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Abstract: While the recovery of rare earth elements (REEs) from aqueous solution by ionic liquids (ILs)
has been well documented, the metal compounds that are formed in the organic phase remain poorly
characterized. Using spectroscopic, analytical, and computational techniques, we provide detailed
chemical analysis of the compounds formed in the organic phase during the solvent extraction of
REEs by [(n-octyl)3NMe][NO3] (IL). These experiments show that REE recovery using IL is a rapid
process and that IL is highly durable. Karl-Fischer measurements signify that the mode of action is
unlikely to be micellar, while ions of the general formula REE(NO3)4(IL)2

− are seen by negative ion
electrospray ionization mass spectrometry. Additionally, variable temperature 139La nuclear magnetic
resonance spectroscopy suggests the presence of multiple, low symmetry nitrato species. Classical
molecular dynamics simulations show aggregation of multiple ILs around a microhydrated La3+

cation with four nitrates completing the inner coordination sphere. This increased understanding is
now being exploited to develop stronger and more selective, functionalized ILs for REE recovery.
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1. Introduction

Ionic liquids (ILs) are particularly desirable as reagents and solvents due to their ability to
be tailored through the modification of their cation and anion components, and their perception
as having “green credentials” due to their negligible vapor pressure, high thermal stability,
and non-flammability [1]. They are often immiscible with aqueous phases, and this feature, combined
with their other properties, has been exploited in the separation and recovery of metals such as the rare
earth elements (REEs) by solvent extraction [2–8]. The use of ILs in solvent extraction processes can
minimize extractant loss, reduce environmental contamination, and limit the use of volatile organics
as diluents [3,9]. This contrasts with the purification of REEs in China by traditional solvent extraction
techniques, which have been found to produce 20 million tons of wastewater contaminated with,
in some cases, an excess of 50 g/L of organic compounds [10]. ILs are therefore not only research
curiosities, but also have strategic industrial importance.

The transport of REEs from aqueous (acidic) solutions into an immiscible IL phase has been
extensively studied for a variety of hydrophobic ILs, and some, but not always complementary,
insight into the mechanisms of extraction has been gained [2]. The transport of Nd or Eu in
a biphasic aqueous/C4mim+Tf2N− IL system (C4mim = N-methyl-N-butylimidazolium; NTf2

− =
bis(triflimide) anion −N{SO2CF3}2) by the acetylacetonate 2-thenoyltrifluoroacetone (tta) has been
shown by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, molecular dynamics
(MD) simulations, and fluorescence lifetime measurements to proceed through the formation of

Metals 2018, 8, 465; doi:10.3390/met8060465 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-2956-258X
http://www.mdpi.com/2075-4701/8/6/465?type=check_update&version=1
http://dx.doi.org/10.3390/met8060465
http://www.mdpi.com/journal/metals


