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Abstract: Understanding the effect of high strain rate deformation on microstructure and mechanical
property of metal is important for addressing its performance as high strength material. Strongly
motivated by the vast industrial application potential of metals having excellent hardness, we
explored the phase stability, microstructure and mechanical performance of an industrial grade high
carbon steel under different compressive strain rates. Although low alloyed high carbon steel is
well known for their high hardness, unfortunately, their deformation behavior, performance and
microstructural evolution under different compressive strain rates are not well understood. For the
first time, our investigation revealed that different strain rates transform the metastable austenite into
martensite at different volume, simultaneously activate multiple micromechanisms, i.e., dislocation
defects, nanotwining, etc. that enhanced the phase stability and refined the microstructure, which is
the key for the observed leap in hardness. The combination of phase transformation, grain refinement,
increased dislocation density, formation of nanotwin and strain hardening led to an increase in the
hardness of high carbon steel.
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1. Introduction

Multiphase high carbon steels with metastable retained austenite (RA) phase are excellent for
industrial applications due to their high hardness and abrasion resistance. When the metastable RA in
high carbon steel is subjected to harsh environmental conditions; i.e., compression [1,2], abrasion [3],
impact [4], etc.; RA transforms to strain induced α′ and ε martensite [5]. The consequence of this
transformation is dependent on various parameters, such as morphology [6], chemical composition [1,6,7]
and stacking fault energy of austenite [8]. The α′ martensite is found to be nucleated at the intersection
of the shear bands, while the ε-martensites are formed due to the overlapping stacking faults [8]. These
strain-induced martensites possess more strength and hardness than austenite resulting in increasing the
strain hardening ability and strengthening of the material [9–12].

Ample amount of studies have been proposed to describe the transformation induced plasticity
effect in austenitic steel [1,13]. Previous studies have demonstrated that the hardness of steel increases
with decreasing grain size, which is known as the Hall-Petch effect [14]. In this effect, the strengthening
originates from the fact that grain boundaries block the dislocation movement; hence, the material has
more resistance to deformation. The high strain rate induced nanotwin boundaries in the face-centered
cubic structure also act as grain boundaries and block the dislocation movements, therefore, enhance
the structural strength [15].
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Strain rates are considered to have a significant effect on the deformation behavior of steels [16,17].
Superplastic behavior of 0.9% C steel at a low strain rate (up to 10−3/s) was assessed in one study,
showed positive strain rate sensitivity of the material. Another study shows the formation of adiabatic
shear in 0.77% carbon steel when subjected to high strain rate compression testing conducted at various
regimes of temperature [18]. Limited studies have been carrying out on mechanical performance
evaluation at various strain rate deformation and its relation with the microstructure of high carbon
steel. The hindrance behind conducting mechanical tests on high carbon steel is their exceptional
hardness and strength accompanied by machine capabilities, the brittle nature and hence the absence
of interest for their mechanical behavior at varying strain rates. However, the study of the mechanical
performance of deformation-induced high carbon steels are very important as they are broadly used
in a various industrial application where severe impacts and compression are encountered, and high
abrasion resistance is required. We carefully chose the compressive stress lower than the fracture
stress to avoid fracture or failure of the material. This will help us to demonstrate the mechanical and
microstructural behavior of steel at the extreme working condition.

This study focused on dual-phase high carbon steel with martensite and RA phases for the use in
extreme operating conditions, i.e., wear, abrasion, impact, compression, etc. Its microstructural
behavior at different strains has been investigated by X-ray diffraction, electron backscattering
diffraction and transmission electron microscopy. In addition, the strain hardening effect on the
overall hardness of the high carbon steel was investigated by nanohardness analyses. Identifying
various micromechanisms and their effect on hardness at various strain rates is essential to characterize
high carbon steel as a superior material for the different industrial application.

