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Abstract: The material 36MnVS4 is the second generation of connecting rod fracture-split material.
However, it generates more quality defects during the fracture-split process. To investigate the causes
of defects that occurred, the material properties and fracture-split performance of the 36MnVS4 are
researched and compared with C70S6. The fracture-split easily-induced defects are also analyzed.
By finite element simulation and experimental analysis, the results show that the 36MnVS4 has lower
carbon content and more ferrite, therefore the fracture surface of the 36MnVS4 connecting rod is
more prone to tears and the plastic deformation range is greater. The fracture speed of the 36MnVS4
connecting rod is 20% lower than that of the C70S6 connecting rod. The slower fracture separation
rate increases the possibility of defects generation. The crack initiation position of the 36MnVS4
connecting rod is random, scattered, and unstable, and the 36MnVS4 has higher gap sensitivity.
Therefore, the 36MnVS4 connecting rod is more prone to produce quality defects in the fracture-split
process. By changing the cross-section design, the outer edge of the joint surface is changed to
arc-shaped, which can improve the fracture-split process of the 36MnVS4 connecting rod and reduce
the processing defects.
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1. Introduction

Fracture-split processing is the latest technology for the production of the connecting rods.
The fracture-split process is shown in Figure 1. Firstly, the two fracture-split notches are symmetrically
prefabricated on the joint surface. After that, a load perpendicular to the theoretical fracture surface
are applied which causes stress concentration at the root of the fracture-split notch and promotes crack
initiation. Finally, the crack initiation followed by unstable propagation, the connecting rod cover is
separated from the rod body, and the quasi-brittle fracture surface with good meshing is obtained.
The purpose of the pre-processed crack notch is to generate stress concentration and promote crack
initiation, thereby realizing low stress quasi-brittle fracture of the connecting rod [1–3].
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1. Introduction  

Fracture-split processing is the latest technology for the production of the connecting rods. The 
fracture-split process is shown in Figure 1. Firstly, the two fracture-split notches are symmetrically 
prefabricated on the joint surface. After that, a load perpendicular to the theoretical fracture surface 
are applied which causes stress concentration at the root of the fracture-split notch and promotes 
crack initiation. Finally, the crack initiation followed by unstable propagation, the connecting rod 
cover is separated from the rod body, and the quasi-brittle fracture surface with good meshing is 
obtained. The purpose of the pre-processed crack notch is to generate stress concentration and 
promote crack initiation, thereby realizing low stress quasi-brittle fracture of the connecting rod [1–
3]. 

 
Figure 1. Connecting rod fracture-split process. Figure 1. Connecting rod fracture-split process.
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The fracture-split process of the connecting rod can obtain the staggered joint surface, which can
realize the three-dimensional precise positioning of the connecting rod and the cover. Connecting
rod fracture-split also can reduce the manufacturing procedure, increase the production efficiency,
reduce the production cost, and greatly increase the load capacity [4–6]. Therefore, the fracture-split
processing technology of connecting rods has been widely popularized and applied.

Connecting rod fracture-split is the process of crack initiation and propagation that involves
many factors [7]. The fracture-split process is extremely fast and complex which is prone to generating
quality defects such as crack bifurcation, break-out, fell-dregs, and steps. Research and control of the
fracture-split defects are always a thorny problem to be solved.

At present, the most widely used fracture-split material is C70S6 [8]. Because of its relatively
low strength and fatigue performance, it is difficult to meet the high-performance requirements of
some high-power engines [9,10]. As cars develop toward being light weight and high quality, with low
pollution, higher requirements are put forward for high explosiveness and low energy consumption of
the engine. The various new materials are emerging. Medium carbon micro-alloyed non-tempered
steel 36MnVS4 is a representative of the second generation of fracture-split connecting rod steel [11,12].
Using the production data of the C70S6 connecting rod to carry out fracture-split processed of the
36MnVS4 connecting rod generates many quality problems. In comparison, the C70S6 connecting rod
has better fracture-split quality and fewer fracture-split defects. Exploring the fracture-split laws of the
36MnVS4 and the causes of defects produced is of great practical significance to improve the product
qualification rate.

The mechanical properties of the material have an important influence on its fracture-split
performance [13,14]. In order to explore the fracture-split performance of 36MnVS4, the microstructure
is analyzed and the mechanical performance test is carried out. The materials have difference behavior
of stress-strain curves in functions of temperature and strain rate [15–17]. The fracture-split process of
the connecting rod is very rapid, and the time of fracture process is approximate 0.00001 s [18].
Therefore, strain rates need to be considered in the tensile test of the fracture-split materials.
The fracture-split process is carried out at room temperature, therefore, the temperature has little effect
on stress-strain curve of 36MnVS4 and C70S6. Next step, the influence of the strain rate on the tensile
curve of the fracture-split material is necessary to conduct in-depth research.

