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Abstract: Recently, procedures for recovering austenite fcc crystallographic information from EBSD
(Electron Back-Scatter Diffraction) data recorded from martensite or other bcc transformation
products have been proposed. Due to the difficulties in revealing prior austenite grain boundaries
using available etching techniques, these reconstruction methods appear as promising tools for
understanding austenite hot deformation behavior in low carbon steels. In a previous work,
the accuracy of an in-house developed reconstruction code was validated using an Fe-30Ni alloy.
Validation of this method in low carbon steels is more difficult due to the loss of austenitic orientation
information. In addition, it is not known how the results of conventional metallography correlate with
those of the reconstruction or which scan parameters or post-processing treatments are necessary for
obtaining comparable results. To study this, two martensitic specimens obtained from water quenched
recrystallized and deformed austenite were characterized in this study, using both conventional
metallographic techniques and the above mentioned reconstruction procedure applied to EBSD scans
acquired using different parameter values. The comparability of austenite grain size and morphology
was analyzed as a function of the post-processing treatment. The results show that in order to obtain
comparable results, it is critical to analyze the coherence of the twins present in the microstructure.
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1. Introduction

In recent decades, the evolution of austenite microstructure during hot deformation in low carbon
steels has been widely studied. Grain size, strain accumulation levels, and the crystallographic
orientation of austenite before phase transformation can all affect the final room temperature
microstructure of the steel [1–3] and, correspondingly, the properties of the final product. Therefore,
knowledge of the austenite microstructure evolution during hot deformation is required in order to
aim to improve the parameters of the thermomechanical control process (TMCP). Very often, indirect
methods such as the analysis of strain-stress curves are used to characterize austenite hot deformation
behavior [4,5]. The characterization of the austenite in carbon steels is especially difficult due to phase
transformation during cooling. Although several etching techniques have been developed to reveal
the austenite microstructure from quenched martensite [6,7], they are often ineffective, mainly in
the case of low carbon steels [8]. Moreover, their ability to reveal some special grain boundaries is
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questionable [9,10], and important information regarding the crystallography and texture of the parent
phase cannot be recovered.

Recently, methods for reconstructing the austenite orientation information from transformed
microstructure orientation maps measured by Electron Back-Scatter Diffraction (EBSD) have appeared
as powerful tools to characterize the austenite. Crystallographic reconstruction was first successfully
applied by Humbert et al. [11–13] for Ti and Zr alloys undergoing the bcc to hcp β → α phase
transformation. Although it is more difficult, several reconstruction methods have been reported
for recovering austenite crystallographic data from EBSD data on bcc microstructures [9,10,14–18].
All these methods take the crystallographic correspondence between the parent grain and transformed
product as their basis in terms of an orientation relationship. In all cases, the nucleation and growth
of the new phase must take place inside the same austenite grain, as this is the case for displacive
phase transformations.

Some studies have shown that applying the reconstruction method leads to realistic results
in several steels [9,16], while other studies on other steels have determined a good correlation
between the orientation of retained austenite islands in bainitic microstructures and the reconstructed
grains [9,10,14,15]. In a previous study [18], we focused on the validation of a reconstruction code
based on the one proposed by Germain et al. [10] in an Fe-30Ni alloy, which is particularly suited for
this task since after water quenching the material presents an fcc austenitic microstructure which can
transform to martensite after subzero quenching. It was therefore possible to apply the reconstruction
procedure to the martensitic crystallographic data obtained by EBSD and to compare the results with
the original crystallographic fcc data obtained on the same area of the specimen.

However, there are still open questions that need to be resolved before the reconstruction
procedure can be used to characterize austenite microstructures in low carbon steels and before
the results can be incorporated into the existing microstructural evolution models. Validating
reconstruction results in these steels is more difficult due to the loss of austenitic crystallographic
orientation information. In addition, one must take into account that, thus far, the austenite
morphologies and grain sizes which serve as input or output data for austenite microstructural
evolution models have been characterized through indirect metallographic techniques, mainly an
etchant consisting of an aqueous solution of picric acid and a wetting agent [19–21]. Germain et al. [10]
and Bernier et al. [9] showed examples of the comparison between the reconstructed boundaries and
the results of this type of metallographic characterization. Although a good correspondence was
determined in both cases, it was found that not all of the boundaries present in the reconstructions
were revealed by the etching procedure. However, this was not analyzed in detail, and quantitative
results were not provided. Although, in a recent work [22], the results of the code developed by
Cayron et al. [14] have been compared with conventional metallographic techniques, there is little
knowledge on how the grain sizes determined by both techniques correlate. In addition, there is
little information available on the EBSD scan setup, reconstruction parameters or reconstruction
post-processing procedure necessary to obtain comparable data.

In this article, EBSD scans were performed using different step sizes and scan areas on two
water quenched martensitic low carbon samples that were obtained from recrystallized and deformed
austenite microstructures, respectively. The procedure described in [18] was applied to the EBSD
scans to reconstruct the austenite crystallographic information. Next, the specimens were etched in an
aqueous solution of picric acid and then characterized using optical microscopy. The morphology of the
grain boundaries revealed by picric acid and the grain sizes measured by conventional metallography
were compared with the results of the reconstruction using different criteria to define grain boundaries.