2. Experimental

In this study, duplex martensitic high carbon steel having ~45% of RA with the chemical
composition of 1.0%C-0.2%Si-1.0%Mn-0.6%Cr (in wt %), was investigated. Standardized compression
tests were performed in a computer-controlled servo-hydraulic uniaxial testing machine (Instron 8510).
The tests were conducted for five different strain rates of 2 × 10−5/s, 2 × 10−4/s, 2 × 10−3/s,
2 × 10−2/s and 2 × 10−1/s at room temperature and the load induced until the compressive stress
reached 2000 MPa for each sample with the size of 4 mm × 4 mm × 4 mm. We have chosen this
compressive stress to understand the hardness and properties of this steel under extreme stress
but before failure. Five samples were compressed for each experimental condition for statistical
data reliability. Standard metallographic wet grinding and polishing methods were used to prepare
the samples for EBSD and X-ray analysis. A PANalytical Empyrean XRD instrument (Malvern
Panalytical, Malvern, United Kingdom) was used with unfiltered Co-Kα radiation at 45 kV and
40 mA current for quantitative X-ray diffraction (XRD) to measure the volume fraction of phases
from a 2θ spectrum that was acquired at a step size of 0.0260 over an angular range of 40◦ to 130◦.
An orientation microscopy investigation of transformed austenite and martensite was conducted
by electron back-scattered diffraction (EBSD) technique, using an Oxford system attached with a
Carl Zeiss AURIGA® CrossBeam® (Carl Zeiss, Oberkochen, Germany) field emission gun scanning
electron microscopy (FEG SEM) workstation at an accelerating voltage of 20 kV. The EBSD patterns
were collected at a binning mode of 2 × 2 and scanning step size of 0.15 µm using AZTEC software.
Orientation imaging microscopy (OIM) analysis version 8 (EDAX, AMETEK Materials Analysis
Division, NJ, USA) has been used for dislocation mapping. Nano-indentation tests were carried out in
load control mode on a TI 900 Hysitron Tribolab system (Hysitron, Inc., Minneapolis, USA) at load up
to 8000 µN with a Berkovich three-sided pyramidal diamond tip indenter (nominal angle of 65.3◦ and
radius of 200 nm). Effect of high strain rate within a single grain of RA was studied using transmission
electron microscopy (TEM). At first, using the SEM we recognized the RA in deformed samples. Then
the microstructure of the deformed RA was observed using a TEM equipped with a field emission gun
(Philips CM 200, FEI Company, Oregon, USA) after preparing the specimens by using a dual beam FIB
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(FEI xT Nova Nanolab 200, FEI Company, Hillsboro, OR, USA), and the thickness of the specimens
was estimated to be ~100 nm.

3. Results and Discussion

3.1. Base Material

The initial structure of the steel samples contains martensite and ~45% RA, which was observed
in the EBSD image in Figure 1a and XRD pattern in Figure 1c. The EBSD phase diagram in
Figure 1a revealed the presence of RA (blue areas) with lath and plate-shaped martensite (red areas).
The dislocation density, Figure 1b, close to some of the austenite-martensite grain boundaries and
within the smaller grains shows a shift in the distribution towards higher dislocation, suggesting that
much energy is stored in those regions. In contrast, bigger RA grains have negligible dislocation density.
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Figure 1. EBSD micrograph and XRD spectrum of the material before compression test. (a) Phase map,
here red is martensite and blue is RA; (b) dislocation mapping. Black lines are grain boundaries with a
misorientation angle of more than 15◦; (c) XRD showing RA and martensite peaks.

3.2. Influence of Strain Rates on Phase Transformation

After the compression test, X-ray analysis was carried out to study the stability of phases under
different compression stain rates. Figure 2a shows the XRD spectrum of different samples after
compression under different strain rate and Figure 2b shows the effect of strain rates on the volume
fractions of the phases. X-ray analysis was carried out to study the volume percentage of the RA of
the specimen under compression deformation at different strain rates. The volume fraction can be
calculated from the XRD spectrum according to the ASTM-E975–13 standard [19], where, each phase’s
volume fraction can be calculated based on the following Equation (1):
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In this equation, Ihkl
i = Integrated intensity per angular diffraction peak (hkl) in the i-phase; I0 =

Intensity of the incident beam; µ = Linear absorption coefficient for the steel; e, m = Charge and mass
of the electron; r = Radius of the diffractometer; c = Velocity of light; λ = Wavelength of incident
radiation; v = Volume of the unit cell; Fhkl = Structure factor which depends on the atomic co-ordinates
(xi, yi, zi), fij

0 the atomic scattering factors and anomalous dispersion corrections (∆ fij
′, ∆ fij

′′ ), the
isotropic Debye-Waller factors Tij

iso and the influence of occupations ki and replacements gj; p =

Multiplicity factor of the (hkl) reflection; θ = Bragg angle; e−2M = Debye-Waller or temperature factor
which is a function of θ; Vi = Volume fraction of i-plane. The constant K is composed of various
physical properties of the material. The terms in the R factor involve the unit cell volume, structure
factor, crystallographic multiplicity factor, Lorentz polarization factor and the temperature factor.

