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Abstract: The effect of temperature, soaking time and particle size on the dissolution of particles
(Fe3P and Fe) during homogenization was simulated employing Thermocalc® and DICTRA software.
The initial precipitate size was determined through metallographic evaluation on industrial as-cast
Cu–Fe–P alloy. The particle sizes vary from submicron (<1 µm) up to 10 µm before the heat
treatment. As homogenization temperature rises, the dissolution rate increases as well, but only on
temperatures above 1273 K (1000 ◦C) is the rate capable of completely dissolving particles effectively.
At temperatures above 1273 K (1000 ◦C), precipitates with sizes below 5 µm dissolve completely into
the Cu matrix, while larger particles only slightly decrease their size. Particles at enriched copper areas
remain undissolved and slightly increase their size which is attributed to micro segregation and the
local change of equilibrium conditions. The simulation results are in agreement with homogenization
trials at lab scale.

Keywords: Cu–Fe–P; dissolution; diffusion; homogenization; heat treatment; Fe3P; Fe particles;
solid solution

1. Introduction

The increased requirements for economic copper (Cu) tubes being able to withstand higher
pressures while working in extreme service environments and maintain their conductivity
have led to research around a number of Cu-based alloys with higher mechanical properties.
The endeavor to increase the mechanical properties of solid solution hardened alloys is limited by
their insufficient relaxation resistance at slightly increased temperatures and decreasing electrical
and thermal conductivity when heavily alloyed. To overcome this, the focus has turned to
precipitation-hardened alloys [1,2]. Recently, copper–iron–phosphorus (Cu–Fe–P) alloys have been
a successful medium-strength and high-conductivity alternative that provide superior properties over
other widely used materials for copper tubes, such as deoxidized-high-phosphorus (DHP) copper [3].

The industrial application and the effects of thermomechanical processing on the microstructure
and second-phase particles have been studied in [4–6]. The improvement of the mechanical properties
in Cu–Fe–P alloys is attributed to precipitation hardening via fine dispersion of particles (α-Fe, γ-Fe,
Fe3P) in the Cu matrix and the materials’ resistance to softening due to recrystallization [2,4,5,7,8].

In Cu–Fe–P alloys, small-sized particles (submicron scale), found at the grain boundaries,
are desirable in the microstructure as they control recrystallization and pin grain boundaries and
dislocations via the Zener drag mechanism [4,5,9], thereby limiting grain growth. Coarse particles
should be avoided as they do not pin dislocations and grain boundaries during recrystallization which
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results in reduced mechanical properties and material sensitivity at high temperatures. Homogeneous
distribution of fine particles is of great importance and is achieved via appropriate precipitation
heat treatment, which consists of homogenization, quenching and aging. During homogenization,
the temperature must be high enough to induce the dissolution of particles. This procedure is followed
by quenching in which the cooling rate must prevent any diffusion and precipitation, and ensure that
the copper (Cu) matrix is supersaturated with phosphorous (P) and iron (Fe) atoms. Finally, during
the aging treatment the required driving force is provided for the supersaturated matrix to reach
equilibrium. So, fine particles begin to form homogeneously. The size of phosphides depends on the
temperature and time for aging and not on the final cooling rate [10].

Since the properties of Cu–Fe–P alloys are greatly influenced by microalloying, each production
step has to be carefully designed to achieve the required final properties. Many researchers
have applied various methods to optimize mechanical and material (i.e., thermal conductivity,
microstructure, etc.) properties. Extensive investigation has been held on the influence of various
alloying elements (e.g., Ni, Si, Mg, Mn) and their concentration on the Cu matrix [6,11–15].
Lu et al. [11] showed that traces of boron B and cerium Ce could increase the recrystallization
temperature, succeeding more complete aging and, thus, obtaining the strengthening effect via
work and precipitation hardening. Brovč et al. [12] and Yamamoto et al. [13,14] indicated the high
potential of Cu–Fe–Ni–P alloy, illustrating the good conductivity and mechanical properties at elevated
temperatures, as an alternative economic alloy, in order to avoid the addition of toxic (i.e., Cd, Be) or
precious metals (e.g., Ag) used until now as alloying elements in the industry. The addition of Mg, Si,
Pb and Mn further improve the mechanical properties of the alloy without compromising conductivity
when carefully used [6,15].

Since the results of annealing at the final stages of copper tube production, where recrystallization
and aging takes place, have as a prerequisite an efficient homogenization at the beginning of the
production process, the dissolution of Fe and Fe3P particles during homogenization is of great
importance. Particle dissolution theory initially introduced by Whelan [16], describes the solute
flux in conjunction with the particle size and concentrations. The diffusional growth and dissolution
has been studied extensively in terms of interface movement and diffusion of solute atoms in iron
systems [17–19]. However, little work has been done on non-ferrous alloys.