2. Materials and Methods

Two steels, Al1 and Al1Nb3, whose compositions are given in Table 1, were investigated in this
study. Both steels had been previously analyzed [19,23,24] as part of a project on the effect of high Mn,
Si and Al addition levels on the hot deformation behavior of low carbon steels [25], and they were



Metals 2018, 8, 294 3 of 21

selected for the present study due to the fact that they present a good etching quality in revealing the
previous austenite grain boundaries from quenched martensite. Most of the analysis was carried out
on a recrystallized sample of Al1 steel produced in an interrupted torsion test. The torsion specimen
consisted of a gauge geometry that was 7.5 mm in diameter and 16.5 mm in length. The applied
thermomechanical cycle included a reheating treatment at 1250 ◦C for 15 min, followed by a cooling
down to 950 ◦C, where a deformation pass (ε = 0.35,

.
ε = 1 s−1) was applied and the specimen was held

at this temperature for 185 s. This duration was calculated so as to obtain a statically recrystallized
microstructure based on previous double-hit torsion tests [19]. After the holding time, the specimen
was water quenched. A deformed Al1Nb3 specimen was also analyzed. This specimen was also
produced in torsion, following a multipass deformation sequence based on a hot rolling schedule
to produce a plate with a final thickness of 50 mm [19,25]. The sequence includes four deformation
passes to simulate roughing (deformation temperatures from 1200 ◦C to 1149 ◦C and six deformation
passes to simulate finishing (deformation temperatures from 927 ◦C to 860 ◦C), followed by water
quenching to produce a martensitic microstructure. After finishing, a deformation accumulation level
of approximately ε ∼= 0.8 was obtained. Detailed information on the deformation sequence can be
found in Table 6 of Reference [19] (930 ◦C-50 mm schedule).

Table 1. Composition of the steels investigated in the present work (wt %).

Steel C Mn Si P S Al Cu Cr Ni Nb Ti N

Al1 0.21 2.0 0.01 0.02 0.001 1.06 <0.005 <0.005 <0.005 0.001 0.001 0.005
Al1Nb3 0.21 2.0 0.01 0.02 0.001 0.88 <0.005 <0.005 <0.005 0.028 0.001 0.004

After being water quenched, both specimens were prepared for EBSD and metallographic analysis.
The characterization was carried out on the sub-surface section, which corresponds to 0.9 times
the outer radius of the torsion specimen (see the experimental setup in Figure 1). For the EBSD
analysis, the samples were prepared by using standard mechanical polishing procedures that ended
with a polishing step in a colloidal silica solution. Orientation imaging was performed using a
FEG-SEM JEOL JMS 7100F (Jeol Ltd., Tokyo, Japan) equipped with a NORDLYS II camera and HKL
Channel 5 operating at 10 kV. In the case of the recrystallized Al1 martensitic sample, three EBSD
maps were acquired using a square grid, using step sizes 0.5 µm, 1 µm and 1.5 µm and scan areas from
350 × 350 to 900 × 900 µm2. The time for scan acquisition was approximately similar in the
three cases (∼=12 h), and the scan areas were adjusted as a function of the step size, keeping the
rest of the scan parameters constant. In the case of the deformed Al1N3 specimen, one single
EBSD scan using a step size of 1 µm and an area of 500 × 500 µm2 was performed. Standard
grain dilation cleaning procedures were applied to the scan data obtained from the martensitic
microstructure. TSL OIM Analysis 5.31 [26] software (EDAX, Mahwah, NJ, USA) was used to perform
all post-processing of scans and of the reconstruction crystallographic data obtained from an in-house
developed method [18] and from reconstruction data. After each scan, the specimens were prepared
again using conventional metallographic techniques, etching in a picric acid water solution with a
wetting agent (Bechet–Beaujard etching [6]) to reveal the austenite grain boundaries, and examined
using optical microscopy. In the case of the recrystallized sample, the grain boundaries revealed
by etching were traced manually and converted into a jpg image using the GIMP program (2.8.14,
http://www.gimp.org/) [27]. Next, using LAS v.45 [28] software (Leica Microsystems, Wetzland,
Germany), the area of each grain was calculated and then an equivalent diameter was assigned to
each grain, which was the diameter of the circle with an equal area. The average of all the diameters
measured is known as the mean equivalent diameter (MED).

http://www.gimp.org/
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3. Results

3.1. Microstructural Characterization

3.1.1. Recrystallized Microstructure

Figure 2 shows the ND (Normal Direction, see Figure 1) inverse pole figure (IPF) maps obtained
from the martensitic sample quenched from recrystallized austenite using different step and scan sizes;
in Figure 3, the optical micrographs of approximately the same areas obtained after etching with picric
acid are represented. Figure 2 shows that as step size decreases, the martensitic microstructure can
be characterized with greater detail, although a smaller area is analyzed when using similar scan
acquisition times. After the sample is etched with picric acid, a microstructure of approximately
equiaxed grains is revealed. Although the etching quality is good in all three cases, slightly better
results can be observed in the case of Figure 3a,c. Some microstructural heterogeneity is also evident
in these two micrographs. The same phenomenon was observed in the initial microstructure obtained
after soaking at 1250 ◦C (average and maximum grain sizes were 98 and 513 µm, respectively),
and as shown in the micrographs, this heterogeneity was not removed after deformation and full
recrystallization at 950 ◦C.