Hence, for this high carbon steel containing RA (γ), body-centered tetragonal-martensite (α) and
hexagonal close-packed-martensite (ε), the total volume of the phases can be written as:

Vγ + Vα + Vε = 1 (2)

Based on Equation (1) individual volume fractions of each phase can be calculated using equation
the following equation,
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where i = γ, α, ε and n = number of peaks examined by X-ray diffraction.
From the X-ray spectrum (Figure 2a), ~40% RA was measured after loading at 2 × 10−5/s strain

rate which indicates the RA did not transform significantly at this stage. However, a very small
peak of ε martensite was identified at the very low strain, 2 × 10−5/s. At the highest strain rate of
2× 10−1/s, the content of RA decreased to below 7%. When the RA achieves sufficient energy from the
induced compressive strain, martensitic transformation takes place [20]. Because of the transformation
phenomenon, the amount of RA decreases as the applied strain rate is increased. In these spectrums,
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the α′-martensitic transformation dominates. When the imposed strain rate was 2 × 10−3/s, the
volume percent of martensite attained the value of ~90%. At further increase in the strain rate at
2× 10−2/s no significant increase in martensite percentage was observed. However, when the imposed
strain rate was higher than 2 × 10−2/s, which is 2 × 10−1/s the volume percent of retained austenite
increased by ~5% and attained the value of ~95%. At this stage, RA was encapsulated in the newly
formed martensite plates and the dislocation defects increases which restricted further transformation.

3.3. Influence of Strain Rates on Microstructure

The microstructure and dislocation density of martensite in different specimens that had
undergone different strain rates were evaluated. The results are shown in Figure 3. Local variations
in the lattice orientation reflect lattice curvature that can be associated with residual strain and
geometrically necessary dislocations (GNDs) [21,22]. Different levels of dislocations were observed
within the microstructure, which is indicative of the heterogeneity of strain developed through the
microstructure at different strain rates of compressive loading. The heterogeneity in the microstructure
also shows the phase transformation phenomena. When the RA gets sufficient energy from the
compressive stress, the phase transformation takes place. This phenomenon occurs simultaneously
with the increasing compressive strain rates. The highly deformed areas following compression are
close to the grain boundaries, the locations for the nucleation of new martensite. This study also
reveals that a small amount of ε martensite formed at the low strain rate deformation. At higher
strain rate only α′ martensite formation was observed. Later, when strain rate reached and exceeded
2 × 10−3/s, the formation of the new martensite slowed down. These observations are made based on
phase mapping (Figure 3(a1,b1,c1,d1,e1,f1), which are also supported by the XRD data in Figure 2.

It is well-known from the literature that compression deformation and phase transformation
both generate high dislocation density in steel. At the base material, in Figure 3(a2), the dislocation
density was minimal compared to the compressed samples. As the RA phase has less dislocation
density and ~45% RA was present in the microstructure (Figure 3(a1)), the overall dislocation density
demonstrates less value. At the 2 × 10−5/s strain rate (Figure 3(b2)), the overall dislocation density
increased due to dislocation of newly transformed martensite. Dislocation density in the parent
martensite also increased at this stage due to the increase in misorientation angles within the grains
by deformation. It is noteworthy that dislocation density in the microstructure was a little bit less
in 2 × 10−4/s (Figure 3(c2)) compared to 2 × 10−5/s (Figure 3(b2)) strain rate induced sample. This
happened because to compress the sample at a low strain rate (2 × 10−5/s) needs more time to attain
the desired compressive load compared to the slightly high strain rate (2 × 10−4/s). This extra time
for deformation creates more dislocation in the microstructure. However, when the strain is very
high, which is 2 × 10−1/s, most of the RA grains transformed to martensite (Figure 3(f1)) and to
accommodate the total strain the dislocation density increased further (Figure 3(f2)).

Deformation by compressive loading creates an accumulation of the dislocation density within
the microstructure. When we apply the load in high strain rate, the microstructure does not have time
to relax by reason of the generation of dislocation. The formation of dislocation is higher than the
speed of dislocation movement which results in a much higher concentration of dislocation and more
pile-ups, forms low-angle subgrain boundaries. The dislocation density increases continuously within
the sub-grain boundary due to the increase in misorientation angle by high strain rate and eventually,
this misorientation turns out to be high enough to create new grain boundaries. The amount of such
boundaries gradually increases with the increased strain rate. The dislocation density drops with the
formation of high angle boundaries, because, new boundaries are composed of dense distributions of
dislocations and consumed all the dislocations, hence, the surrounding regions demonstrate a drop in
dislocation content. This is the reason behind the slightly decreased dislocation density at 2 × 10−4/s
strain rate (Figure 3(c2)) compared to the 2 × 10−5/s strain rate (Figure 3(b2)). After this strain rate,
the dislocation density increases again. This phenomenon concludes in phase transformation and
grain boundary refinement, as confirmed by the microstructural evolution via high-resolution EBSD