The crack propagation of connecting rod fracture-split is a fast and unsteady process, and has
a complex three-dimensional characteristic [19,20]. Therefore, it is difficult to capture the crack growth
and obtain the relevant data by experiment [21]. With the promotion and maturity of commercial
software, numerical simulation has become a very effective analysis method. Reasonable numerical
simulation combined with corresponding tests have very important guiding significance for actual
production, and can also save costs and time.

In the present work, the element content, microstructure, and mechanical properties of the 36MnVS4
and C70S6 materials are tested and analyzed. Based on the theory of fracture mechanics, the fracture-split
process of the 36MnVS4 and C70S6 connecting rods are simulated by ANSYS/LS-DYNA software
(14.5, ANSYS Corporation, Pittsburgh, PA, United States). The distribution laws of the main mechanical
field of the whole fracture-split process are analyzed, and the fracture-split characteristics of the
36MnVS4 material are investigated. The defects produced in the process of the 36MnVS4 connecting
rod fracture-split are evaluated and analyzed. The reason why the 36MnVS4 connecting rod is prone
to generate defects is discussed, and the corresponding solutions are put forward.

2. Materials and Methods

2.1. Material Compositions and Microcosmic Characteristics

The main components of the fracture-split materials of the C70S6 and 36MnVS4 are shown
in Table 1. As can be seen, C, S, and P are reduced in the 36MnVS4 compared to the C70S6. The reduction
of C can significantly improve the cutting performance of the material. Mn, Si, Cr, Mo, and V can not
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only improve the hardenability of the material, but also form alloy carbides with carbon. The melting
point, hardness, and stability of these carbides are high, which has a good dispersion-strengthening
effect on the matrix, and refines the matrix grain [22]. The decrease of carbon content improves the
plasticity of the 36MnVS4 which is not conducive to brittle fracture of materials.

Table 1. Material chemical compositions (%).

Material C Mn Si S V P Cr Mo

C70S6 0.71 0.52 0.22 0.06 0.03 0.045 0.20 0.02
36MnVS4 0.34 0.99 0.66 0.043 0.26 0.024 0.23 0.059

After hot forging and air cooling, samples of size 8 mm × 8 mm × 10 mm are selected
from the 36MnVS4 and C70S6 connecting rods by wire cutting. Using alcohol as a solvent, the
samples are cleaned by ultrasonic oscillation. Then, the samples are etched with nitric acid alcohol
solution (Changchun chemical reagent Co. LTD., Changchun, China) and dried. Observation of the
metallographic structure is conducted using an Olympus LEXT metallographic microscope (Olympus
(China) Co. LTD., Beijing, China). The results are shown in Figure 2, which indicate that the C70S6
consists of a large number of fine pearlite and a small amount of intermittent network-like ferrite.
The grain fineness number of the C70S6 is lower. The high-hardness lamellar cementite of the C70S6
reduces its machinability [23]. The 36MnVS4 is mainly composed of pearlite and ferrite. The grains are
obviously refined compared to the C70S6. The bulk ferrite structure is precipitated along the grain
boundary and the proportion of ferrite is larger. The ferrite is a relatively soft phase, which may make
the fracture surface prone to tear defects in the process of fracture-splitting.
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Figure 2. Optical microstructure of the tested steels: (a) C70S6; (b) 36MnVS4.

2.2. Mechanical Properties

The tensile test is conducted on the CSS-44100 microcomputer control electronic universal testing
machine. CSS-44100 is a universal electronic universal testing machine which is manufactured
by Jinan Ruima Machinery Equipment Co. Ltd in Jinan, China. The CSS-44100 is a large-scale
precision testing instrument that can perform various performance tests on various materials such
as stretching, compression, and bending. Standard samples are prepared according to the machining
process of connecting rod forging and air cooling, and the basic dimensions of the sample are
determined according to GB 6397-86. As a result, a short specimen with a diameter of 5 mm is
selected. The connecting rod fracture-split is carried out at room temperature, therefore the tensile test
of the C70S6 and 36MnVS4 is conducted at room temperature. For the tensile rate, only 0.1 mm/s is
selected at the present stage [24]. The stress-strain curves under different strain rates will be further
studied in the next step. Four specimens of C70S6 and 36MnVS4 are tested. The stress-strain curves
obtained are shown in Figure 3, which will be imported into the finite element simulation software
ANYSY (14.5, ANSYS Corporation, Pittsburgh, PA, United States).
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Figure 3. Tensile test curves.

