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Abstract: The mathematical nature of the flow rule for the strain gradient plasticity theory proposed
by Nix and Gao (W.D. Nix and H. Gao, J Mech Phys Solids 46(3), 411(1998)) is discussed based on the
paradigm developed by Gurtin and Anand (M.E. Gurtin and L. Anand, J Mech Phys Solids 57 (3),
405 (2009)). It is shown that, when investigated on the basis of Gurtin–Anand theory, the Nix–Gao
flow rule is a combination of constitutive equations for microstresses, balance law, and a constraint.
As an accessory, we demonstrate that the strain gradient term introduced in the model is energetic.
The results are obtained by combining a virtual-power principle of Fleck and Hutchinson, and the
free-energy imbalance under isothermal conditions.

Keywords: strain gradient plasticity; principle of virtual power; defect energy; flow rule; material
length scale

1. Introduction

Many experiments at small scales, including nano/microindentation [1], torsion of thin metallic
wires [2–5], and bending of thin foils [6,7], have clearly demonstrated a strong size-dependent
strengthening associated with non-uniform plastic deformation. The size-dependent behaviour cannot
be captured by the classical plasticity theories, due to their lack of intrinsic material length scales.
Besides, the problem of simple plastic shear in thin layers is important for the rapidly developing field
of research on severe plastic deformations [8,9]. It has been demonstrated that the flow loses stability,
and vortex-like motion occur due to large stress gradients in the plastic shear in thin layers [10–12].
Such a phenomenon also cannot be described by the conventional theories of plasticity [13]. Therefore,
many theoretical works have been carried out to enclose strain gradient effects into a continuum
theory of plasticity. Apparently, the earliest attempt at a phenomenological theory of strain gradient
plasticity can be attributed to Aifantis [14,15], although the pioneering works on continuum dislocation
theories which implicitly include length scales established for elastic-plastic crystals, date back to
Kröner [16], Teodosiu [17], Lardner [18], and others in the 1960s and 1970s. Aifantis [8,9] proposed a
flow rule by simply adding the nonlocal term to the conventional flow resistance. Thereafter, inspired
by the concept of geometrically necessary dislocations (GNDs) [16,18–20], a number of strain gradient
plasticity theories have been developed. Reviews on the current state of the art have been given by
Fleck et al. [21], Lubarda [22], Bardella [23], and Liu and Dunstan [24]. It should be emphasized that
the treatment throughout the paper is limited to small strains and isotropic solids. More physically
realistic models, that account for nonlinearity and anisotropy of elasticity and slip, including the strain
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gradient crystal plasticity theories [25–27] and the continuum theory of dislocations [28–30], are not
considered at this stage.

The phenomenological theory of strain gradient plasticity developed by Fleck and Hutchinson [31]
is a simple extension of rate-independent J2 theory. This model shares similar features with an earlier
version proposed by Mühlhaus and Aifantis [32]. However, Gudmundson [33] firstly noted that
the Fleck–Hutchison theory [31] does not always satisfy the thermodynamic requirement on plastic
dissipation. Afterward, Gurtin and Anand [34] investigated the physical nature of flow rules for
theories of strain gradient plasticity proposed by Aifantis [14,15] and by Fleck and Hutchinson [31].
The authors concluded that the flow rule of the Fleck–Hutchinson theory is incompatible with
thermodynamic restrictions related to the requirement of nonnegative plastic dissipation, unless the
involved nonlocal term is dropped. Moreover, the authors also found that the flow rule of the gradient
theory of Aifantis represents microscopic force balances supplemented by appropriate constitutive
equations, and that the nonlocal term in the model is energetic. Alternatively, Gudmundson [33] and
Gurtin and Anand [35] developed another class of formulations of strain gradient plasticity free of the
thermodynamic deficiency. Recently, in order to eliminate the thermodynamic deficiency mentioned
above, Hutchinson [36] also proposed a modified version of the theory of Fleck and Hutchinson [31],
in which the higher order microstresses are partitioned into energetic (or recoverable) and dissipative
(or unrecoverable) components.

In most of the modern SGP frameworks, both the energetic and dissipative gradient contributions
have been introduced [33,35,37–39]. Especially, positive plastic dissipation has been ensured by the
gradient theory of Gudmundson [33], thanks to the peculiar structure of the constitutive laws for
the dissipative stresses, smartly relating the rates of the plastic strain and its gradient to finite stress
measures. The role of energetic and dissipative gradient effects has been studied numerically by
several authors [40–44]. However, as indicated by Fleck and Willis [45], the degree to which strain
gradient effect is mainly energetic or dissipative remains unclear. The exact mechanisms by which
GNDs lead to material strengthening are still controversial. On the one hand, GNDs may be considered
to translate into an increase in free energy of the solid [38]. On the other hand, several experiments
suggest that the core energy of dislocations stored during plastic deformation is much smaller than
the plastic work dissipated in dislocation motion, such that the movement of GNDs in the lattice may
contribute more to plastic dissipation [38].