It can also be noted from Figure 3 that, after etching, some of the boundaries show a weaker
contrast, and that in some cases they do not close to define grains (see examples marked by arrows in
Figure 3a,b). As a result, some ambiguity in the grain size determination can be expected. For clarity,
the sketches used for grain size measurements from the optical micrographs have been included in
Figure 4, together with the MED results for the three optical micrographs. As shown in the picture, the
grains that make contact with the outer border of the micrograph were excluded from the measurement.
The smallest average grain size was obtained in the case of Figure 3a, MED = 33.6 ± 11.0 µm. This
can be attributed to the small area selected for analysis, which leads to a low number of grains (34)
contributing to the measurement and to the exclusion of some of the coarsest ones as border grains.
In the case of Figure 3b,c, larger average values, MED = 54.6 ± 7.8 µm and MED = 46.7 ± 4.4 µm,
respectively, were determined, and the number of grains measured increased to 87 and 229 grains.

3.1.2. Deformed Microstructure

Figure 5a shows the IPF ND map obtained from the martensitic sample quenched from deformed
austenite. The corresponding optical micrograph obtained from the same area after picric acid etching
is shown in Figure 5b. The optical micrograph shows that, as expected from the deformation schedule,
before quenching a pancaked austenite microstructure was produced. Although some of the grain
boundaries are only partially revealed, Figure 5b mainly shows deformed austenite grains elongated
in the plastic flow direction. In addition, the optical micrograph shows boundaries whose morphology
appears to be delineating twins or other features related to the deformation microstructure.
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350 × 350 µm2; (b) step size = 1 µm, 800 × 700 µm2; and (c) step size = 1.5 µm, 900 × 900 µm2.
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Figure 3. Optical micrographs of the martensitic sample quenched from recrystallized austenite
revealed by Bechet-Beaujard etching [6] in the areas corresponding to the EBSD scans of Figure 2.
(a) 350 × 350 µm2; (b) 800 × 700 µm2; and (c) 900 × 900 µm2. In (a,b), the arrows represent boundaries
which show weaker contrast and/or which do not close to define grains.
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Figure 4. Grain boundary sketches used for optical grain size determinations obtained from
micrographs in Figure 3. (a) 350 × 350 µm2, MED (mean equivalent diameter) = 33.6 ± 11.0 µm;
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3.2. Application of Reconstruction Procedure

The reconstruction model employed in this article is a fully automated in-house code developed
at Ceit using MATLAB (Release 2013b, The MathWorks Inc., Natick, MA, USA) [29]. A detailed
description of the program and reconstruction parameters can be found in Reference [18]. The
program is mainly based on the principles of the parent austenite reconstruction approach proposed by
Cayron et al. [14] and Germain et al. [10] for the fcc to bcc γ → α phase transformation in steels
and previously developed for the bcc to hcp β → α phase transformation for Ti and Zr alloys
by Humbert et al. [11–13]. The original crystallographic data are first treated and divided into
crystallographic domains, which are defined as sets of adjacent pixels misoriented from neighbor
to neighbor at less than a critical angle, θ [10]. The reconstruction procedure is divided into two
steps: “γ nuclei identification” and “γ nuclei spreading”. In the “γ nuclei identification” routine, the
code takes all the bcc crystallographic domains and compares their average orientations with those
corresponding to their neighbors. The objective is to identify parent orientations which are consistent
with the majority of the domains (within a tolerance angle ω0) and exclude the rest from the solution.
The calculated austenite parent orientations are considered valid if a minimum number of different
bcc orientations, Nv, is contributing to the solution, and if the ratio between the number of neighbor
domains contributing to the most probable solution and the number of neighbors contributing to the
second most probable solution is higher than a given value. In the next routine, “γ nuclei spreading”,
the code seeks to assign an fcc orientation to those domains which were not identified during the
previous step through a comparison with the austenite orientations already calculated for neighboring
domains, using a tolerance angle ω1. More detailed information about the procedure can be found in
Reference [18].

The effect of the different parameters on the reconstruction performance was discussed in a
previous work [18]. It was observed that the efficiency of the code decreased significantly when using
the Kurdjumov-Sachs orientation relationship. However, similar results were obtained when the
Greninger-Troiano, Miyamoto [16] or an optimized orientation relationship were employed. Therefore,
the orientation relationship reported by Miyamoto et al. [16] for a low 0.15% C steel was employed here.
For the rest of the parameters, values that lead to a good reconstruction performance for recrystallized
microstructures were applied: θ = 3.5◦, Nv = 4, PR = 1.5, ω0 = 3.5◦, and ω1 = 8◦ [18].

Figure 6 shows IPF ND maps obtained from the reconstructed austenite. It can be observed that in
the four cases large reconstructed area fractions were obtained (>95%). The lowest reconstructed area
fraction corresponds to the deformed sample; of the recrystallized microstructures, this was slightly
lower in the case of the 1.5 µm step size scan. Although a modification of the reconstruction parameters
(for example, increasing ω1 or decreasing Nv) could lead to even larger reconstructed area fractions,
the parameters were kept constant for the analysis of the results.

