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Abstract: Semi-solid processing of aluminum alloys is a well-known manufacturing technique able
to combine high production rates with parts quality, resulting in high performance and reasonable
component costs. The advantages offered by semi-solid processing are due to the shear thinning
behavior of the thixotropic slurries during the mold filling. This is related to the microstructure of
these slurries consisting of solid, nondendritic, near-globular primary particles surrounded by a liquid
matrix. This paper presents a review on the formation of this nondendritic microstructure, reports
on the different proposed mechanisms that might be responsible, and illustrates the relationship
between microstructure and properties, in particular, tensility, fatigue, wear, and corrosion resistance.
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1. Introduction

Semi-solid metal (SSM) processing is a manufacturing technique where an alloy, in the form
of a slurry of near-globular primary particles in a liquid matrix, is injected into a die, allowing the
production of near-net-shape components. The main advantage of this technology is related to the
flow properties of the metal in the form of a slurry, which, in the semi-solid state, is non-Newtonian
and exhibits shear thinning behavior [1,2]. The viscosity of the SSM slurry is higher than when fully
liquid, reducing the risk of turbulent [3] or spray flow, which is more typical of conventional pressure
die-casting [3,4]. However, thanks to the shear thinning behavior of the slurry, under the influence of a
shear force acting on it when it flows into the die, the viscosity decreases and the metal slurry is able to
fill the cavity completely in a nonturbulent manner. As a consequence, semi-solid cast parts are almost
free of gas porosity.

Injecting a partially solidified alloy slurry has the added benefit that shrinkage porosity is virtually
absent [5]. The low or even absent porosity allows the production of structural parts with good
mechanical properties that can also undergo subsequent heat treatments or welding operations.

Semi-solid processing guarantees higher performance than die-casting, while maintaining a
number of the advantages of die-casting, such as good dimensional tolerances, high production rates,
high surface quality, complex near-net-shape parts, and thin sections with very limited need of any
finishing operations [6]. In addition, when compared to conventional die-casting, SSM processing
increases die life because of the lower stress associated with the lower injection temperatures and
speeds (i.e., lower mold attack and erosion, lower thermal shock), reduced cycle times and risk of
hot tearing due to the lower temperature of the metal slurry (no over-heating), and associated lower
energy consumption [4,6,7].

On the other hand, SSM manufacturing requires specialized equipment for alloy preparation,
combined with strict control of process parameters, particularly the alloy temperature, i.e., the solid/liquid
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fraction. Unfortunately, all these tend to increase the production costs [8], even though recent
investigations have shown that SSM processing is only slightly more expensive than conventional
die-casting and cheaper than some other competing foundry processes [9].

Since its development in the early 1970s at MIT [10], much research has been performed
worldwide, aimed mainly at developing new and alternative routes of feedstock production for
different alloys suitable for SSM processing. At present, there are a number of different techniques
used to produce semi-solid castings, differentiated by the percentage of liquid/solid fraction they
employ and the way they produce the alloy in the semi-solid state. SSM methods can be divided in
two main categories according to their processing route, known as rheocasting and thixocasting [11].
In rheocasting, the semi-solid slurry is prepared in situ from the liquid state down to a certain
percentage of solid fraction (usually between 10 and 30% [12]), and then directly transferred into
the shot sleeve for being injected into the die. In thixocasting, a billet, characterized by an almost
globular or rosette-like microstructure developed through some specific route, is reheated in the
mushy zone (semi-solid region) to an appropriately chosen solid fraction (usually between 50% and
60% [13]), placed in a modified shot sleeve and finally injected into the die [14]. Another classification
methodology distinguishes the SSM methods according to the initial step used for obtaining the
semi-solid feedstock, i.e., from the liquid state, by controlled solidification or from the solid state,
via heavy plastic deformation and recrystallization [11].