Another attractive formulation of strain gradient plasticity is the mechanism-based gradient
plasticity (MSG) proposed by Gao and co-workers [1,46], based on a multiscale framework linking
the microscale concept of statistically stored dislocation (SSDs) and GNDs to the mesoscale notion of
plastic strains and strain gradients. Inspired by the indentation experiments at small scales, Nix and
Gao [1] firstly proposed a flow rule for strain gradient plasticity based on the Taylor-based hardening,

τ =
√

Y2(ep) + β|∇ep|, (1)

where Y(ep) is the conventional flow resistance, ep is the accumulated plastic strain,
and |∇ep| =

√
∇ep·∇ep is the effective strain gradient introduced by Aifantis and

co-workers [14,32]. Note that the original expression of the Nix and Gao flow rule is σf low =

Y0

√
f 2(ep) + lηp =

√
[Y0 f (ep)]2 + Y2

0 lηp. In Equation (1), we assume Y(ep) = Y0 f (ep), ηp = |∇ep|,
and β = Y2

o l, with Yo being the initial flow resistance and l a material length scale introduced for
dimension consistency. Moreover, the measure of strain gradient used here is different from that
adopted by Nix and Gao [1], in which the contribution of elastic strain gradient is involved. The flow
rule, Equation (1), is derived from the Taylor relation of the shear strength and the dislocation density.
It has been widely used by many authors for developing various theories of strain gradient plasticity,
e.g., MSG [46,47], the conventional theory of mechanism-based strain gradient plasticity (CMSG) [48],
the Taylor-based nonlocal theory of plasticity (TNT) [49,50], and the physically based gradient plasticity
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theory (PGP) [51], etc. However, we are unaware of any detailed discussion of the thermodynamics
related to Equation (1). Following Gurtin and Anand [34], one may ask:

1. Is Equation (1) a constitutive relation, a balance law, or a combination of both?
2. Whether the nonlocal term β|∇ep| is energetic or dissipative, or even whether or not the theory is

consistent with thermodynamics?

By combining the thermodynamical principle under isothermal conditions and the virtual-power
principle of Fleck and Hutchinson [31], we perform a discussion on the mathematical nature of the
famous flow rule for strain gradient plasticity proposed by Nix and Gao [1]. In order to elucidate
whether the plastic-strain gradient term involved is energetic or dissipative, the general flow rule
established by Gurtin and Anand [34] is adopted, and a form of quadratic defect energy is also assumed.
It is our choice to investigate the Nix–Gao theory in light of the Gurtin–Anand theory. This will also
afford us an opportunity to determine the differences between the two theories.

2. Kinematic Relations

Let u(x, t) be the displacement vector at point x and time t of a particle in a body B undergoing
infinitesimal deformation. By convention, the displacement gradient∇u admits an additive decomposition

∇u = He + H p, trH p = 0, (2)

where He is the elastic distortion, H p is the plastic distortion, and trH p is the trace of plastic distortion.
The elastic distortion accounts for both lattice stretching and rotation, while the plastic distortion
accounts for the local deformation of material as a result of the formation and motion of dislocations
through the material structure. He and H p can be further decomposed, additively and uniquely,
into symmetric and skew parts in the sense, He = Ee + W e; H p = Ep + W p, where Ee = symHe,
Ep = symH p and W e = skwHe, W p = skwH p. Here, symA and skwA are the symmetric and skew
parts of tensor A, respectively. We limit the discussion to a plastically irrotational material, i.e., W p = 0.
Hence, Equation (2) can be written as

∇u = He + Ep, trEp = 0 (3)

In Gurtin and Anand [34], the flow direction N p is defined by

N p =

.
E

p

|
.
E

p
|
, with

.
E

p
6= 0 (4)

We denote the accumulated plastic strain by ep, which is a function of space and time. The accumulated
plastic strain is defined through its evolution equation

.
ep
(x, t) = |

.
E

p
(x, t)| with ep(x, 0) = 0 (5)

By Equations (4) and (5), the plastic strain rate
.
E

p
has the form

.
E

p
=

.
epN p (6)

Taking the time derivative of Equation (3) and using Equation (6), we the obtain the basic kinematic
rate equation

∇ .
u =

.
H

e
+

.
epN p, trN p = 0 (7)

Equation (7) is useful in the derivation of the force balances established by Gurtin and Anand [34].
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3. Virtual-Power Principle and Force Balances

The virtual-power principle of Fleck and Hutchinson [31] and the force balances have been
presented in Ref. [34]. We give a brief summary here. Microscopic stresses include plastic microscopic
stress T p power-conjugate to plastic strain rate

.
E

p
and third-order microscopic hyperstress Kp

power-conjugate to the plastic strain gradient rate ∇
.
E

p
. Note that T p is dissipative and deviatoric,

and Kp is symmetric and deviatoric in its first two indices.
The codirectionality hypothesis states that the deviatoric part of the macroscopic stress To and the

plastic strain rate flow in the same direction in the sense

To

|To|
=

.
E

p

|
.
E

p
|
≡ N p (8)

The resolved shear denoted by τ is defined by

τ = T : N p = To : N p with To = τN p (9)

here, T is known as the Cauchy stress, power-conjugate to the elastic distortion rate
.