Metals 2018, 8, 465 2 of 13

the ion pair [C4mim][Ln(tta)(Tf2N)] [11]. Further studies have shown that the water molecules in
the hydrate [Eu(tta)3(OH2)3] are substituted by the Tf2N− anion, with the [Ln(tta)(Tf2N)]− anion
identified in the ESI-MS of the IL phase [12]. ILs of hydrophobic ammonium (R4N+, where R
is an alkyl chain) and phosphonium (R4P+) cations with a variety of coordinating anions have
been studied; anions of the phosphorus acids tend to favor recovery of the heavy REEs, whereas
the use of more simple anions such as nitrate or Tf2N− favors light REE recovery. For example,
the alkyl ammonium chloride Aliquat® 336 (A336, MeR3NCl, where R = 2:1 C8:C10 alkyl chains
of various isomers [13]) when used in combination with the anion of the dialkylphosphoric
acid, D2EHPA, ((RO)2P=O(OH), R = tBuCH2(CH3)CHCH2) or the phosphinic acid Cyanex® 272
(R2P(O)(OH), R = tBuCH2(CH3)CHCH2) produces bifunctional ionic liquid extractants (Bif-ILs)
which recover Nd and Pr from aqueous acidic chloride [14]; slope analyses suggest a 3:1 Bif-IL:Ln
stoichiometry in the transported species, possibly LnCl3(Bif-IL)3. Similar A336/dialkylphosphate or
diglycolamate Bif-ILs recovered europium from acidic nitrate solutions and slope analysis suggested a
3:1 Bif-IL:Ln stoichiometry consistent with Eu(NO3)3(Bif-IL)3 [15]. In contrast, combinations of A336
and the trialkylphosphonate, DEHEHP, ((RO)2(R)P=O, R = 2-ethylhexyl) have been found to recover
REEs from acidic nitrate under high nitrate salt conditions, in this case by the formation of either
Ln(NO3)3(DEHEHP)x or the ion pairs [A336]n-3[Ln(NO3)n] as suggested by slope analysis and infrared
(IR) spectroscopy [3]. Furthermore, a Bif-IL comprising PR3R’+ cations (R = hexyl, R’ = tetradecyl) and
Cyanex® 272 anions extracts the heavy REEs preferentially, but in this case slope analysis and release
of acid on REE transport suggests the formation of Ln(O2PR2)3 complexes through a cation-exchange
mechanism [16].

While [A336]Cl does not extract REEs from aqueous solution, it is well known that [A336]NO3

is effective for light REE recovery, particularly under high aqueous nitrate concentrations (through
salting-out [17]) [18,19]. This effect has been exploited in REE separation using [A336]NO3 and
EDTA (ethylenediamine tetraacetic acid) to partition the light and heavy REEs in the IL and
the aqueous phase, respectively [20]. Initial interpretations of the mechanism of transport by
[A336]NO3 suggest the formation of ion pairs [A336]n-3[Ln(NO3)n] or alternatively IL adducts of
neutral Ln complexes, i.e., Ln(NO3)3{[A336]NO3}3. Further studies have proposed, through slope
analysis, the formation of simple lanthanide nitrate anions [A336]Ln(NO3)4 or those with more
complex speciation [A336]Ln(NO3)4{Ln(NO3)3} [21]. The discrete ion pairs [A336]2[Ln(NO3)5] and
[A336]3[Ln(NO3)6] may also be observed, as suggested by Nuclear Magnetic Resonance (NMR) [22,23],
IR [24], and UV-vis spectroscopic analysis [22], and X-ray crystallography (see, for example, [25–27]).
The relevant hexakis(nitrato) lanthanide ion Nd(NO3)6

3− has been characterized by EXAFS in dry
[C4mim][Tf2N] and shows high stability constants by optical spectroscopy [28], whereas in wet
[C4mim][Tf2N] ElectroSpray Ionization Mass Spectrometry (ESI-MS) analysis suggests the formation of
Eu(NO3)4

− anions [29]. ILs comprising [PR3R’] cations (R = hexyl, R’ = tetradecyl) and nitrate anions
have also been exploited in the separation of REEs from Co and Ni by solvent extraction, with slope
analysis suggesting the formation of the ion pairs [PR3R’]2Sm(NO3)5 and [PR3R’]3La(NO3)6 in the IL
phase [30].

While it is clear that hydrophobic ILs and Bif-ILs are effective in the extraction and separation
of REEs, with or without added organic diluent, the species formed in the hydrophobic phase are
diverse and poorly characterized, which impacts the chemical understanding of the separation process.
The formation of ion pairs of various stoichiometries is prevalent, yet seemingly counterintuitive,
as we have shown computationally that nitrate anions are more likely to be bound in the outer-sphere
of a hydrated Ln3+ cation, e.g., [Ln(OH2)6][NO3]3 [31]; this is supported by the lack of extraction of
Ln nitrates by common anion exchangers that have been exploited extensively for the recovery
of halometalates of transition metals [32–34]. Herein, we review the recovery of REEs by the
simple analogue of [A336]NO3, [(noctyl)3NMe]NO3 (IL) under high NaNO3 conditions and provide
characterization of the extracted species by 139La NMR spectroscopy, ESI-MS, and computational
modelling in order to understand better the mode of action of these reagents.
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2. Materials and Methods