Comparing the austenite reconstructed IPF orientation maps in Figure 6 and the optical
micrographs in Figures 3 and 5b seems complex at first glance. In many cases, we observed that within
a grain revealed by picric acid etching, there are differently oriented austenite regions. In some cases
the morphology of these zones made it possible to identify them as twinned regions. In addition,
in the case of the recrystallized sample, careful inspection of the optical micrographs shows that
some of the grain boundaries that are weakly revealed by the chemical etching are separating
differently orientated austenite regions. These boundaries were not included in the optical grain
size measurements (see sketches in Figure 4). This is the case even for some of the grain boundaries in
Figure 3 which do not close to delimit grains (see arrows in Figure 3a,b).



Metals 2018, 8, 294 8 of 21

Metals 2018, 8, x FOR PEER REVIEW  7 of 20 

 

in steels and previously developed for the bcc to hcp β → α phase transformation for Ti and Zr alloys 
by Humbert et al. [11–13]. The original crystallographic data are first treated and divided into 
crystallographic domains, which are defined as sets of adjacent pixels misoriented from neighbor to 
neighbor at less than a critical angle, θ [10]. The reconstruction procedure is divided into two steps: 
“γ nuclei identification” and “γ nuclei spreading”. In the “γ nuclei identification” routine, the code 
takes all the bcc crystallographic domains and compares their average orientations with those 
corresponding to their neighbors. The objective is to identify parent orientations which are consistent 
with the majority of the domains (within a tolerance angle 𝜔଴) and exclude the rest from the solution. 
The calculated austenite parent orientations are considered valid if a minimum number of different 
bcc orientations,  𝑁௩, is contributing to the solution, and if the ratio between the number of neighbor 
domains contributing to the most probable solution and the number of neighbors contributing to the 
second most probable solution is higher than a given value. In the next routine, “γ nuclei spreading”, 
the code seeks to assign an fcc orientation to those domains which were not identified during the 
previous step through a comparison with the austenite orientations already calculated for 
neighboring domains, using a tolerance angle 𝜔ଵ. More detailed information about the procedure 
can be found in Reference [18]. 

The effect of the different parameters on the reconstruction performance was discussed in a 
previous work [18]. It was observed that the efficiency of the code decreased significantly when using 
the Kurdjumov-Sachs orientation relationship. However, similar results were obtained when the 
Greninger-Troiano, Miyamoto [16] or an optimized orientation relationship were employed. 
Therefore, the orientation relationship reported by Miyamoto et al. [16] for a low 0.15% C steel was 
employed here. For the rest of the parameters, values that lead to a good reconstruction performance 
for recrystallized microstructures were applied: θ =  3.5° ,  𝑁௩  =  4 , 𝑃𝑅 =  1.5 , 𝜔଴  =  3.5° , and 
𝜔ଵ  =  8° [18]. 

Figure 6 shows IPF ND maps obtained from the reconstructed austenite. It can be observed that 
in the four cases large reconstructed area fractions were obtained (>95%). The lowest reconstructed 
area fraction corresponds to the deformed sample; of the recrystallized microstructures, this was 
slightly lower in the case of the 1.5 μm step size scan. Although a modification of the reconstruction 
parameters (for example, increasing 𝜔ଵ or decreasing  𝑁௩) could lead to even larger reconstructed 
area fractions, the parameters were kept constant for the analysis of the results. 

  
(a) (b) Metals 2018, 8, x FOR PEER REVIEW  8 of 20 

 

 
(c) (d) 

 

 
Figure 6. IPF (Inverse pole figure) austenite ND orientation maps obtained from the reconstruction 
results applied to the martensitic scan data. Black areas represent non-reconstructed regions. (a) 
Recrystallized microstructure, step size = 0.5 μm, 99.5% reconstructed; (b) recrystallized 
microstructure, step size = 1 μm, 99.5% reconstructed; (c) recrystallized microstructure, step size = 1.5 
μm, 97.8% reconstructed; and (d) deformed microstructure, step size = 1 μm, 95.1% reconstructed. 

Comparing the austenite reconstructed IPF orientation maps in Figure 6 and the optical 
micrographs in Figures 3 and 5b seems complex at first glance. In many cases, we observed that 
within a grain revealed by picric acid etching, there are differently oriented austenite regions. In some 
cases the morphology of these zones made it possible to identify them as twinned regions. In 
addition, in the case of the recrystallized sample, careful inspection of the optical micrographs shows 
that some of the grain boundaries that are weakly revealed by the chemical etching are separating 
differently orientated austenite regions. These boundaries were not included in the optical grain size 
measurements (see sketches in Figure 4). This is the case even for some of the grain boundaries in 
Figure 3 which do not close to delimit grains (see arrows in Figure 3a,b). 