Some of the most common routes for feedstock material preparation are: mechanical stirring,
such as the SSR [15,16] or GISS [17] processes, electromagnetic stirring (EMS or MHD) [18,19],
ultrasonic stirring (UTS) [20,21], New Rheocasting (NRC or UBE) [22,23], cooling slope [24],
twin screw [25], Rheometal [26], liquid mixing method [27], SEED [28], thermomechanical [29],
and SIMA [14,30].

A number of interesting reviews about the different technologies available for obtaining
nondendritic slurries can be found in the literature [11,13,14,31–33]. Nevertheless, independently from
the chosen technique, the fundamental concept is based in developing feedstock with a microstructure
of a solid, near-globular phase surrounded by a liquid matrix when in the semi-solid state. As already
mentioned, when a shear stress is applied, the near-globular solid particles move easily between and
over each other, reducing the viscosity and making the material behave like a liquid. On the contrary,
when a shear stress is applied on a dendritic microstructure, the liquid remains entrapped between
dendrite arms and prevents them from moving freely, thus increasing the viscosity of the alloy [32].

This paper presents a review on the formation of nondendritic microstructures, microstructures
that have a key role in semi-solid processing, and discusses the different proposed mechanisms
together with ways to analyze SSM microstructures. In addition, the review provides information on
the variation of mechanical properties and corrosion behavior through modification of microstructures
that are typical of SSM processing.

2. Formation of Nondendritic Microstructures in SSM Processing

During the early experiments performed by Spencer et al. on a Sn–Pb15 alloy [10], it was found
that the microstructure of the material was strongly affected by the constant shearing of the alloy
when in semi-solid state. Particularly, it was shown that shearing action causes the formation of a
nondendritic grain structure, which is the distinctive characteristic of semi-solid alloys. Moreover,
with further shearing during cooling, it is also possible to obtain spheroidal particles, typically with
some entrapped liquid [4]. The authors also reported that high shear rates and slow cooling rates can
promote the formation of spherical particles instead of rosette-like ones [10].

The steps for the formation of nondendritic microstructures have been extensively studied over
the years and one of the first proposed mechanisms is shown in the schematic illustration of Figure 1.
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mechanisms [2]. Vogel et al. [34], for instance, proposed that under a shear force the dendrite arms 
bend plastically, thus introducing large misorientations into the arms and forming dislocations. At 
high temperatures these dislocations rearrange themselves inducing, under specific conditions, the 
detachment of dendrite arms [35] as shown in Figure 2. These dendrite fragments act as nuclei, 
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(c) dislocation rearrangement to give grain boundary, and (d) grain boundary wetting [35]. 

In contrast, Molennar et al. [37] proposed that rosette-like particles are the result of cellular 
growth. Mullis [38] reported that bending could bring about rosette formation without any need of 
mechanical effects due to shearing. According to Hellawell [39], the secondary dendrite arms can 
separate at their roots because of solute enrichment and thermosolutal convection that determines 
their remelting rather than breaking off for simple mechanical interactions (Figure 3). He suggested 
that in the solidification range, the solid is completely ductile and dendrites can be bent but not 
broken. Hence, the detachment of the secondary arms can be explained by a local remelting 
phenomenon. In particular, the remelting can occur either by recalescence of the whole system or by 
local recalescence due to fluctuations caused by convective phenomena or stirring [14,40]. 
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Figure 1. Globule formation during stirring in the semi-solid range: (a) initial dendritic fragment, (b)
dendritic growth, (c) rosette, (d) ripened rosette, and (e) spheroid [4].

According to Flemings and co-workers [4], in the early stages of solidification, as it happens
for all metallic materials, dendrites form in the liquid. However, unlike conventional solidification,
the shearing action affects the dendritic morphology, which changes into that of a “rosette” due
to different phenomena. Various explanations about the conversion mechanisms from dendritic to
globular morphology can be found in the literature like ripening, shear, bending and abrasion with
other growing crystals, dendrite fragmentation, remelting of dendrite arms, and growth control
mechanisms [2]. Vogel et al. [34], for instance, proposed that under a shear force the dendrite
arms bend plastically, thus introducing large misorientations into the arms and forming dislocations.
At high temperatures these dislocations rearrange themselves inducing, under specific conditions,
the detachment of dendrite arms [35] as shown in Figure 2. These dendrite fragments act as nuclei,
coarsening and leading to the presence of globules of the primary phase [4,35,36].
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Figure 2. Schematic model of fragmentation mechanism: (a) undeformed dendrite, (b) after bending,
(c) dislocation rearrangement to give grain boundary, and (d) grain boundary wetting [35].