The mechanical properties of the two materials are listed in Table 2. Compared with the C70S6,
the yield strength and tensile strength of the 36MnVS4 are increased. The increase of the yield strength
of the 36MnVS4 material enhances the strength and the fatigue life of the 36MnVS4 connecting rod.
Therefore, under the premise of ensuring the performance of the 36MnVS4 connecting rod, the structure
can be optimized.

Table 2. Mechanical Properties.

Material Elasticity
Modulus E/MPa

Poisson’s
Ratio υ

Yield Strength
σs/MPa

Tensile Strength
σb/MPa

Fracture Stress
σf/MPa

C70S6 2.1 × 105 0.27 592 932 1125
36MnVS4 2.08 × 105 0.27 742 998 1175

2.3. Fracture Criterion and Theoretical Basis of Crack Propagation

The fracture-split processing technology of the connecting rod requires that the big end cannot
produce obvious plastic deformation during the fracture process [25]. By observing the fracture
surface of the C70S6 and 36MnVS4, it can be concluded that the plastic deformation of the two
materials is small, and only occurs in the limited range of the root of the fracture-split groove [26].
The C70S6 and 36MnVS4 are all obvious brittle cleavage fractures, which meet the small-scale yield
condition. Therefore, the C70S6 and 36MnVS4 apply to the same fracture criterion. Linear elastic
fracture mechanics theory can be used to calculate and solve the fracture under the condition of small
range yield [27,28]. The fracture process of the connecting rod is crack initiation at the root of the
incision and crack propagation, whose essence is the type I quasi-brittle fracture of elastic-plastic
material after the small range yielding. Since the fracture toughness G is relatively difficult to calculate
and measure, the K criterion is chosen as the fracture criterion.

Due to the presence of cracking notch, different stress and strain fields at the root of the actual
notch and the ideal crack tip are caused. Cracking in the notch of the connecting rod belongs to
a passivation crack. The stress state in the root of the incision is shown in Figure 4, and stress field
expression of the passivation crack tip is shown in Equation (1) [29].
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

σx =
K′I√
2πr

cos θ
2

[
1− sin θ

2 sin 3θ
2

]
− K′I√

2πr
ρ
2r cos 3θ

2

σy =
K′I√
2πr

cos θ
2

[
1 + sin θ

2 sin 3θ
2

]
+

K′I√
2πr

ρ
2r cos 3θ

2

τxy =
K′I√
2πr

cos θ
2 sin θ

2 cos 3θ
2 −

K′I√
2πr

ρ
2r cos 3θ

2

τxz = τyz = 0
σy = υ(σx + σy), plane strain
σz = 0, plane stress

, (1)

Note that ρ is the radius of curvature of the root of the incision. σx, σy, σz, τxy, τxz, and τyz are
the stress components. r and θ are the the polar coordinates of the point near the groove tip. υ is
the Poisson’s ratio. K′I is the stress intensity factor. For the root of the incision, θ = 0, and r = ρ/2.
Substituting θ and r into (1) obtains 

σx = 0

σy =
2K′I√
πρ

τxy = 0

. (2)

From Equation (2), the root of the incision is the uniaxial tension state, and the maximum tensile
stress is equal to the first principal stress. The intensity factor value K′I is only related to ρ and σy, if ρ is
determined, when σy reaches a certain value, a crack will be formed at the root of the incision. At this
time, K′I has reached the extreme value of KI, that is, the material fracture toughness KIC. After the
external force continues to increase to a certain value, the crack is unstable and expands. At this time,
no external force is required, and the crack can be rapidly expanded to the fracture. The fracture-split
of the connecting rod is an elastic-plastic small-scale yield fracture process, which conforms to the first
joint strength theory. The crack initiation and expansion is a material failure process caused by the
increase of stress [30]. The cause of the fracture is the quasi-brittle fracture caused by the maximum
tensile stress. Therefore, the maximum tensile stress is used as the basic fracture failure criterion
in the simulation calculation. In view of the complexity of the Formulae (1) and (2), only the stress
and strain state of the crack front can be qualitatively described and the quantitative analysis cannot
be performed. The structural displacement, stress-strain distribution, material fracture risk point
and fracture direction characteristics all cannot be visually characterized. The finite element method
can make up for the above defects well, therefore the finite element method is used to analyze the
fracture-split process of the connecting rod.