2.1. Materials

Unless otherwise stated, all solvents and reagents were purchased from Sigma-Aldrich
(Gillingham, UK), Fisher scientific UK (Loughborough, UK), Alfa Aesar (Heysham, UK), Acros
Organics (Geel, Belgium), or VWR international (Lutterworth, UK) and used without further
purification. Deionised water was produced using a Milli-Q purification system (Sigma-Aldrich,
Gillingham, UK).

2.2. Characterisation and Computational Techniques

NMR spectra were recorded at 298K on a Bruker AVA400, AVA500 or AVA600 spectrometer
(Coventry, UK) operating at 399.90, 500.12, or 599.95 MHz, respectively, for 1H, and 100.55, 125.76,
or 150.83 MHz, respectively, for 13C. ESI-MS measurements were recorded in negative-ion mode
using the standard Bruker ESI sprayer operated in “infusion” mode coupled to a Bruker SolariX
Fourier transform ion cyclotron resonance mass spectrometer (Bruker Daltronics, Coventry, UK).
Direct infusion spectra were a sum of 10 acquisitions. All mass spectra were analyzed using
DataAnalysis software version 4.1 SR1 build 359 (Bruker Daltronics, Coventry, UK) and ions
were assigned manually. A Perkin Elmer Optima 8300 Inductively Coupled Plasma Optical
Emission Spectrometer (ICP-OES) (Beaconsfield, UK) was used to determine metal concentration
(in 1-methoxy-2-propanol). Samples were taken up by a peristaltic pump at a rate of 1.0 mL·min−1

into a Gem Tip cross flow nebulizer and glass cyclonic spray chamber. Conditions for plasma,
auxiliary, and nebulizer argon gas flows were 18, 1.5, and 0.5 L·min−1 with 1500 W RF forward
power, respectively. ICP-OES external calibration standards were obtained from VWR International
or Sigma-Aldrich. Karl-Fischer titrations were carried out using a Mettler-Toledo Coulometric KF
Titrator C30S with DM 143-SC probe (Leicester, UK), and pH measurements were obtained using
a Mettler Toledo Excellence Titrator T5 with a DGi115-SC probe (Leicester, UK). Nitrate anion
concentrations were determined using an ICS-110 RFIC ion chromatography system with AS22 diluent.
Infrared spectrum were acquired using a Nicolet Avatar 360 FT-IR spectrometer (Fisher Scientific,
Loughborough, UK).

Classical molecular dynamics (MD) simulations were employed using the Optimized Potentials
for Liquid Simulations—All Atoms (OPLS-AA) force field within the Large Scale Atomic/Molecular
Parallel Simulations (LAMMPS) software package from Sandia National laboratories, Albuquerque,
NM, USA [35]. An initial model, comprising three ILs, three NO3

−, three H2O, and one La3+ randomly
distributed in a cubic simulation cell of length 60 Å was constructed using Packmol [36]. The generated
xyz file was then converted into a LAMMPS data file using the Visual Molecular Dynamics (VMD)
Topo tools [37]. The optimized geometries for the ammonium cation (octyl)3NMe+, NO3

−, toluene,
and water were obtained using the Gaussian 09 program (Gaussian Inc., Wallingford, UK) and with
the B3LYP/6-31G** level of theory applied to all atoms present [38]. Structures were considered
optimized when the forces and atomic displacements fell to within the program default convergence
criteria. The integration time step of the MD simulations was set to 0.5 fs, and time increments
accrued using the standard Velocity-Verlet algorithm. In total, system dynamics were accrued for a
minimum of 10,200 ps. This included 500 ps equilibration time under canonical (constant Number of
atoms, Volume, and Temperature, NVT) ensemble conditions followed by a production run of 9700 ps
under isothermal-isobaric conditions (constant number of atoms, pressure, and temperature, NPT).
NVT and NPT conditions were themostated at room temperature and pressure using the Nosé–Hoover
thermostat-barostat system [39,40].