In contrast, Molennar et al. [37] proposed that rosette-like particles are the result of cellular growth.
Mullis [38] reported that bending could bring about rosette formation without any need of mechanical
effects due to shearing. According to Hellawell [39], the secondary dendrite arms can separate at their
roots because of solute enrichment and thermosolutal convection that determines their remelting rather
than breaking off for simple mechanical interactions (Figure 3). He suggested that in the solidification
range, the solid is completely ductile and dendrites can be bent but not broken. Hence, the detachment
of the secondary arms can be explained by a local remelting phenomenon. In particular, the remelting
can occur either by recalescence of the whole system or by local recalescence due to fluctuations caused
by convective phenomena or stirring [14,40].
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The effect of the fluid flow characteristics on the morphology of solidification structures was also
studied, by means of Monte Carlo simulation, by Das et al. [41]. They found that a rotational motion
under laminar flow promotes rosette-like morphology due to a periodic stabilizing and destabilizing
of the solid–liquid interface, while a turbulent flow hinders dendritic growth resulting in a compact
morphology due to a stable solid–liquid interface. The presence of a concurrent mechanism was
also proposed.

An interesting review of the various proposed mechanisms is reported in [2].
Figure 4 shows a typical microstructure of semi-solid castings, which consists of rosette-like or

even globular grains (Figure 4a) and a dendritic structure typical of conventional casting processes
(Figure 4b) [42].
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3. Microstructural Analysis of Semi-Solid Alloys

In the analysis of microstructures of SSM components, dendrite arm spacing cannot be measured
as in the case of conventional castings [43]; instead, the microstructural parameters taken into account
are the size of the globules, their shape factor, i.e., their roundness, and the amount of entrapped
liquid [44].

The globule size should be large enough to build an almost rigid solid phase network and,
at the same time, small enough that the slurry can flow into the die cavity similarly to a liquid.
The dimensions of the globules are usually defined as their mean diameters. It is typically assumed
that the minimum thickness that can be filled by SSM should not be lower than 20–30 times the grain
radius [11]. In particular, according to some findings, the optimum primary particle size for SSM alloys
is lower than 100 µm [45]. However, the grain size distribution measured by 2D analysis is difficult to
determine and sometimes an extensive analysis of serial sections is needed to guarantee reliable data.
A more accurate and consistent analysis of the grain size distribution and evolution can be performed
via 3D examination methods, like X-ray microtomography [46–50], as shown in Figure 5.
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The shape factor is known to strongly affect the slurry viscosity. For laminar die filling in particular,
the solid particles should preferably be round and separated from each other [11]. The shape factor (F)
is defined as:

F = 4πA/P2

where A is the area and P is the perimeter of the particles.
A shape factor equal to 1 represents the case of a perfect circle and it reduces to zero with an

increasing amount of irregularity, i.e., highly branched or elongated microstructures. In semi-solid
processing, a shape factor above 0.6 is considered as appropriate [44]. Because the SSM particles
can have complex morphologies, care should be taken when interpreting metallographic sections,
as errors can arise if isolated secondary branches are taken into account as real single particles [52].
Thus, in order to obtain more reliable results, a high number of particles have to be measured.