Although both the alloying and the ageing treatment have been thoroughly studied,
the homogenization step has not been adequately investigated. Several homogenization strategies have
been implemented industrially and many researchers have analyzed the effect of temperature and time
on homogenization annealing, using only material characterization techniques but without explaining
the criteria of the optimal homogenization and specifying the optimal conditions for a successful
homogenization [4,7,11,12]. Parameters are difficult to be determined and are very important for
industrial production, where time and sizes impose limitations.

For this purpose, homogenization experiments were simulated with the aid of Thermocalc® and
DICTRA software at various temperatures and soaking times in order to understand the influence of the
process conditions and the local chemical composition on the Fe-rich particle dissolution. The results
have been compared to experimental data in order to determine the homogenization behavior of
Cu–Fe–P alloy.

2. Material and Modelling

The chemical composition of an industrially produced billet with a diameter of 600 mm is
shown in Table 1, which complies with BS EN 12449:2012 standard [20]. The Thermocalc® (Version
2018a, Thermo-Calc Software AB, Solna, Sweden) calculation of the alloy’s phase diagram, utilizing
the CALculation of PHAse Diagrams—CALPHAD method, has been deployed in order to predict
the phases formed in crucial temperature areas and determine the temperature window for the
homogenization process. Through metallographic evaluation, the different sizes of precipitates were
measured and used as input data for the simulation. For the simulation of homogenization, three phases
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were considered: Fe, Fe3P and Cu matrix. The system was limited to Cu–Fe–P–Zn. The alloy’s
solidification was simulated in DICTRA (Version 2018a, Thermo-Calc Software AB, Solna, Sweden)
with a cooling rate 10 K/s in order to predict the chemical composition of the Cu matrix (Table 2).

Table 1. Alloy’s composition.

Fe (%) P (%) Zn (%) Cu (%)

2.3 0.025 0.12 97.555

Table 2. Composition of Cu matrix in alloying element-depleted regions.

Fe (%) P (%) Zn (%)

1.8 0.01 0.1291

The activation enthalpies were set at 250,000 J/mol and 210,000 J/mol respectively determined by
Thermocalc. Similar values for the activation enthalpy can be found elsewhere [21].

The effect of segregation upon homogenization was taken into account in this study as it
greatly affects the homogenization result. Thus, additional simulations were carried out for particles
dissolving in an alloying element-enriched Cu matrix whose chemical composition is shown in Table 3.
The chemical composition was defined by Thermocalc® considering that the segregated zones obtain
the chemical composition of the Cu matrix at the beginning of the solidification, as given in Table 3.

Table 3. Composition of Cu matrix in alloying element-enriched regions.

Fe (%) P (%) Zn (%)

3.8 0.025 0.15

In Figure 1 the particle distribution in the initial microstructure before homogenization is
illustrated. The particles are spherical or quasi-spherical, thus the system has been modeled with
spherical particle of predefined size (Dp) surrounded by copper matrix with a radius of 100 µm,
as depicted in Figure 2. The radius of the matrix refers to the sample’s average grain size; however,
the influenced area was studied in order to ensure that there is no interaction between two neighboring
particles of the same size. The initial particle size of Fe3P particles was selected to be 1, 5, 7 and 10 µm
and of the Fe particles 1 µm with spherical geometry, respectively, based on metallographic results.
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Figure 2. Schematic representation of the system used for DICTRA calculations. The DP obtains values
1 µm, 5 µm, 7 µm, 10 µm.

Two sets of simulations for each individual particle were held at the following temperatures:
1073 K (800 ◦C), 1173 (900 ◦C) and 1273 K (1000 ◦C). In the first set, particle dissolution took place
in the alloying element-depleted Cu matrix (Table 2), and in the second set dissolution simulations
took place in the alloying element-enriched Cu matrix (Table 3). The temperature of 1073 K (800 ◦C)
was defined as the lowest temperature that the billet can be extruded in an industrial extrusion press.
The maximum soaking time selected for the homogenization simulations was 10 h. The heating rate
used to reach the homogenization temperature was 1 K/s. An estimate of the mobility expression [21]
of Fe and P for the Fe3P and Fe particle was made,

M =
Mo

RT
exp

(
−Q
RT

)
(1)

in which M◦ is the frequency factor, Q the activation enthalpy, R is the constant for gas and T is the
temperature. Calculations were performed using DICTRA software and the databases TCCU1 and
MOBCU1 assuming that local equilibrium exists at interfaces [22].