2.3. Synthesis of Trioctylmethylammonium Nitrate (IL)

Following a standard preparation [41], iodomethane (4.44 g, 31 mmol) was added dropwise to a
stirred solution of trioctylamine (8.85 g, 25 mmol) in THF (100 mL), and the mixture was stirred at



Metals 2018, 8, 465 4 of 13

40 ◦C for 12 h under a flow of N2. The crude mixture was concentrated under vacuum, diluted with
diethyl ether (100 mL), and contacted three times with an aqueous solution of sodium nitrate (7 M)
(1 h, room temperature). The organic phase was separated and concentrated under vacuum to yield
a viscous orange oil (100%). 1H NMR (500 MHz, CDCl3): δH 3.41–3.35 (m, 6H, NCH2), 3.24 (s, 3H,
NCH3), 1.74–1.64 (m, 6H, CH2), 1.43–1.23 (m, 30H, CH2), 0.89 (t, J = 6.8 Hz, 9H, CH2CH3). 13C{1H}
NMR (126 MHz, CDCl3): δC 61.70, 48.83, 31.62, 29.10, 29.01, 26.30, 22.57, 22.43, 14.04.

2.4. General REE Recovery Procedure

An aqueous solution of the hydrated REE nitrate Ln(OH2)n(NO3)3 (La, Nd, or Dy, 0.01 M unless
otherwise stated) (2 mL) was contacted with a toluene organic phase containing tri-n-octylmethyl
ammonium nitrate IL (0.10 M unless otherwise stated) (2 mL) and stirred (12 h, 1000 rpm, 25 ◦C).
The phases were then separated physically and diluted (80×) with 1-methoxy-2-propanol for ICP-OES
analysis. La, Nd, and Dy were chosen as light, intermediate, and heavy REEs.

3. Results and Discussion

3.1. Solvent Extraction of La, Nd, and Dy by IL

A series of REE recovery experiments were carried out in which the concentrations of the IL,
NaNO3 salt, and HNO3, and extraction time were varied (see Table S1 for data in terms of distribution
coefficients). Additionally, the ability to back-extract the metal from the organic phase into a fresh
aqueous phase, in conjunction with recyclability of IL was studied. The IL in toluene solution
(0.01–1.00 M) is found to transport La, Nd, and Dy (0.01 M) from aqueous NaNO3 (7 M) into the
organic phase in the order La > Nd > Dy (Figure 1). This trend was observed in all further studies,
is similar to that seen previously for this class of extractants, and contrasts the typical commercial
reagents for REE recovery, including naphthenic acid and the dialkylphosphoric acid D2EHPA that
display the reverse preference [42–46]. Maximum recoveries of La (100%), Nd (98%), and Dy (92%)
were obtained at 1.00 M IL with an expected gradual decrease in percentage recovery observed as the
concentration of IL (M) decreased [14,15].
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Figure 1. (Left): the recovery of La, Nd, and Dy (0.01 M) from an NaNO3 (7 M) aqueous solution
varying IL concentration (0.01–1.0 M) in toluene (recorded in triplicate). (Right): The recovery of La,
Nd, and Dy (0.01 M) using IL (0.10 M) in toluene varying NaNO3 concentration (1–7 M). Interpolation
used to aid the eye only.

When IL concentration was constant (0.1 M) and NaNO3 salt varied (1–7 M), the REE
transportation into the organic phase increased substantially as NaNO3 salt concentration increased
(Figure 1), in line with previous work [3,4]. For La, Nd, and Dy minimal recovery (<5%) was obtained
at 1 M NaNO3, whereas at 7 M NaNO3, 99% La, 85% Nd, and 52% Dy were recovered. Slope analysis



Metals 2018, 8, 465 5 of 13

(Figure S1) provided a relationship of 1:3 between La or Nd and NaNO3, in accordance with previous
work [3], while a relationship of 1:1.5 was observed between La or Nd and IL.