4. Discussion 

4.1. Recrystallized Microstructure 

4.1.1. Grain Boundary Character 

The reconstructed austenite maps shown above reveal a large number of misoriented areas 
within the boundaries revealed by the picric acid. Chemically etching the austenite from quenched 
martensite using picric acid is complex and has been shown to lead to variable results depending on 
the solvent and wetting agents [7]. In some studies, the susceptibility of grain boundaries to etching 
has been related to phosphor segregation [8], although the factors resulting in this effect are not clear 
and other elements may also contribute. As suggested by Bernier et al. [9], highly ordered or coherent 
grain boundaries are likely to show a low concentration of segregated elements and therefore be the 
most resistant to etching. In austenite, the most abundant type of special boundaries are ∑3 annealing 
twins, which can form during recrystallization or grain growth [30] and can therefore be expected to 
be present in the analyzed microstructures. For the fcc crystal structure, the primary recrystallization 
twin can be described as a 60° rotation around the <111> crystal axis. However, for a twin to be 
coherent, a second condition must be fulfilled: the boundary plane must coincide with the twinning 
plane. This means that the {111} planes on either side of the boundary must be aligned with the 

Figure 6. IPF (Inverse pole figure) austenite ND orientation maps obtained from the reconstruction
results applied to the martensitic scan data. Black areas represent non-reconstructed regions.
(a) Recrystallized microstructure, step size = 0.5 µm, 99.5% reconstructed; (b) recrystallized
microstructure, step size = 1 µm, 99.5% reconstructed; (c) recrystallized microstructure,
step size = 1.5 µm, 97.8% reconstructed; and (d) deformed microstructure, step size = 1 µm,
95.1% reconstructed.

4. Discussion

4.1. Recrystallized Microstructure

4.1.1. Grain Boundary Character

The reconstructed austenite maps shown above reveal a large number of misoriented areas within
the boundaries revealed by the picric acid. Chemically etching the austenite from quenched martensite
using picric acid is complex and has been shown to lead to variable results depending on the solvent
and wetting agents [7]. In some studies, the susceptibility of grain boundaries to etching has been
related to phosphor segregation [8], although the factors resulting in this effect are not clear and other
elements may also contribute. As suggested by Bernier et al. [9], highly ordered or coherent grain
boundaries are likely to show a low concentration of segregated elements and therefore be the most
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resistant to etching. In austenite, the most abundant type of special boundaries are ∑3 annealing
twins, which can form during recrystallization or grain growth [30] and can therefore be expected to
be present in the analyzed microstructures. For the fcc crystal structure, the primary recrystallization
twin can be described as a 60◦ rotation around the <111> crystal axis. However, for a twin to be
coherent, a second condition must be fulfilled: the boundary plane must coincide with the twinning
plane. This means that the {111} planes on either side of the boundary must be aligned with the
boundary plane. Unfortunately, EBSD scans are 2-dimensional, and the plane of the boundary cannot
be determined from the crystallographic data [31]. However, several criteria have been proposed to
assess the coherence of twins from orientation imaging data. The less restrictive criterion was proposed
by Brandon [32] and consists in applying an angular tolerance from the exact CSL (Coincident Site
Lattice) misorientation (60◦ degree rotation around the <111>), such that it can be accommodated
by arrays of dislocations. For ∑3 this results in a tolerance angle of 8.66◦, although more stringent
tolerance angle criteria have been proposed in other works [33]. Another second criterion for checking
the coherence of the twin from the scan data is to verify that the {111} twin planes at either side of the
boundary are common [34,35]. A third criterion for twin boundary coherence is that the boundary
trace and the twin plane traces should coincide [31,34–36].

Figures 7a and 8a show the unique grain color maps obtained using a tolerance angle for a
grain boundary definition of 10◦ from the reconstructed maps with a 0.5 µm and 1.5 µm step size,
respectively, while Figure 7b,c and Figure 8b,c correspond to the same maps but exclude twins as grain
boundaries. In the case of Figures 7b and 8b, the twins were defined as grain boundaries deviated from
the exact CSL misorientation by less than 5◦. This is equivalent to applying Brandon’s criterion, but
using a slightly more restrictive angular deviation, one that is closer to those proposed by others [33].
The same grain tolerance has been employed in other studies to identify coherent twins [34]. In the
case of Figures 7c and 8c, as well as the previous criterion, the alignment of {111} planes at either side
of the boundary (with a tolerance angle lower than 1◦) was imposed for twin boundary classification.
To do this, the “Enforce matching between twin planes in grain A and grain B” option included
in the twin boundary tab definition in the TSL OIM software [26] was used. As mentioned above,
a third check consisting of matching the {111} plane traces and the grain boundary trace could be
imposed. Unfortunately, our current version of EBSD analysis software (TSL OIM Analysis 5.31)
(EDAX, Mahwah, NJ, USA) does not support the ability to reconstruct boundaries and therefore to
perform this type of analysis in the case of square grid scans, so this was not considered. Nevertheless,
it must be mentioned that Henrie et al. [34] found that the combination of the misorientation and twin
boundary plane alignment criteria was sufficient for verifying the coherence of most twin boundaries.

