



## Understanding the recovery of rare-earth elements by ammonium salts

## Supplementary Materials

Jamie P. Hunter <sup>1</sup>, Sara Dolezalova <sup>1</sup>, Bryne Ngwenya <sup>2</sup>, Carole A. Morrison <sup>1</sup> and Jason B. Love <sup>1,\*</sup>

- <sup>1</sup> EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
- <sup>2</sup> School of Geosciences, University of Edinburgh, Edinburgh EH9 3FE
- \* Correspondence: jason.love@ed.ac.uk; Tel.: +44 131 650 4762

| Figure S1: Slope Analysis                                       | 1 |
|-----------------------------------------------------------------|---|
| Figure S2: Back Extraction (Stripping) Studies of La, Nd and Dy | 1 |
| Figure S3: La and Dy Negative ion ESI-MS                        | 2 |
| Figure S4: Variable Temperature <sup>139</sup> La NMR           | 3 |
| Figure S5: Computational Outputs                                | 3 |
| Figure S6: Infrared Spectroscopy                                | 4 |

## **Figure S1: Slope Analysis**

Slope analysis from associated log *D* plots. (Left) the recovery of La, Nd and Dy (0.01 M) from a NaNO<sub>3</sub> (7 M) aqueous solution varying **IL** concentration (0.01-1.0 M) in toluene. (Right) The recovery of La, Nd and Dy (0.01 M) using **IL** (0.10 M) in toluene varying NaNO<sub>3</sub> concentration (1-7 M).



Figure S2: Back Extraction (Stripping) Studies of La, Nd and Dy

The back extraction (stripping) of La, Nd, Dy from a loaded organic phase containing **IL** (0.1 M) using water and NaNO<sub>3</sub> solution (0-7 M). Interpolation used to aid the eye only.



Figure S3: La and Dy Negative ion ESI-MS

Negative-ion mode ESI-MS of the IL organic phase (0.1 M IL) post-contact with a La or Dy aqueous phase diluted with methanol showing ions of  $REE(NO_3)_4(IL)_n^-$ . La (Top) and Dy (Bottom) (0.05 M). Experimental negative-ion ESI-MS (red) compared with that calculated (black).





## Figure S4: Variable Temperature <sup>139</sup>La NMR

 $^{139}$ La NMR spectra of the La standard, LaCl<sub>3</sub> (0.01 M, 0.0 ppm) in D<sub>2</sub>O (purple) and the **IL** organic phase (0.05 M) after contact with a 0.05 M aqueous La solution obtained at <sup>-</sup>55 (dark blue), +5 (cyan), +25 (green), +45 (yellow), +65 °C (red).



**Figure S5: Computational Outputs** 

An output from classical MD simulations indicating how the average number of **IL**, water and nitrate associated with La increases as distance from La increases following formation of a La containing aggregate. On average, four  $NO_3^-$  anions are observed to be within 5.1 Å of the La centre, three H<sub>2</sub>O molecules within 6.0 Å, and three nitrogen atoms from the encapsulating ammonium cations within 11 Å. All six  $NO_3^-$  are incorporated into the aggregate within 11 Å from the La<sup>3+</sup> cation on average.



**Figure S6: Infrared Spectroscopy** 

(Top) Infrared spectrum of the **IL** organic phase (0.05 M) after contact with a 0.05 M aqueous La solution. The **IL** organic phase pre-contact used as the background (Bottom). Peaks at 1328 and 1435 cm<sup>-1</sup> in the **IL** organic phase loaded with La assigned as symmetric and asymmetric N-O nitrate stretches. Peaks at 1339 and 1467 cm<sup>-1</sup> in the **IL** organic phase prior to La loading assigned as symmetric and asymmetric and asymmetric N-O nitrate stretches.





| Table S1: Metal recovery | data tabulat | ed as distribution | coefficients. |
|--------------------------|--------------|--------------------|---------------|
|--------------------------|--------------|--------------------|---------------|

| Distribution coeffiencents (REE recovered into org./REE remaining in aq.)   |       |       |                                     |             |       |      |      |  |  |
|-----------------------------------------------------------------------------|-------|-------|-------------------------------------|-------------|-------|------|------|--|--|
| Varying [IL]. Fixed [NaNO₃] (7 M)                                           |       |       | Varying [NaNO₃]. Fixed [IL] (0.1 M) |             |       |      |      |  |  |
| [IL] (M)                                                                    | La    | Nd    | Dy                                  | [NaNO₃] (M) | La    | Nd   | Dy   |  |  |
| 0.01                                                                        | 0.15  | 0.14  | 0.05                                | 1.0         | 0.03  | 0.02 |      |  |  |
| 0.02                                                                        | 0.42  | 0.34  | 0.15                                | 2.0         | 0.23  | 0.08 |      |  |  |
| 0.05                                                                        | 1.73  | 1.13  | 0.40                                | 3.0         | 0.98  | 0.36 | 0.05 |  |  |
| 0.10                                                                        | 66.17 | 4.03  | 1.06                                | 4.0         | 4.06  | 0.81 | 0.10 |  |  |
| 0.20                                                                        | 86.93 | 9.11  | 2.41                                | 5.0         | 4.78  | 1.93 | 0.26 |  |  |
| 0.50                                                                        | 28213 | 14.96 | 8.40                                | 6.0         | 10.09 | 3.62 | 0.44 |  |  |
| 1.00                                                                        |       | 62.98 | 12.18                               | 7.0         | 66.17 | 4.03 | 1.06 |  |  |
| Varying [HNO <sub>3</sub> ]. Fixed [NaNO <sub>3</sub> ] (7 M), [IL] (0.1 M) |       |       |                                     |             |       |      |      |  |  |
| [HNO₃] (M)                                                                  | La    | Nd    | Dy                                  |             |       |      |      |  |  |
| 0.005                                                                       | 16.78 | 6.11  | 1.47                                |             |       |      |      |  |  |
| 0.010                                                                       | 12.16 | 3.02  | 1.42                                |             |       |      |      |  |  |
| 0.020                                                                       | 11.66 | 5.42  | 1.58                                |             |       |      |      |  |  |
| 0.050                                                                       | 6.96  | 2.27  | 1.09                                |             |       |      |      |  |  |
| 0.100                                                                       | 3.58  | 2.89  | 0.78                                |             |       |      |      |  |  |
| 0.200                                                                       | 6.05  | 1.05  | 0.68                                |             |       |      |      |  |  |
| 0.500                                                                       | 0.60  | 0.15  | 0.10                                |             |       |      |      |  |  |
| 1.000                                                                       | 0.09  | 0.00  | 0.00                                |             |       |      |      |  |  |