A substantial reduction in the transport of La, Nd, and Dy (0.01 M) from the aqueous phase
with IL (0.10 M) is seen as the concentration of HNO3 is increased (0.005–1.00 M) (Figure 2), with a
pronounced decrease seen starting at 0.1 M HNO3 and minimal recovery (<5%) of all REEs at 1.0 M
HNO3. The mixed chain/isomer analogue of IL, [A336]NO3 is known to transport HNO3 from the
aqueous phase [21], so it is likely that competition between REE recovery and acid extraction occurs at
higher concentrations of HNO3 (see below).
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Figure 2. The extraction of La, Nd and Dy (0.01 M) in using IL (0.1 M) with varying HNO3 (0.005–1.0 M)
at constant NO3

− concentration (7 M). Interpolation used to aid the eye only.

Using the optimized conditions of 0.01 M IL and 7 M NaNO3, it was found that the transport of
La from the aqueous to the organic phase by IL is rapid (Figure 3), as seen in similar studies [3,47,48];
after only 60 s the concentration of La in the organic phase is maximized.
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The back-extraction of the REEs from the IL organic phase into a fresh aqueous solution was
studied and shows that complete back-extraction is achieved using water (Figure S2) [3,4,47], in contrast
to pH swing reagents such as D2EHPA that typically require acidic strip conditions [42,43,49,50].
Some selectivity in the back-extraction process is achieved through the addition of NaNO3 to the
aqueous phase. While Dy, the heavier REE, is readily back-extracted (>95%) by aqueous NaNO3

(<5 M), the transport of La, the lighter REE into the aqueous phase is hindered under these conditions,
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with <20% stripped. Additionally, IL is durable and readily reusable, with only a minimal performance
decrease (5%) seen following six load and strip cycles (Figure 3), with the loss observed likely due to
entrainment [47].

3.2. Evaluation of the Mechanism of Ln Recovery by IL

3.2.1. Karl-Fischer Analysis of Water Content

Some metal recovery processes, in particular those involving solvating reagents, operate by a
reverse micelle mechanism. Here, the metal ion is solvated (and hydrated) by a water pool, which is
stabilized in the organic phase by spontaneous assembly of the hydrophobic extractant molecules to
form micellar aggregates [51–56]. A feature of reverse-micelle mechanisms is therefore the transport
of water into the organic phase, with increasing amounts associated with increasing metal extraction.
The water content of the organic phase containing IL (0.01–1.00 M) was measured by Karl-Fischer
titration following various aqueous phase contacts (Figure 4). These included extraction of La, Nd,
and Dy (0.01 M) from NaNO3 (7 M), contact with aqueous NaNO3 (7 M), and contact with pure water.
It is seen that IL is naturally hydrophilic, solubilizing a proportional amount of water in relation to its
concentration. FT-IR studies have shown that ILs of ammonium cations readily extract water, indicated
by the presence of a strong broad stretch at ~3450 cm−1 following contact with water [3,4,47,57].
The water content seen for the metal-loaded IL phase is comparable, albeit slightly lower than that
seen for the water-only contact, indicating that rare-earth extraction is not dependent on the extraction
of water and that a reverse-micelle mechanism of extraction is unlikely. Interestingly, when the
concentration of IL is constant but the concentration REE is varied, a decrease in extracted water is
observed, and may be due to the IL preferentially interacting with the REE and displacing water into
the aqueous phase.
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Figure 4. (Left): the water content (ppm) of IL (0.01–1.00 M) organic phases determined by Karl-Fischer
titration. (Right): the water content (ppm) of organic phase IL (0.25 M) with varying Nd (0.01–0.5 M)
was also determined by Karl-Fischer titration. Interpolation used to aid the eye only.