It can be observed from both figures that the number of detected grains decreases significantly
when the twin boundaries are excluded independently of the twin identification criterion used. At first
glance, there is much better agreement between the grain boundaries revealed by picric acid etching
(Figure 3a–c) and the grain size maps obtained by excluding the twins. It could be argued that the
reconstruction procedure leads to the misindexing of some areas as twins, as has been observed
in other cases when the Kurjumov-Sachs or the Nishiyama-Wasserman orientation relationships
were applied [16]. However, in a previous study carried out with an Fe-30Ni alloy [18], in which
the austenite microstructure was available to validate the reconstruction procedure, the ability of the
software to reconstruct twin boundaries was verified and fake twinned regions were not observed in the
reconstructed austenite microstructures. Miyamoto et al. [16] showed that the frequency of misindexed
twins decreases significantly when an orientation relationship with martensite and austenite holding a
non-parallel relation between close-packed planes, such as the one applied here, is used instead of
the Kurjumov-Sachs or the Nishiyama-Wasserman orientation relationships. The calculated number
of variants required for a valid identification (Nv = 2 [16]) is in fact lower than the more restrictive
criterion used in this research, Nv = 4. Moreover, it can be observed from comparing the picric acid
etched microstructures that some of the boundaries which do not close to delineate grains or which
are fainter are in very good agreement with boundaries which are present in Figure 7a or Figure 8a
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but not in Figure 7b,c or Figure 8b,c (see examples marked with the black arrows in Figures 7 and 8).
This indicates that there can be a significant number of twins in the austenite microstructure that are
not revealed by etching (some examples have been marked with blue arrows in Figure 7a,d) and that
cannot therefore be characterized using conventional metallographic techniques.
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Figure 7. Unique grain color maps obtained for the austenite phase from the results of the reconstruction
applied to the martensitic scan data in Figure 2a (Step size = 0.5 µm) using a tolerance angle for a grain
boundary definition of 10◦ and different criteria for twin boundary exclusion: (a) All high angle grain
(>10◦) boundaries considered; (b) twins excluded (misorientation criterion (5◦ tolerance)); (c) twins
excluded (misorientation criterion (5◦ tolerance) + {111} plane coincidence criterion (1◦ tolerance angle))
and (d) optical micrograph. Black areas correspond to non-reconstructed regions. In (a,d) black arrows
mark boundaries which are present in (a) but not in (b) and/or (c), and which appear faintly or do not
close to define grains in the optical micrograph in (d); blue arrows mark twins which are not revealed
in the optical micrograph in (d); triangles mark grains that can be observed in (c,d) but not in (b).

There is good agreement between the austenite morphology obtained by metallography and the
grain maps obtained from the reconstruction results that exclude twin boundaries. However, it is
difficult to determine from the maps which of the two twin exclusion criteria is more comparable to the
metallographic results. For example, in the case of Figure 7b some of the grains revealed by picric acid
etching (Figure 3a) are not present, while these can be detected in Figure 7c (two obvious examples
have been marked in Figure 7a with triangles). This indicates that applying the twin plane criterion
results in more accurate grain boundary classification in some cases. However, some of the smallest
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grains present in Figure 7c, such as the grain marked with a circle in Figure 7a, are not revealed in
the optical micrographs. Applying a larger tolerance angle for the twin plane criterion (3◦ instead of
1◦) led to the inclusion of the encircled grain as a twinned region inside the larger one, as shown in
Figure 7b. However, the same thing happens with the two grains marked by triangles. This shows
that selecting a single criterion for an optimum match is difficult. Some uncertainty in the orientations
determined from the reconstruction results is to be expected. In addition, the degree of incoherence
necessary for the grain boundaries to be susceptible to etching is not known, and neither in fact is
the question of whether the segregation of elements to boundaries (which is thought to be the factor
enabling metallographic etching) is homogeneous within the sample.Metals 2018, 8, x FOR PEER REVIEW  11 of 20 
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figures obtained from these areas have been plotted in Figures 9d and 10d, including all the 
orientation data (points in black). In addition, in the pole figures, data at either sides of the grain 
boundary have been highlighted either in blue (left side) or in red (right side). To clarify the specific 
crystallographic data marked in each case, in Figures 9c and 10c the areas selected for the highlighting 
have been superimposed over the ND IPF maps using the same colors. It is interesting to note that, 
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Moreover, there is a large similarity between these pole figures and those simulated by Germain et 
al. for martensite when this is transformed from twinned zones (see Figure 7a in [10]). Only a few 

Figure 8. Unique grain color maps obtained for the austenite phase from the results of the reconstruction
applied to the martensitic scan data from Figure 2c (Step size = 1.5 µm) using a tolerance angle for a grain
boundary definition of 10◦ and different criteria for twin boundary exclusion: (a) All high angle grain
(>10◦) boundaries considered; (b) twins excluded (misorientation criterion (5◦ tolerance)); (c) twins
excluded (misorientation criterion (5◦ tolerance) + {111} plane coincidence criterion (1◦ tolerance
angle)); (d) optical micrograph. Black areas correspond to non-reconstructed regions. In (a,d) arrows
mark boundaries which are present in (a) but not in (b) and/or (c), and which appear faintly or do not
close to define grains in the optical micrograph in (d).

To further confirm the nature of these boundaries as twins, the crystallography of the martensite
at either sides of the boundary was in some cases also analyzed. The results are summarized in
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Figures 9 and 10. In Figures 9a and 10a the selected analysis areas have been marked over the ND
IPF maps, and Figures 9b and 10b include the same data corresponding only to the selected zones.
A comparison of the ND IPF maps with those in Figure 7 reveals the presence, within these areas, of
grain boundaries which have been classified as twins and are not revealed by etching. The {001} pole
figures obtained from these areas have been plotted in Figures 9d and 10d, including all the orientation
data (points in black). In addition, in the pole figures, data at either sides of the grain boundary have
been highlighted either in blue (left side) or in red (right side). To clarify the specific crystallographic
data marked in each case, in Figures 9c and 10c the areas selected for the highlighting have been
superimposed over the ND IPF maps using the same colors. It is interesting to note that, for both
examples, data for each of the boundaries results in clearly differentiated pole figures. Moreover, there
is a large similarity between these pole figures and those simulated by Germain et al. for martensite
when this is transformed from twinned zones (see Figure 7a in [10]). Only a few crystallographic data
deviate in the case of Figure 10d. This further confirms the nature of these grain boundaries as twins.
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Figure 10. (a) IPF (Inverse pole figure) ND orientation map from martensite marking the analysis
area; (b) enlarged martensite IPF ND map of the analysis area; (c) martensite IPF ND map of the same
area with red and blue colors superimposed to mark highlighted points in (d); (d) pole figure of the
crystallographic data in (b) with points corresponding to areas in (c) highlighted using the same colors.