The entrapped liquid is a distinct feature of the thixocasting route [11,53]. This liquid, as shown in
Figure 6, does not contribute to the sliding of the globules during processing. Therefore, it follows that
the liquid fraction is lower than the theoretical one and that the viscosity increases during die filling
due to a sponge effect that can be induced [11]. The amount of entrapped liquid can be estimated by
image analysis of 2D polished section areas, however, as in the case of the shape factor and globule
size, errors can be introduced when some of the entrapped liquid islands appear to be isolated even
though they are connected to the liquid phase at deeper levels. A more thorough investigation by
means of 3D analysis allows more reliable data to be obtained.
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Clearly, different production routes of semi-solid parts can result in different microstructures,
from rosette-like to near globular and details about them can be easily found in the literature [2,14].
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4. Performance of Semi-Solid Aluminum Alloys

In recent years, several studies have been focused on the mechanical properties of parts fabricated
by semi-solid/thixoforming processes, often in comparison to conventional routes.

4.1. Mechanical Properties

Al alloys are widely used in semi-solid processing as discussed in the previous section. The proven
better quality of components obtained by SSM processes, and associated better properties, are often
cited in textbooks about the topic [11,13], in particular highlighting the possibility to perform T6
heat-treatment to further increase their characteristics. There are also many scientific studies on the
mechanical properties of Al SSM alloys (both casting and wrought ones), even though significantly
less than those on microstructural modification in comparison with conventional casting alloys.

4.1.1. Tensile Behavior

Since the very first production attempts, it was evident that semi-solid parts have high mechanical
properties comparable to those of the forged material and better than permanent mold castings [4].
Over the years, these findings have been confirmed by many authors. In fact, the enhancement
in performance of parts manufactured by SSM processing compared to traditionally cast parts is
supported by various studies mainly on Al–Si [54–59], Al–Cu [60,61], and Al–Zn alloy families [62,63].

Bergsma et al. [64], for instance, reported that the tensile strength of 357 and modified
319 semi-solid formed aluminum alloys are superior to conventionally cast alloys due to the reduction
in porosity and the spherical microstructure, when an effective optimization of heat treatment
parameters is achieved. Cerri et al. [65] showed excellent ultimate tensile strength and yield strength
of 319 alloy after appropriate heat treatment, in the order of 350 MPa and 280 MPa, respectively,
thus almost 100 MPa higher than the conventionally cast counterparts. Similarly, Zhu et al. [66]
analyzed different casting and forging alloys used industrially for the production of compressor
wheels, finding that strength and ductility approach those of the forged components after T61 heat
treatment, as shown in Figure 7. Nevertheless, in their work, the influence of microstructural features
is not thoroughly investigated.
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On the contrary, Haga et al. [67] discussed the influence of the size of primary globules on tensile
properties of semi-solid castings. They underlined that the remarkable tensile properties are due
not only to the nondendritic microstructure, but also to the small size of the primary α-Al, which is
especially effective in enhancing the elongation to fracture. In particular, for the A356, the elongation
can reach up to 18% by using the cooling slope method.
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Another study on an Al–Si–Mg–Fe alloy demonstrated the influence of the shape of primary α-Al
globules on ultimate tensile strength and elongation [68], a fact that is shown in Figure 8, i.e., when the
shape factor increases (the more rounded the primary globules), tensile and elongation properties
also increase.

Lü et al., investigating the behavior of rheocast 5052 alloy in comparison with gravity (GC) and
high pressure (HPDC) die casting [69], noticed that fine and uniform microstructure throughout
the entire SSM sample would effectively reduce stress concentrations at the grain boundaries under
applied stress. They concluded that the globular shape is effective in enhancing the tensile strength
and ductility, as detectable by fractographic analyses that show an almost ductile fracture mode for the
rheocast alloy instead of the mixed ductile brittle fracture experienced by the gravity cast samples and
with smaller dimples than those on the conventional casting sample (Figure 9).Metals 2018, 8, x FOR PEER REVIEW  7 of 17 
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In Figure 10a, the comparison between the properties of semi-solid, casting, and forging Al–Si
alloys summarized by Brochu et al. [70] is shown, further supporting the above-mentioned advantages.
Clearly, different SSM process routes can result in different mechanical properties, as shown in
Figure 10b [71]. However, the improved trend, as compared to traditional casting process, appears
to hold in all cases as a consequence of the higher soundness of the components and the enhanced
microstructure of semi-solid alloys, as discussed above.
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Apart from the influence of primary α-Al grains, the effect of different alloying elements, as well
as the influence of secondary phases in SSM alloys, were examined. For example, the addition of Si
and Fe in a 206 aluminum alloy for an automotive application was investigated by Lemieux et al. [72],
who found remarkable performance of the tested rheocast components.