3.2.2. Nitric Acid and Nitrate Transport by IL

The IL (0.10 M) in toluene was contacted with aqueous phases of varying HNO3 concentration
(0.01–1.00 M) containing NaNO3 (0 and 5 M) (5 min). The organic phase was then contacted with
water (5 min) and the pH of the aqueous phase measured. As the HNO3 concentration of the initial
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aqueous phase increases, the pH of the final aqueous phase decreases, indicative of an increasing
amount of HNO3 being extracted by IL (Figure 5). The pH of the aqueous strip phase when the initial
acidic solution was in 5 M NaNO3 is lower in each instance when compared with the absence of
NaNO3, consistent with a salting-out effect. The amount of NO3

− anions in the final aqueous strip
from 5 M NaNO3 was determined by Na analysis using ICP-OES (Figure 5) and ion-chromatography
(IC) (Figure 5) and shows that when NaNO3 is present, the additional NO3

− extracted is derived
predominately from the extraction of HNO3; Na is not transported as the quantity of Na cations is
independent of HNO3 concentration. The IC data indicate that the concentration of NO3

− anions in
the final aqueous phase increases as HNO3 increases. Collectively, these data show that the transport
of NO3

− anions into the organic phase by IL is due to co-extraction of H+ rather than Na+.
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Figure 5. (Top left): The pH of aqueous solutions following contact of IL (0.1 M) in toluene loaded
with HNO3 (0.01–2.00 M) from NaNO3 (0 and 5 M); (top right): The extraction of Na with IL (0.1 M)
from 5 M NaNO3 and HNO3 (0.01–2.00 M) solution; (bottom): Determination of the concentration of
NO3

− extracted by IL using ion-chromatography. Interpolation used to aid the eye only.

3.2.3. Characterization by Mass Spectrometry and La NMR Spectroscopy

Negative-ion ESI-MS of the IL organic phases (0.1 M) loaded with La, Nd, and Dy (0.05 M) were
recorded and show ions that comprise the metal cation, ammonium cations and NO3

− anions of the
general formula Ln(NO3)4(IL)n

− (where n is 0–3). The most prominent ion observed is for n = 2 at m/z
1252, i.e., Nd(NO3)4(IL)2

− that is also consistent with a formula of [(octyl)3NMe]2[Ln(NO3)5] for the
compound in the organic phase. Each ion seen experimentally displays isotopic patterns that agree
with those calculated (Figure 6, Figure S3) and a repeating unit of 430.42 mass units is seen in each
spectrum correlating to loss of IL.
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No ions that would suggest the presence of water in the organic phase are seen in the ESI-MS which
corroborates the Karl-Fischer data above, although the dissociation of water from the supramolecular
complex during ionization could occur [29]. To further probe the chemical environment of the species
extracted into the hydrophobic phase, the 139La NMR spectrum of the IL organic phase (0.05 M)
after La extraction (0.05 M) was recorded and shows a single, broad resonance at −60 ppm when
compared against LaCl3 dissolved in water, i.e., [La(H2O)6][Cl]3 (Figure 7). This chemical shift is
consistent with the coordination of NO3

− anions to La along with its dehydration [58], and the breadth
of signal suggests that multiple, low symmetry nitrato complexes are present, as seen in the ESI-MS
above; a variable temperature 139 La NMR study shows no significant change between +65 and +5 ◦C
(Figure S4), mitigating against a dynamic process occurring.Metals 2018, 8, x FOR PEER REVIEW  9 of 14 
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3.2.4. Structural Analysis by Computational Modelling

To understand further the interactions between IL and La compounds in the organic phase,
a toluene solvent box of 60 Å3 volume containing three ILs, three NO3

− anions, three H2O, and one La3+

cation was studied by classical MD techniques; these combinations are derived from the experimental
information provided above (see Figure S5 for more details). Aggregation of all components in the
solvent box is seen after 750 ps to form a partially hydrated La3+ cation with four NO3