2.4. Finite Element Simulation and Analysis

The ANSYS/LS-DYNA software is used to simulate the process of connecting rod fracture-split.
ANSYS is a large-scale general finite element analysis software developed by ANSYS Corporation of
the United States. It is the world’s fastest growing computer-aided engineering software. LS-DYNA is
produced by LSTC/ETA Corporation of the United States and is the most famous universal explicit
dynamic analysis program in the world. It is especially suitable for solving nonlinear dynamic impact
problems of various 2D and 3D nonlinear structures such as high-speed collision, explosion, and metal
forming. In order to enhance the competitiveness of the product, ANSYS cooperated with LS-DYNA,
and integrated the LS-DYNA solver into ANSYS software.

2.4.1. Geometric Model Simplification

The connecting rod shaft and small end have no effect on the process of fracture-split, therefore
the small head and rod shaft can be ignored. A quarter of the connecting rod big end is taken to build
the model. The connecting rod is set as the deformable body. The movable block and fixed block are
set as rigid bodies. In order to avoid a large number of unit failures leading to the calculation error,
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the transitional network method is used to divide the hexahedral mesh, and the mesh of the fracture
area is encrypted, as shown in Figure 5.
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2.4.2. Boundary Constraints and Loads

Symmetry plane 1 (middle thickness surface) and symmetry plane 2 (symmetrical plane of the
axis of the connecting rod) are separately applied to the displacement constraint Uz = 0 and Ux = 0.
A full constraint is applied to the rigid fixed block. The constraint on the rigid movable block is to
limit all rotation and Uz = Ux = 0. Based on test data, the movable block applied to the speed load is of
the Y direction in the simulation process.

2.4.3. Material Parameters and Fracture Criteria Setting

In the numerical simulation of the connecting rod fracture-splitting, ANSYS is used for
pre-processing. The material definition, boundary constraints and loads are set, and the K file is
generated. Then, the maximum principal stress fracture criterion is defined by adding keywords
*MAT_ADD_EROSION in the K file. Finally, the K file is submitted to the LS-DYNA solver for solving.
LS-DYNA sets the unit failure function and simulates the crack generation and expansion through
the unit gradual demise. When the stress concentration at the root of crack notch causes the stress of
a certain element to reach the set value (fracture stress σf), the element will fail and be deleted, so that
the stress is redistributed and new stress concentration is induced. Multiple failed units penetrate
sequentially, forming a crack growth process.