3. Modelling Results

3.1. Phase Diagram

The calculated isopleth sections of phase diagrams of the Cu–Fe–P alloy in thermodynamic
equilibrium are illustrated in Figures 3 and 4. The diagrams show that the phases that exist at
equilibrium are liquid, Cu (matrix), γ-Fe, α-Fe and Fe3P while the red lines denote the examined
alloy’s chemical composition also indicated in Table 1. Fe3P and α-Fe precipitates form in temperatures
below 973–1230 K (700–957 ◦C) depending on the local chemical composition. The influence of the
Fe and P on the phase diagram has been studied as well in order to understand the influence of
local chemical composition variation. By increasing Fe concentration, the Fe3P dissolution threshold
temperature slightly decreases by ~30 K in the range from 2.1% Fe to 2.6% Fe, as shown in Figure 3.
However, P plays a more important role as depicted in Figure 4. By increasing P concentration from
0.015% P to 0.05% P, the Fe3P dissolution temperature increases from 843 K (570 ◦C) to 1033 K (760 ◦C).
The liquid temperature is not influenced by chemical composition variation of Fe and P.
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3.2. Dissolution Calculations

In Figures 5–7 the particle size evolution during homogenization, in both alloying element
depleted and enriched regions, is illustrated for various initial particle diameters and different
soaking temperatures.

At 1073 K (800 ◦C) the graphs remain almost parallel to the abscissa axis at the depleted matrix
simulations. According to the phase diagrams (Figures 3 and 4), although it is thermodynamically
feasible to perform homogenization at the temperature of 1073 K (800 ◦C), since it is higher than
the dissolution threshold temperature, practically there is no phosphide size alteration for the given
time. The low temperature limits the diffusion rate which in turn deteriorates the particle dissolution
(Figure 5).
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Figure 7. Simulation results of homogenization for Fe particles tested at various temperatures for
(a) depleted copper matrix in Fe and P (b) enriched copper matrix in Fe and P.

By increasing the temperature, the diffusion rate increases as well for all particle sizes. Complete
dissolution of small size Fe3P particles (1 µm) is evident from the temperature of 1173 K (900 ◦C)
within the experimental homogenization duration (Figure 5a). However, particle size influences the
dissolution rate notably. Fe3P particles with initial size of 5 µm could not dissolve in temperatures
below 1173 K (900 ◦C) (Figure 5b), while Fe3P particles with 7 µm initial size require even higher
temperature ~1223 K (~950 ◦C) (Figure 5c). Large Fe3P particles (10 µm) do not dissolve even at 1273 K
(1000 ◦C) within the 10 h soaking time (Figure 5d).

The homogenization duration time is also an important factor. Small size particles (1 µm) require
from almost 10 h at temperature of 1073 K (800 ◦C) to only few minutes as the temperature rises to
1273 K (1000 ◦C) (Figures 5a and 7a). The larger particles (7 µm, 10 µm), although undissolved, slightly
reduce their size by increasing temperature until 1273 K (1000 ◦C) (Figure 5c,d).

The surrounding copper matrix also significantly affects the particle dissolution. In regions
enriched in alloying elements, the particles not only remain undissolved but increase their size
(Figures 6 and 7) as the copper matrix is supersaturated.

As a particle dissolves, the surrounding area is enriched in alloying elements. The influenced area
around a dissolving particle is smaller than half of the distance between two neighboring particles of
the same size, which indicates that there is no interaction between them. A representative illustration
of the influenced area can be seen in Figure 8. The Fe concentration of the surrounding region of
a dissolving 1 µm (R = 0.5 µm) particle, exactly the moment that complete dissolution is realized,
suggests that the Fe concentration reaches the nominal concentration of the Cu matrix only 2.5 µm
away from the initial position of the particle–matrix interface.
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4. Homogenization Trials

Specimens from the center of an industrially produced billet, with a diameter of 600 mm, were
obtained and homogenized at 1273 K (1000 ◦C) for 10 h and then water quenched. The metallographic
evaluations, illustrated in Figure 9, are in good correlation with the simulation results. A significant
number of small particles (~1 µm) were dissolved whereas elliptical Fe particles with increased
size and coarse spherical Fe3P particles were apparent in the microstructure. Scanning electron
microscopy–energy dispersive X-ray spectroscopy (SEM–EDS) (Philips XL40 sfeg, Amsterdam,
Netherlands) analysis indicates that the spherical particles are Fe3P particles since the Fe/P analogy is
~3 whereas the elliptical/rod like particles are Fe particles (Figure 10).
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5. Discussion

Intermetallic particle size can greatly vary depending on the production conditions of the
examined sample. A laboratory specimen is ideally produced in clean conditions with controlled
cooling and casting speed. By contrast, in industrially produced billets due to centerline segregation
and slow cooling rates the amount of larger-sized particles found in the billet’s center is increased and,
consequently, this is the most insensitive area during the homogenization process in terms of particle
dissolution. This causes inhomogeneity across the billet’s thickness. A different thermodynamic
equilibrium applies to the center of the billet compared to conditions at the outer surface due to different
alloying element concentration (Figure 4). An important criterion for the decision of homogenization
temperature and time is the initial microstructure of the processed sample.