− anions
within 5.1 Å of the La center, three H2O molecules within 6.0 Å, and three nitrogen atoms from the
encapsulating ammonium cations within 11 Å (Figure 8); all six NO3

− are incorporated into the
aggregate within 11 Å from the La3+ cation. It is clear that the formation of complexes in the organic
phase is dynamic and that the nitrate anions and water molecules compete for interaction with the
La3+ cation. This outcome is consistent with our previous studies on the ease of formation of La
nitrato complexes in the aqueous phase, the breadth of resonance seen in the 139La NMR spectrum,
and that nitrate coordination is inferred by the presence of two peaks at 1435 and 1328 cm−1 in the IR
spectrum of an IL organic phase loaded with La (Figure S6). Microhydration [59,60] of the La3+ cation,
nitrate anions, and the ammonium cation may be important, as this may provide extra thermodynamic
stability through hydrogen bonding, but quantum mechanical calculations are required to probe
this further.
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Figure 8. Three ‘snapshot’ images taken at 225 ps apart ((left) to (right)) from the classical MD
simulations showing aggregation of water, nitrate, and ammonium cations around an La center within
a 60 Å3 box of toluene. For clarity, the toluene box is omitted, and H atoms are colored white, oxygen
atoms red, nitrogen atoms blue, carbon atoms grey, and the La atom green.

The effectiveness of the encapsulation of the La cation and the attendant NO3
− anions and water

molecules by the lipophilic IL was probed by calculating the porosity of the aggregate using a Monte
Carlo code. Here the La core (consisting of the La3+ cation, three water molecules, and six nitrate
anions) is defined as the target, towards which a probe sphere is fired 10,000 times from random
positions on the surface of a large sphere that encapsulates the aggregate; the number of probe spheres
that successfully hit the core region (rather than be intercepted by the atoms on IL) is then recorded to
give a percentage core exposure. In this way, the ability of IL to shield the La core can be quantified.
From a random sample of 25 classical MD frames, the La core exposure was found to be 37 ± 3%;
in contrast, targeting the La3+ cation exclusively reveals an exposure of 6.0 ± 1.3%. The simulations
thus suggest that three ILs can be comfortably accommodated around a microhydrated La3+ cation.

4. Conclusions

This work has reinforced the efficacy of the [(n-octyl)3NMe][NO3] ionic liquid IL as a useful
reagent for the recovery of REEs from mildly acidic, high nitrate salt, aqueous solutions. Extraction is
fast and efficient, relatively selective for light REEs, and back-extraction may show additional selectivity
if aqueous NaNO3 is used. It can be concluded from the mode of action studies that the interactions
between IL and REE nitrates are not (reverse) micellar; instead, ESI-MS, NMR, and computational
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studies suggest that multiple NO3
− anions are coordinated in the inner-sphere of a partially hydrated

REE to form a series of anions REE(NO3)n(H2O)x
− that are stabilized by electrostatic association with

lipophilic NR4
+ cations. Classical MD simulations for La suggest that the most prevalent species

is [(n-octyl)3NMe]3[La(NO3)6(H2O)3] that incorporates a small number of water molecules in the
hydrophobic phase through microhydration. We have shown previously that La(NO3)4

− is unlikely
to form in the aqueous phase [31], so it remains unclear in what form the REE is transported across
the interface and whether complete dehydration of the metal occurs to facilitate transport across the
phases. We are currently exploiting this mechanistic understanding to devise new, functionalized IL
systems (Bif-ILs [2]) to engender stronger REE recovery from acidic feed streams and to be able to
provide effective REE separation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/8/6/465/s1.
Figure S1: Slope analysis; Figure S2: Back extraction (stripping) studies of La, Nd and Dy; Figure S3: La and Dy
negative ion ESI-MS; Figure S4: Variable temperature 139La NMR spectra; Figure S5: Computational outputs;
Figure S6: Infrared spectra; Table S1: Distribution coefficients.
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