3. Results

3.1. Stress and Strain Field

The first principal stress distributions of the four important moments during the fracture-split
process of the 36MnVS4 and C70S6 connecting rods are shown in Figure 6. Figure 6a shows the C70S6
connecting rod: a time of crack initiation t1 = 0 s, the start moment of crack growth t2 = 11.554 × 10−3 s.
t3 = 11.556 × 10−3 s is the time that the crack extends to the bolt hole, and t4 = 11.562 × 10−3 s is
the end time of crack propagation. Figure 6b is the corresponding time for the 36MnVS4 connecting
rod: t1 = 0 s, t2 = 7.661 × 10−3 s, t3 = 7.663 × 10−3 s, and t4 = 7.671 × 10−3 s. At the time of the crack
initiation (t1), the stress concentrations near the cracking groove of the C70S6 and 36MnVS4 connecting
rods are significant, the stress distributions are both butterfly-like, and the high stress areas are both
located in the groove root. In contrast, the stress concentration of the 36MnVS4 is more obvious than
the C70S6. The yield strength of the 36MnVS4 is higher, its crack tip stress increases faster and the
high stress region is more concentrated. And the fracture stress of the C70S6 and 36MnVS4 has little
difference, therefore the 36MnVS4 is more prone to fracture. At the start moment of crack growth (t2),
the stress concentration in the crack tip of the 36MnVS4 connecting rod is more obvious than the C70S6
connecting rod. At the time of crack extended to the bolt hole (t3), the maximum value of the first
principal stress moves forward accompanied by the leading front of the crack, and the stress is released
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in the fracture portion. In contrast, the stress concentration near the crack tip of the 36MnVS4 is more
pronounced. At the end moment of the crack propagation (t4), the most stress of the two connecting
rods is released. The stress distribution of the 36MnVS4 connecting rod is more uniform.
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In order to further analyze the stress distribution near the crack groove at the time of crack
initiation, the first principal stress and the Y-direction tensile stress of the characteristic Line 1
(groove root), Line 2 (leading edge of crack tip), Line 3 (v-type groove edge of middle thickness
surface), and Line 4 (v-type groove edge of outside surface) are extracted. The characteristic lines
positions are shown in Figure 8. In Figure 9a,b, it can be seen that the first principal stress and the
Y-direction tensile stress of the two connecting rods are the same along the L1 and L2, which indicates
that the crack propagation of the theoretical fracture surface conforms to the maximum principal stress
criterion. Figure 9a shows that the stress of the C70S6 connecting rod from the middle thickness surface
to the outside surface decreases rapidly, while the 36MnVS4 connecting rod is slower. This shows
that along the thickness direction, the stress of the C70S6 connecting rod is more concentrated in the
middle, and the 36MnVS4 stress distribution is more uniform. Therefore, the crack initiation point
of the C70S6 tends to be the only, that is, crack in the middle thickness surface. The crack initiation
point of the 36MnVS4 is scattered, and the crack initiation position at the root of the cracking groove is
random and unstable.
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Combined with Figures 9b and 6, it can be seen that the stress peak appears at the near surface of
middle thickness surface of the cracking groove. As the near surface is in the three-way stress state,
where the element firstly reaches the fracture stress, the initial crack source is generated. The initial
crack positions of the 36MnVS4 and C70S6 connecting rods are 0.16 mm and 0.09 mm distance from
the root of the fracture-split groove, respectively, which indicates that the 36MnVS4 has a deeper crack
initiation position. However, due to the presence of the root arc, the first principal stress drops slowly,
which is more conducive to the initiation stress concentration and reduces the defects of crack deviation
and bifurcation. As shown in Figure 9c,d, on the theoretical fracture surface (the root of the cracking
groove), the stress concentration of Line 3 is higher than Line 4, and the stress difference of the C70S6 is
higher than the 36MnVS4, which shows that the stress concentration of the C70S6 is more pronounced
along the direction of the theoretical fracture. At the middle thickness surface (XY-plane), the stress
difference of the C70S6 is also greater than 36MnVS4, so the stress of C70S6 is more concentrated.
Combining the two directions, the C70S6 initiation point is more unique, and tends to fracture along
the theoretical fracture surface, while the initial crack point of the 36MnVS4 is relatively scattered
and uncertain.

3.2. Crack Initiation Time and Cracking Load

The change curves of the fracture-split force with time of the C70S6 and 36MnVS4 connecting
rods are shown in Figure 10. The fracture-split forces required of the 36MnVS4 and C70S6 connecting
rods are 19.6 KN and 27.6 KN, respectively. It can be seen that the crack initiation time (point A) of
the 36MnVS4 is 7.661 × 10−3 s, and the end time of crack propagation (point B) is 7.671 × 10−3 s.
The total time is 0.01 × 10−3 s. The crack initiation time (A’ point) of the C70S6 is 11.554 × 10−3 s,
and the fracture ending time (B’ point) is 11.562 × 10−3 s. The total used time is 0.008 × 10−3 s. It can
determine that the crack initiation time of the 36MnVS4 connecting rod is earlier, but crack growth
of the C70S6 connecting rod is faster. The total crack expansion time of the 36MnVS4 connecting
rod compared to the C70S6 connecting rod increases by nearly 20%, which increases the possibility
of producing fracture-split defects in the crack propagation process of the 36MnVS4 connecting rod.
Since the crack initiation of the 36MnVS4 is earlier than the C70S6, the notch sensitivity of the 36MnVS4
is much better than that of the C70S6.
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4. Discussion

Through combined test results, the defects caused by the fracture-split of the 36MnVS4 connecting
rods are found: obvious plastic block or fiber tear zones, crack bifurcation, and fell dregs and steps,
as shown in Figure 11. The reasons that fracture-split defects of the 36MnVS4 connecting rods are
produced are analyzed by simulation process and tests.
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and clamped scrap.

Through the analysis of the composition and microstructure of the two materials, it can be known
that the carbon content of the 36MnVS4 is lower. The bulk ferrite structure is precipitated along the
grain boundary and the proportion of ferrite is larger. The ferrite is a relatively soft phase, which makes
the fracture surface in the process of fracture-splitting more prone to tear zones. This defect can be
improved by controlling the cooling rate after forging, and increasing the content of C and certain alloy
elements. If the cooling speed after forging of the connecting rod is accelerated, the time for the growth
of the austenite grains is shortened, thereby reducing the amount of ferrite precipitation. Increasing
the carbon content of the material can significantly improve the pearlite content, and increasing some
alloying elements such as V, Ti, and other content can also significantly reduce the size and proportion
of massive ferrite. Therefore, occurrence of fracture-split tear areas is decreased.