The influence of a significantly higher Si content (approximately 20 wt. %) was examined in
some studies, like that on a rheocast Al–Si–Cu alloy [73]. Recently, hypereutectic alloys processed by
SSM methods have attracted the interest of researchers because of their heat-resistant properties. In
hypereutectic Al–Si alloys, primary Si grains solidify as coarse plate-like particles, which can be refined
by SSM processing, thus improving tensile properties, as demonstrated by Zheng et al. [74] studying
the properties of AlSi30 rheo-diecast (RDC) compared to conventional die-casting. They pointed out
that the UTS, elongation, and hardness of the SSM samples are approximately 57.9%, 42.9%, and
20.6% higher than those of the die-casting ones, respectively. They attributed this to the finer compact
primary Si grains, which can reduce or even eliminate crack initiation, combined with reduced porosity.
The development of a series of hypereutectic alloys based on the A390 composition (17% Si, 5% Cu, 0.5%
Mg) and their thixoforming, have already been described by Kapranos et al. [75], together with their
resulting microstructures and mechanical properties. Again, the main advantages of thixoforming were
related to the improved size and morphology of brittle Si particles in comparison with conventionally
cast parts, in addition to the expected spheroidisation of the Al matrix. The successful thixoforming of
an automotive brake drum was reported and represented an interesting example of substitution of a
conventional cast iron part with an aluminum one.

Concerning the effect of secondary phases (i.e., iron intermetallic compounds), interesting analyses
can be found in the work of Shabestari et al. [56]. This is particularly interesting since numerous studies
have reported the correlation between amount and morphology of secondary phases, for instance,
intermetallic ones containing Fe, Mn, Cr, Ni, and mechanical properties [76–80] for casting Al–Si alloys.
In particular, these authors found that the peculiar microstructural characteristics of the thixoformed
alloy, such as the extremely low porosity, fine and equiaxed morphology of the α-Al grains and
uniform distribution of intermetallic compounds fragmented by the process route, enhance strength
and elongation, in comparison with the as-cast condition. A similar topic was also discussed by Möller
et al. [81] in a study of the microstructural and tensile properties of semi-solid metal high pressure die
cast F357 alloy with various additions of Fe, Ni, and Cr. In this case, the formation of intermetallic
phases containing Fe and Ni lead to a decrease in strength and ductility due to their microcracking
during tensile tests.
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Nowadays, the attention of the researchers is focused on the investigation of the properties of less
conventional alloys for SSM processing, like AlSi8 [82], Al5Fe4Cu [83], Al–Zn–Mg–Cu [84], AlZnMg
alloys with Sc addition [85], etc., in order to evaluate the advantages in their application as semi-solid
manufactured products.

4.1.2. Fatigue Behavior

Different researchers have compared high cycle fatigue resistance of SSM alloys (mainly based on
Al–Si) with that of conventional casting ones [64,70,86–97]. There is a general consensus in these papers
that the SSM samples show higher fatigue resistance, even though the data about the high cycles
fatigue strength results is quite scattered (ranging from 60 to 180 MPa) depending on the process route
used, casting and heat treatment parameters, as well as the possible presence of defects. The authors
agree that the superior fatigue performance of SSM parts is related to the fact that they are almost
free from defects like gas and shrinkage porosity as well as oxide inclusions. Thus, in defect-free
parts, the microstructural constituents play a key role in fatigue crack nucleation and propagation [98].
As reported in [70,99], for instance, a high volume fraction of primary α-phase significantly increases
the resistance to crack initiation. In particular, Park et al. found that fatigue cracks propagate mainly
by cutting through the primary α-phase when a low volume fraction of α-phase is present; on the
contrary, when the volume fraction is high, they mainly bypass the primary α-phase following the
phase boundaries [87].