4.1.2. Grain Size Measurements

To obtain a more quantitative assessment, the grain size distributions obtained from the optical
micrographs and the EBSD reconstructed maps for the three different scans are compared in
Figures 11–13. The average MED values obtained in all cases are also included in the figures. In the
reconstruction grain size measurements, a minimum grain size of 4 µm was considered, which
corresponds approximately to the smallest grain size measured by optical microscopy, and border
grains were excluded as in the case of conventional metallography. It can be observed that in the
figures the grain size measurements have been compared as a function of the absolute number of
grains. Although this is not a conventional method for grain size distribution representation, the fact
that the distributions compared in each of the graphs were obtained from approximately the same
specimen area must be taken into account, and that this is therefore preferred in this case since, in
addition to comparing the shape of the distributions, it is possible to compare the number of grains
detected in each of the measurements.
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Figure 11. Comparison of the MED (Mean Equivalent Diameter) measurements obtained from
conventional metallography and the reconstruction procedure for the 0.5 µm step size scan using
different criteria for twin boundary definition (4 µm minimum grain size): (a) All high angle (>10◦)
grain boundaries considered; (b) twins excluded (misorientation criterion (5◦ tolerance)); and (c) twins
excluded (misorientation criterion (5◦ tolerance) + {111} plane coincidence criterion (1◦ tolerance angle)).
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Figure 12. Comparison of the MED measurements obtained from conventional metallography and
the reconstruction procedure for the 1 µm step size scan using different criteria for twin boundary
definition (4 µm minimum grain size): (a) All high angle (>10◦) grain boundaries considered; (b) twins
excluded (misorientation criterion (5◦ tolerance)); and (c) twins excluded (misorientation criterion
(5◦ tolerance) + {111} plane coincidence criterion (1◦ tolerance angle).
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Figure 13. Comparison of the MED measurements obtained from conventional metallography and
the reconstruction procedure for the 1.5 µm step size scan using different criteria for twin boundary
definition (4 µm minimum grain size): (a) All high angle (>10◦) grain boundaries considered; (b) twins
excluded (misorientation criterion (5◦ tolerance)); and (c) twins excluded (misorientation criterion
(5◦ tolerance) + {111} plane coincidence criterion (1◦ tolerance angle)).

It can be observed from Figures 11a, 12a and 13a that, as expected from the above results,
quantifying the grain size from the reconstructed austenite maps without excluding twins results
in a significantly larger number of measured grains compared to the metallographic data and also
results in smaller average grain sizes (23.6, 36.4 and 37.2 µm versus 33.6, 54.6 and 46.7 µm for 0.5,
1 and 1.5 µm step size scans, respectively). In contrast, when only one misorientation criterion is
applied to exclude twin boundaries (Figures 11b, 12b and 13b), the number of grains measured from
the reconstruction tends to be lower, and as a consequence, the average grain sizes are coarser than
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those measured by metallography (41.7, 65.6 and 55.9 µm for 0.5, 1 and 1.5 µm step sizes). This occurs
especially for the 1.5 µm step size scan (Figure 13b). On the other hand, the three scans show excellent
agreement for the average grain size values when the misorientation and twin boundary plane criteria
are applied (36.3, 52.3 and 48.9 µm for 0.5, 1 and 1.5 µm step sizes, respectively). Regarding the grain
size distributions, in Figure 11c the fit can be considered reasonable. A good correlation is also found
in Figures 12c and 13c, although slightly opposite trends can be observed. In the case of the 1 µm
step size scan (Figure 12c), the number of grains measured from the reconstruction tends to be larger
than that from the metallographic measurement, especially in the range of the smallest sizes, while in
the 1.5 µm step size scan (Figure 13c) the opposite occurs. It must be mentioned that the differences
are not large and are difficult to evaluate. However, in the case of the 1 µm step size, comparing
the sketch used for the metallographic measurement to the reconstructed grain map revealed the
presence of some small grains in the reconstruction which were only partially revealed by chemical
etching. This can explain the larger number of small grains present in the reconstructed austenite grain
size distribution. On the other hand, in the case of the 1.5 µm step size, some of the smallest grains
were not reconstructed. This step size may be too large to resolve the minimum number of required
variants for grain reconstruction in the case of the smallest grains present in the microstructure.
Although this may be optimized by varying the parameter of the reconstruction [18], it must be
mentioned that this happened in very few examples, as can be seen from the visual comparison of
Figures 4c and 8. Paradoxically in this case, since the etching quality was better (Figure 3c), it resulted
in a higher number of “questionable” grain boundaries included in the sketch. This clearly reflects the
dependence of the metallographic results on the etching quality.