Compared with the crack propagation process of the two connecting rods, the 36MnVS4
connecting rod has a longer crack propagation time than the C70S6 connecting rod, and the fracture
separation speed is 20% lower than that of the C70S6. The slower fracture separation rate increases the
possibility of defects generation.

Compared with the C70S6 connecting rod, the crack initiation time of the 36MnVS4 connecting
rod is earlier and cracking force is smaller, therefore the 36MnVS4 has higher gap sensitivity. In the
machining process of the bolt holes and big end holes, if the processing tool becomes blunt, it will
cause the machined surface to form a rolling micro-crack which is particularly pronounced for the
materials with higher notch sensitivity. Micro-cracks are prone to secondary crack propagation and
bifurcation during crack propagation as shown in Figure 11a. If the secondary crack occurs in the
fracture surface, it will cause in-plane fell dregs or tear as shown in Figure 11d. If the secondary crack
is on the edge of the bolt hole, it will induce the fell dregs phenomenon of bolt hole as shown in
Figure 11f. If the secondary crack is on the outside surface of the connecting rod, it can cause crack
branching and clamped scrap as shown in Figure 11g,b.
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According to the stress analysis of the characteristic lines (Figure 9), it can be seen that the peak
stress curve of the 36MnVS4 is gentler, which resulted in the crack initiation point of the connecting rod
in the direction of thickness is random, scattered, and unstable. When the crack is again aggregated
after bypassing the bolt hole, it may produce step or tear zone defects as shown in Figure 11e,d.
These tend to cause a large fracture surface offset, as shown in Figure 11c. The above-mentioned
defects are mainly related to the material properties that are difficult to completely avoid, but can be
improved by improving the processing technology.

Based on the above results, it can be seen that the fracture-split defects of the 36MnVS4 connecting
rod are mainly caused by the location of the crack initiation, the expansion speed, and the instability of
the intersection. In addition to optimizing material properties, to improve the fracture-split quality
of the 36MnVS4 connecting rod, it must change the mode of crack initiation and crack propagation,
and guide the 36MnVS4 single point initiation and directional expansion and increase the crack
propagation speed. For this reason, the changed the fracture cross-section design is shown in Figure 12.
The rectangular cross-section increases the likelihood that the two cracks do not converge, and then
causes break-out and clamped scrap defects. The outer edge of the fracture surface adopts the arc
design, which will help the intersection of cracks in the same point, and can reduce the area of the
fracture surface and increase crack propagation speed. The tearing, fell slags, and other defects of the
fracture surface will be greatly reduced.
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The fracture-splitting texts of the 36MnVS4 connecting rod with arc-shaped sections are conducted.
Experimental results are shown in Figure 13. When the big end of the connecting rod is circular, it is
clear that the fracture surface is more flat and has no obvious defects. It can be seen that the step defect
on the crack convergence zone disappear, and the tearing phenomenon and fell slags at the fracture
surface are also un-conspicuous. This indicates that the crack propagation process of the circular
section connecting rod become more stable, and the quality of the fracture surface is remarkably
improved. Therefore, changing the cross-sectional shape of the 36MnVS4 connecting rod can also
reduce the fracture-split defects.
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5. Conclusions

The 36MnVS4 has a higher yield ratio and better machinability than the C70S6. The 36MnVS4 has
lower carbon content and more ferrite, therefore the fracture surface of 36MnVS4 connecting rod is
more prone to tears.

Compared with the C70S6 connecting rod, the crack initiation time of the 36MnVS4 connecting
rod is earlier, but the fracture-split speed of C70S6 is larger. And the fracture separation speed is
20% lower than that of the C70S6. The slower fracture separation rate increases the possibility of
defects generation.

The crack initiation position of the 36MnVS4 connecting rod is random, scattered, unstable,
and the 36MnVS4 has higher gap sensitivity. The plastic deformation range of the fracture surface of
the 36MnVS4 connecting rod is greater than that of the C70S6 connecting rod. Therefore, the 36MnVS4
connecting rod is more prone to produce quality defects in the fracture-split process.

By changing the cross-section design, the outer edge of the joint surface is changed to arc-shaped,
which can improve the fracture-split process of the 36MnVS4 and reduce the processing defects.
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