The process window for an industrially produced billet lies in the high temperature range for
1.5–2 h. From the results it can be observed that mainly the small particles in high temperature
simulations were dissolved, requiring less than two hours for this purpose. Any further time results in
no further dissolution and in some cases in particle growth, possible defects and additional production
cost. A homogenization anneal at the low-temperature range will have almost no effect on the material.
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The duration of homogenization can vary from a few minutes to many hours even for small-sized
particles (1–5 µm) at temperatures in which Fe3P particles should have been dissolved (~800 ◦C)
according to the phase diagram. Since the Cu matrix is not in equilibrium but filled with alloying
elements in solid solution, the diffusion rate decreases, restricting the particle dissolution.

Although small particles were successfully dissolved, large particles were still found in the
microstructure after the homogenization, as expected after the simulation. However, it is obvious
that there are regions with increased large particle concentration. As can be seen from the phase
diagrams (Figures 3 and 4), in the case of P, increased local concentration, due to excessive segregation,
dramatically increases the dissolution temperature and stabilizes the phosphide particles making
the dissolution even more difficult. Moreover, copper regions enriched in alloying elements are
supersaturated and it is difficult for Fe to diffuse and, therefore, it remains in solid solution in the Cu
matrix. Figure 11 shows the concentration profile of Fe at the Fe particle/Cu matrix interface. Cβ is
the Fe concentration in the Fe particle as expected by equilibrium, whereas Cα is the Fe concentration
in Cu matrix at equilibrium. Co is the Fe content of the supersaturated Cu matrix. When Cα < Co,
it means that the Fe content has to reach the Cα composition in the Cu matrix, thus, there is a flux of Fe
atoms from the matrix towards the Fe particle and diffusional growth can be achieved. When Cα > Co,
this indicates that the Fe content in the Cu matrix should reach Cα composition. In order to achieve
this, Fe atoms diffuse from the Fe particle towards Cu matrix and the dissolution of Fe particles can be
achieved. The different solubility of particles and Cu matrix is attributed to the chemical composition
and crystal structure. Fe3P and Fe particles were considered to have a BCC (body centered cubic)
structure whereas the Cu matrix has an FCC (face centered cubic) structure. The flux of solute atoms
towards the interface is described by an error function introduced by Whelan [16]. The diffusional
distance that the atoms have to move ∆x can be calculated from, the overall concentration of mass is
given by Equation (2) for isothermal transformation [23]:

(
Cβ − Co

)
x =

1
2
(Co − Ca)∆x (2)

where C stands for concentration and x for particle size.
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The diagrams are concentrated on the interface thus Cβ is 90 wt. %.

It can be observed that in alloying element-enriched regions, particles had even increased their
size. The increase of particle size can also be explained from the Ostwald ripening theory where large
particles are more energetically stable than smaller particles. Atoms of the small particles diffuse and
attach to the large particles resulting in large particles growing in size and small particles shrinking [24].
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6. Conclusions

Particle dissolution has been investigated during the homogenization process in a Cu–Fe–P
alloy via Thermocalc® and DICTRA software. The phase diagrams indicate that the iron mass
percentage does not influence the dissolution temperature. However, higher phosphorus concentration
stabilizes the Fe3P loop and increases the dissolution temperature. According to the simulation results,
the particle dissolution depends on four critical parameters influencing each other: (a) the size of
phosphides; (b) soaking time; (c) the temperature of homogenization; and (d) the local chemical
composition of the base metal. In alloying element-depleted regions dissolution was realized in
approximately 1 h for the small particles of 1 µm in the temperature of 1273 K (1000 ◦C). Larger particles
are more difficult, requiring longer, or are even impossible to dissolve. Chemical heterogeneity due to
segregation caused local phenomena of a higher element concentration in the base metal, resulting in
particles either remaining undissolved or in many cases increasing in size due to the Ostwald ripening
phenomena. Metallographic evaluation showed that the experiments are consistent with the simulation.
Microsegregation is evident in the initial microstructure situated mainly in grain boundaries and
interdendritic regions. The homogenization heat treatment created in the microstructure patches of
precipitation-free regions and other regions with a small number of enlarged particles due to a different
local chemical equilibrium.

For the optimal homogenization of the specific material, a high temperature of 1273 K (1000 ◦C) is
required. Homogenization time of 1.5–2 h will result in the dissolution of the small particles without
affecting the larger ones. Longer soaking time will result in no further dissolution.
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