Metals 2018, 8, 580 6 of 10

analysis. If the steel structure is refined by phase transformation and increased dislocation density
due to the mechanical deformation, the hardness of the structure increases. The origin of this high
hardness is the reduced grain size and grain boundary strengthening results from the hindrance of
grain boundaries to dislocation motion.
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Apart from phase transformation and grain refinement, the deformation mechanism of steel has
also involved the interactions between deformation twins and dislocations. Formation of nanotwins
due to the deformation strengthens the structure and restricts the transformation of RA. It is evident
from the literature that the increase in strain rate accelerates the formation of deformation twins in
order to accommodate the total strain developed. Figure 4 demonstrates the TEM images where
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at a high strain rate of 2 × 10−2/s dislocation interaction and deformation twins were observed
simultaneously in the RA grain as shown in Figure 4c. In contrast, at low strain rate, dislocation tangles
and dislocation cells are clearly visible (Figure 4a). Figure 4b,c also demonstrates the morphology of the
deformation twin bundles in steel at different strain rates. As the strain rate increases, the thickness of
the twins decreases. In this study, the strain hardening behavior of austenite grains is governed by two
processes: dislocation-dislocation interaction hardening, and dislocation twin boundary interaction
hardening which is in line with the previous literature [22].
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2 × 10−5/s, (b) 2 × 10−4/s and (c) 2 × 10−2/s strain rates. The SAED pattern of the nanotwins is
showing orientation relationship with the parent RA grains.

In the current study, the compressive load and specimen size were the same for each sample;
we deformed the sample at different strain rates: 2 × 10−5/s, 2 × 10−4/s, 2 × 10−3/s, 2 × 10−2/s
and 2 × 10−1/s. At the low strain rate, more time is needed to attain the desired compressive stress.
Therefore, the twin formation process within the grains can get more time to form. In contrast, at a high
strain rate, twin cannot have sufficient time to grow due to the speedy deformation. As a result, the
width of the nanotwins was more at the low strain rate compared to the high strain rate (Figure 4b,c).
However, the density of nanotwins at a high strain rate of 2 × 10−2/s was found to be much higher
than the nanotwins at a low strain rate of 2 × 10−4/s. In order to accommodate the total strain,
the formation of twins increases at higher strain but cannot grow to become thicker due to less time
for deformation. The selected area electron diffraction (SAED) patterns of the nanotwins are showing
orientation relationship in both the deformation-induced samples.

3.4. Influence of Strain Rates on Mechanical Property

It is well known that sample hardness increases with the martensitic transformation of RA and
grain refinement. Martensite restricts the dislocation movements and hence deformation. The hardness
of metallic materials also rises with dislocation density and nano twin formation by deformation.
In this current study, plastic deformation and phase transformation both generates dislocation defects.

Figure 5 shows the results of samples in nanohardness vs. compressive stress tests. Nanohardness
increases gradually with the increased strain rate and decreased grain size up to 2 × 10−3/s. As the
strain rate researches certain values between 2 × 10−3/s and 2 × 10−2/s, decreasing trend of the grain
sizes is ceased by the saturation in phase transformation which leads to a steady-state condition of
dislocation density. However, these two samples have a little difference in nanohardness. EBSD phase
diagrams show a slight variation in the size of RA grains; the sample under compressive stress at
2 × 10−3/s strain rate has slightly bigger RA grains compared to the 2 × 10−2/s strain rate induced
sample. The overall distribution of the grains also shows less variation and comparatively less grain
size for 2 × 10−2/s strain rate induced sample. The decrease in the RA grain size and overall grain
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size is the reason behind more hardness in the 2 × 10−2/s strain rate induced sample. When the strain
rate increased and reached 2 × 10−1/s, a sudden increase in hardness occurred, and exceeded 10 GPa
(Figure 5a,b). This correlated closely with the proportion of martensite in the structure (Figure 2),
the transformation of RA to martensite (as indicated in Figure 5b), the increase in dislocation defects
(Figure 3) and grain refinement (Figure 5a). Before compression deformation, the nanohardness was
measured at 7.5 MPa. After compression deformation at 2 × 10−1/s strain rate, the nanohardness
increased and attained a value of 10.4 GPa. As such, the hardness of the steel was some ~35–40%
higher than the hardness of the original steel sample.
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4. Conclusions

This work explored the mechanical stability of RA in high carbon steel samples under compressive
stress at different strain rates, using a combination of EBSD, XRD, TEM and nano-indentation
tests. XRD and EBSD patterns demonstrate the volume of RA at increased compressive strain rate.
The volume percentage of martensite increased as the strain rate increased, hence efficiently increases
the strength of the structure. EBSD showed a significant reduction in the grain size. Nanohardness
tests showed a positive correlation between strain rates and the hardness of the material, which can be
attributed to strain hardening and phase transformation.

We have established and comprehensively described how higher strain rate induced plastic
deformation produced refine grains of metals and make them very strong. When heavily
deformed through compressive loading, metal specimens generated an increasing density of
defects or dislocations that effectively strengthens the metal against further deformation. The
extraordinary hardness is achieved by simultaneously enabling transformation-induced and
dislocation density-induced structural strengthening mechanisms. Another nanoscale mechanism
involves strengthening by nano twinning. Such research is essential for controlling the microstructures
of high carbon steels under extreme operation condition and, so, for opening up new industrial
applications for these relatively low alloyed low-cost steel.
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