloy 3.15Nb (a), 3.8Nb (b), and 4.5Nb (c), and NbC carbides in the Nb series of alloys (d). 
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the effect of Nb content on the strength of the alloys is not obvious. However, after aging at 700 °C 
for 10,000 h, the strength is strongly affected by the Nb content. Considering that the major change 
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To confirm this deduction, the dislocation substructure of alloys was observed under TEM. Figure 8a 
shows an example of the dislocation substructure of as-heat-treated alloys. It is seen that tangled 
jogged dislocations are associated with cross slip (the transfer of a screw dislocation from one {111} 
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3.2. Tensile Properties

A substantial precipitation of the δ phases in the experimental alloys after long-term aging at
700 ◦C suggests that the critical applications of the alloy need further investigation to elucidate its
role in affecting tensile properties. The tensile properties of alloys as-heat-treated and aged at 700 ◦C
for 10,000 h are both presented in Table 3. The yield strength (YS), ultimate tensile strength (UTS),
and elongation (EL) after solution treatment are around 180 MPa, 400 MPa, and 50%, respectively.
The tensile properties are comparable among the different specimens; no obvious change in the tensile
properties of the as-heat-treated alloys with varied additions of Nb is noticed. Meanwhile, for the alloy
treated with prolonged aging at 700 ◦C for 10,000 h, the yield strength and ultimate tensile strength at
700 ◦C are sharply increased. At this given condition, the tensile properties also vary strongly with the
Nb content. The aging of the alloys also leads to a decrease in ductility. It is worth noting that the Nb
content has little effect on the value of EL under the same given conditions.

Table 3. The tensile properties of alloys as-heat-treated and aged at 700 ◦C for 10,000 h.

Condition As-Heat-Treated Aged at 700 ◦C for 10,000 h

Alloy 3.15Nb 3.8Nb 4.5Nb 3.15Nb 3.8Nb 4.5Nb

YS 175 180 175 595 650 710
UTS 420 410 385 720 780 880
EL 62 50 63 9 13 8

It is interesting to find that the effects of Nb content on the tensile properties are totally different
between the as-heat-treated alloys and those aged at 700 ◦C for 10,000 h. For the as-heat-treated alloys,
the effect of Nb content on the strength of the alloys is not obvious. However, after aging at 700 ◦C
for 10,000 h, the strength is strongly affected by the Nb content. Considering that the major change of
microstructure is the δ phase precipitation and its fraction increases with the increasing Nb content,
the strength increase with Nb content after aging is believed to be closely related to the δ precipitates.
To confirm this deduction, the dislocation substructure of alloys was observed under TEM. Figure 8a
shows an example of the dislocation substructure of as-heat-treated alloys. It is seen that tangled
jogged dislocations are associated with cross slip (the transfer of a screw dislocation from one {111}
system to another {111}, whereas straight uniformly distributed dislocations reflect more difficult
cross slip [28]. The dislocation substructure of alloys after aging for 10,000 h, by contrast, changed
completely due to the δ phase precipitation. As shown in Figure 8b, the tangles have straightened-out
considerably and some interaction to form three or more-fold nodes has taken place. The high-density
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tangled dislocations pinned by the δ phase precipitate results in the stress concentration around the δ

phase when the motion of dislocation is prevented. This should provide the potential for improving
strength [29]. It is believed that the δ precipitates serve as a strengthening phase in the experiment
alloy. If the effect of Nb on the fraction of the δ phase is taken into account at the same time, it is
determined that the different role of Nb in the strength of the as-heat-treated alloy and the alloy aged
at 700 ◦C for 10,000 h is primarily associated with the precipitation of the δ phase.
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Figure 9 shows SEM micrographs of the tensile fracture surface of the alloy as-heat-treated and
as-aged for 10,000 h. The fracture surfaces are observed along the interdendritic region, because it
is the weakest area in the cast alloys. The fracture features reveal that the δ phase has an effect on
fracture morphology, being more brittle with the precipitation of the δ phase. It is worth mentioning
that the varied fraction of the δ phase (for the alloys aged for 10,000 h) has a small effect on the value
of elongation.
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4. Conclusions

The effects of Nb on δ phase precipitation and the tensile properties in cast IN625 are investigated
in this paper. It is found that increasing the Nb content promotes the precipitation of the δ phase due
to the increasing Nb segregation. The effect of Nb on tensile properties is divided into two different
situations. One is that the effect is not obvious for the as-heat-treated alloys. Another is that the effect
is strong for the alloys aged at 700 ◦C for 10,000 h, which is primarily associated with the precipitation
of the δ phase. δ precipitation is believed to serve as a strengthening phase in cast alloy IN625.
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