4.2. Deformed Microstructure

In addition to determining the grain size in recrystallized samples, there is also an interest
in characterizing deformed austenite microstructures. As shown in Figure 6d, for the deformed
microstructure studied in this article, applying the reconstruction procedure resulted in a large
reconstructed area fraction of 95%. Although, in this case, the grain size measurement was not
conducted due to being more complex because of austenite pancaking, Figure 14 includes the unique
grain color maps obtained from the reconstruction using a tolerance angle of 10◦ and applying the
same criteria as above for grain boundary definition. At first glance, a good correlation is also observed
between the reconstructed grain maps and the metallographic results. However, it is interesting to
note that, in contrast with the results obtained in the recrystallized microstructure, the best visual
match with the chemically etched microstructure is obtained for Figure 14a (twin boundaries not
excluded) and Figure 14c (twin boundaries defined using misorientation and twin plane criteria).
On the other hand, in Figure 14b (twin boundaries defined using only the misorientation criterion)
some of the boundaries revealed by etching are not present, while coarser austenite units which are
not observed in the optical micrograph are present. In the case of the recrystallized microstructure
studied in the previous sections, the differences between the maps obtained when applying either of
the two criteria used for excluding twins (misorientation or the misorientation and twin boundary
criteria) were small compared with those obtained when considering all high angle boundaries as
grain boundaries. However, in this deformed microstructure, the reconstructed austenite grain maps
tend to be more similar in the case of Figure 14a,c. In this sample, applying the roughing passes
at high temperature is expected to lead to successive cycles of recrystallization and grain growth,
which are likely to result in the generation of a significant amount of coherent twins [30], such as
the ones found in the recrystallized microstructure analyzed in the previous sections. In this type of
recrystallized microstructure, coherent twin boundaries were in most cases correctly detected using
either of the considered criteria. However, in this sample, during finishing the microstructure was
deformed below the non-recrystallization temperature. This is likely to result in the rotation of the
crystals at both sides of the twin boundaries. In principle, this should result in a failure of the {111}
plane coincidence criterion. It is interesting to note that, in good agreement with this, most of the
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boundaries present in Figure 14c and not in Figure 14b are actually revealed using Bechet-Beaujard
etching [6], which suggests that during the deformation, loss of twin boundary coherence is actually
taking place. The progressive loss of twin boundary coherence during deformation has been observed
experimentally in Fe-30Ni model austenitic steels analyzed by EBSD [37]. On the other hand, the less
stringent application of the misorientation criterion only (Figure 14b) seems to lead to incorrect grain
boundary classification for this deformed microstructure.
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Figure 14. Unique grain colormaps obtained from the deformed austenite microstructures applying
the reconstruction procedure to the martensitic scan in Figure 5a using a tolerance angle for grain
boundary definition of 10◦ and different criteria for twin boundary exclusion: (a) All the high angle
grain boundaries considered; (b) twins excluded (misorientation criterion (5◦ tolerance)); (c) twins
excluded (misorientation criterion (5◦ tolerance) + {111} plane coincidence criterion (1◦ tolerance angle))
and (d) optical micrograph. Black areas correspond to non-reconstructed regions.

5. Conclusions

- The austenite morphology and grain size measurements obtained by applying conventional
metallographic techniques to reveal the previous austenite grain boundaries from quenched
martensite (Bechet-Beaujard etching) were compared with the results of a reconstruction
procedure applied to orientation imaging data collected from the same martensitic specimens,
quenched from both recrystallized and deformed austenite. The austenite morphology revealed
by both methods showed a good correspondence in the two microstructures investigated,
although their comparability strongly depends on the criteria used for grain boundary definition
in the reconstructed austenite maps.

- In the case of the recrystallized microstructure, the reconstruction procedure showed the presence
of a large number of coherent twin boundaries in the microstructure that were not revealed
by chemical etching. Although the coherence of the twin boundaries cannot be completely
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assessed from the crystallographic recovered data, in this microstructure the application of
misorientation or misorientation plus twin boundary plane criteria for twin boundary exclusion
led to a good correspondence between the morphology revealed by metallographic methods and
the reconstruction results.

- A very good correlation between the average grain size and the size distribution determined
by conventional metallography and the reconstruction method was observed when the grain
boundary misorientation plus twin boundary coincidence criteria were used for twin boundary
exclusion from the reconstruction measurements. On the other hand, considering all the
reconstructed boundaries resulted in a large overestimation of the number of grains present in
the microstructure compared to the metallographic results, as well as in an underestimation
of the average grain size. Using only the misorientation criteria led to larger grain size than
the optical MED. The effect on the results of varying the step size from 0.5 to 1.5 µm for EBSD
acquisition was small, showing the ability of the reconstruction method to provide quantitative
measurements in areas representative of the analyzed austenite microstructure.

- In the microstructure quenched after applying several roughing and finishing passes, a good
correspondence between the conventional metallography austenite morphology and the
reconstruction results was also obtained when the misorientation and twin boundary criteria
were used for twin exclusion from the grain size maps. However, in this case, the results were
also comparable to considering all high angle grain boundaries for grain definition. This can
be attributed to the loss in twin boundary coherence during the finishing deformation passes.
However, the less stringent application of the misorientation criterion only led to an incorrect
grain boundary classification and in some cases to the reunification of some of the deformed
twinned regions which had lost coherence.
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