Other reasons for fatigue improvements seem to be the smaller globule size as well as the finer size
and distribution of eutectic Si particles of SSM castings [100]. Relating to the former, it is reported that
fatigue strength increases with decreasing primary α-phase size and that also, the globular morphology
plays a positive role [70,86]. Additionally, the level of α globules agglomeration, which determines
the size and distribution of Al–Si eutectic regions, influences the fatigue crack threshold. Concerning
the Si particles, their interface with the α-phase in the eutectic can act as nucleation point of fatigue
cracks because of the mismatch of plastic deformation between each other that causes fracture and/or
decohesion of Si lamellae. It follows that their more uniform distribution and fine size improve fatigue
crack initiation resistance, as documented by different authors [70,87].

Ragab et al. [89] showed that grain boundaries in SSM microstructures act as a barrier to
propagation of short cracks. Additionally, they provide evidence that fatigue failure is also associated
with the presence of oxides as well as slip bands and intermetallic phases. Clearly, as in the
case of conventional casting, with the presence of platelet-like and needle-like shapes, Fe-rich
intermetallic compounds reduce the fatigue properties, as their morphology is conducive to high stress
concentrations, thus making them a source of cracks able to cause failure [95]. Figure 11 shows an
example of a fatigue fracture surface [95]. A mixed fracture mode can be clearly seen with both cleavage
cracks, which induce brittle fracture, and dimples in the α-phase, which denote a ductile fracture.
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It is known that iron up to 1.20% is needed in conventional die-casting to prevent alloy sticking
onto die surfaces at high temperatures due to chemical, metallurgical, and mechanical interactions [101].
Interestingly, Al alloys for SSM contain lower amounts of Fe than conventional alloys for die-casting
due to the reduced risk of die soldering related to the lower injection temperatures and speeds used
during the process.

4.2. Wear Resistance

Regarding wear resistance, the dry sliding behavior of some SSM alloys has been evaluated
in comparison with conventionally cast parts. Dey et al. show that the globular microstructures of
A356 alloy castings appeared beneficial for dry wear resistance, as compared to dendritic ones [102].
In particular, the results of friction coefficients of SSM samples were lower than that of conventional
cast specimens for all loads. The same holds for the wear loss.

A remarkable improvement in wear resistance of semi-solid specimens in comparison with
conventional castings is also reported by Bayoumi et al. [103], who measured a lower wear rate
for semi-solid processed A356 alloy. On the other hand, a comparable erosion mechanism was
observed. Concurring results were found by other authors. The results from another study on the
tribological properties of A356 alloy [104] showed that, for all applied loads, heat treatment enhanced
the alloy behavior, while improvements caused by thixocasting were not systematic, i.e., a lower
friction coefficient was noticed just for lower specific loads. Overall better wear resistance of thixocast
materials, as compared to the original alloy, was attributed mainly to the improved distribution and
smaller size of Si particles.

Several hypereutectic Al–Si compositions have also been investigated. It is a known fact that
the presence of hard Si particles distributed in the matrix induces an outstanding wear resistance.
However, the presence of casting defects like porosity, typical of traditional foundry processes, reduces
their performance. In this regard, SSM processes make these alloys promising candidates for heavy
wear applications. Very interesting results were obtained with A390 SSM alloy [105].

Birol et al. stated that the enhanced wear performances of hypereutectic Al–Si alloys are linked
to the uniform distribution of fine primary Si particles [106]. Thus, the combination of a favorable
silicon dispersion and the better soundness induced by the semi-solid processing gives superior
wear performance.

Likewise, other chemical compositions showed comparable results in terms of improved wear
behavior [63,107]. Recent studies on A319 confirm that the uniform distribution of Si, the reduction in
porosity level, and the different morphology, size, and distribution of intermetallic phases obtained by
SSM processing are responsible for better wear behavior than conventionally cast samples, even though
the predominant wear mechanism remains the same for both the alloys [108,109].

Other damaging mechanisms of SSM components have been investigated over the years, such
as cavitation resistance [110,111]. It was reported that the globular microstructure, as obtained by
ultrasound treatment methods (UTS), increases the cavitation erosion resistance of the alloy because
of the higher chemical and microstructural homogeneity, the morphology of the primary particles,
and the refined structure of the eutectic due to the treatment itself. A comparison of the eroded
area, at macroscopic scale, of conventionally cast (NUST) and SSM (UST) Al–Si7 samples is shown in
Figure 12. It can be clearly seen that the highest damage was experienced by the conventionally cast
alloy in the as-cast condition (Figure 12a), whereas the highest erosion resistance was exhibited by the
heat-treated semi-solid sample (Figure 12d).
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4.3. Corrosion Resistance

Corrosion behavior of SSM aluminum alloys has not been explored to the same extent as
mechanical performance and investigations on this property are more recent. For instance, Bastidas
et al. [112] studied the pitting corrosion of A357 rheocast alloy, showing that it preferentially moves
through the eutectic regions due to the Si particles that play a remarkable role in the corrosion process
and to the cathodic properties of the intermetallic compounds.

A comparison between SSM and permanent mold cast A357 alloy was studied by Yu et al.,
who showed that both the resistance to corrosion and stress corrosion cracking is higher for semi-solid
microstructures [97]. Similar results were obtained by other authors when comparing A356 semi-solid
and low-pressure die-cast components. They highlighted that the number of pits and the degree
of corrosion is higher for the conventionally cast products than in rheocast ones [99]. Similarly,
Arrabal et al. [113] provide evidence about the better resistance of SSM as compared to gravity cast
A356 alloy, as detectable by its lower cathodic current densities (Figure 13).
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The improved corrosion resistance of the SSM Al–Si alloys is related to the reduced area ratio
between Si particles and α-phase lamellae in the eutectic compared to that of their traditionally cast
counterparts [99,114,115]. In particular, the differences in Si particle size and shape and, consequently,
in the area ratio between silicon and α-phase in the eutectic, are related to the different solidification
rates combined with the different applied pressures during the casting processes [114].

Analyzing the damage by scanning electron microscopy, it is noted that the α globules appear
almost not to have been attacked, while the Si particles and the intermetallic compounds in the eutectic
have a fundamental role in the corrosion damage [113,116], acting as local cathodes (Figure 14).
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Interestingly, some authors have also investigated the effect of surface eutectic segregation on
corrosion resistance [117,118]. This thin layer of liquid phase can be found in semi-solid products due
to the “sponge” effect [11], when the slurry is injected under pressure into the die, and it contains a
higher amount of alloying elements than the bulk. Because, as reported above, the pitting corrosion in
Al–Si alloys occurs preferentially in the eutectic area, the semi-solid parts characterized by the presence
of this segregation layer are more prone to the phenomenon. Recently, 3D SEM tomography showed
that corrosion takes place more at the interface between α-phase and Fe-rich intermetallics than at the
eutectic Si ones [119].

Some investigations are also available in the literature about other Cu-containing aluminum alloys
for SSM processing. Again, the intermetallic compounds were shown to exhibit a cathodic behavior as
compared to the α-phase [120].

5. Summary

In the present review paper, the microstructural characteristics of various semi-solid Al alloys are
thoroughly summarized, together with the description of the evolution of their typical nondendritic
microstructure during solidification. Furthermore, the influence of microstructural features on
mechanical properties is systematically analyzed. This is fundamental in order to understand
the different performance of SSM parts in comparison with components obtained by conventional
production routes. Apart from tensile properties, other important characteristics are also discussed
in order to provide a complete overview of the performance of semi-solid Al alloys, such as fatigue
behavior, wear, and corrosion resistance.
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