H
e
. The local

power expended within an arbitrary portion of the body by the microscopic stresses T p and Kp can be
written as

T p :
.
E

p
+Kp...∇

.
E

p
= τp .

ep
+ ξ p·∇ .

ep (10)

here, τp and ξp are scalar and vector microstresses, respectively. These are defined by

τp = TijN
p
ij + Kp

ijk Np
ijk and ξ

p
k = Kp

ijk Np
ij (11)

where Kp
ijk and Np

ij are components of Kp and Np respectively. The microscopic stresses τp and ξp can
be additively decomposed into dissipative and energetic parts.

The internal power expenditure Wint(P) within a portion P of a body B is given by

Wint(P) =
∫

P (T :
.
E

e
+ T p :

.
E

p
+Kp...∇

.
E

p
)dV

=
∫

P (T :
.
E

e
+ τpep + ξp·∇ .

ep
)dV

(12)

To obtain the power expended on P of B by external forces, we denote t(n) as the macrotraction
on the boundary ∂P and b the body force, both conjugate to the velocity

.
u. Due to the presence of

gradient term ∇ .
ep, considering the divergence theorem, we denote k(n) as the microtraction on ∂P

conjugate to
.
ep. The vector n denotes the outward unit normal to the boundary ∂P.

The power expended Wext(P) on P by the external agencies is given by

Wext(P) =
∫

∂P
t· .uda +

∫
P

b· .udV +
∫

∂P
kepda (13)

Gurtin and Anand [34] introduced a generalized virtual velocity in the form of a list
ϑ = {ũ, Ẽe, ẽp} consistent with the equation

sym∇ũ = Ẽe + ẽpN p (14)

The principle of virtual power states that∫
P

(
T : Ẽe + τp ẽp + ξp·∇ẽp

)
dV =

∫
∂P

t·ũda +
∫

P
b·ũdV +

∫
∂P

kẽpda (15)

Consequences of the virtual power balance Equation (15) are
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1. Macroscopic force balance with concomitant macrotraction condition

DivT + b = 0 in P, Tn = t on ∂P (16)

2. Microscopic force balance and its concomitant microtraction condition

τ = τp −Divξp in P, ξp·n = k(n) on ∂P (17)

4. Free Energy, Constitutive Relations, and Gurtin–Anand Flow Rule [34]

Let ψ be the free energy measured per unit volume in an arbitrary region P of a body. The combination
of the first and the second laws of thermodynamics under isothermal condition implies that the
temporal increase of the free energy over the subregion P cannot exceed the external power expended
on P. Following Gurtin and Anand [34], the local free energy imbalance is given as

.
ψ− T :

.
E

e
− τp .

ep − ξp·∇ .
ep ≤ 0 (18)

It is known that the energetic microstresses are obtained from terms relating to the partial derivatives
of the free energy with respect to the conjugated kinematic variables, while the dissipative microscopic
stresses usually satisfy dissipation inequality, and are related to the kinematic rate variables. Gurtin
and Anand [34] assumed the free-energy is decomposed into elastic free energy ψe(Ee) and plastic
free-energy ψp(ep, g), where g = ∇ep. By convention, the elastic stress T is defined by

T =
∂ψe(Ee)

∂Ee (19)

and the energetic parts of τp and ξp denoted, respectively, as τ
p
en and ξ

p
en. They are defined by

τ
p
en =

∂ψp

∂ep and ξ
p
en =

∂ψp

∂g
(20)

Denote the dissipative part of the microscopic stresses τp and ξp by τ
p
dis and ξ

p
dis, respectively.

Define
τ

p
dis = τp−τ

p
en and ξ

p
dis = ξp − ξ

p
en (21)

Substituting Equations (19)–(21) into Equation (18), we have the local dissipation inequality

τ
p
dis

.
ep

+ ξ
p
dis·∇

.
ep ≥ 0 (22)

The general flow rule of Gurtin and Anand [34], for the strain gradient plasticity involving the
accumulated plastic strain, is obtained by substituting the constitutive relations for the microscopic
stresses, Equations (20) and (21), into the microscopic force balance, Equation (17). The flow rule is
given as

τ = τ
p
dis +

∂ψp

∂ep −Div
(

ξ
p
dis +

∂ψp

∂g

)
(23)

Hence the flow rule consists of the microscopic force balance augmented with thermodynamically
consistent constitutive relation for the microscopic stresses.

In order to derive the Aifantis model, Gurtin and Anand [34] assumed a quadratic defect energy
of the form

ψp(g) =
1
2

β∗|g|2 (24)

where β∗ > 0 is a constant. This form of defect energy implies that τ
p
en = 0. By Equation (20), the

microscopic stress vector ξ
p
en is deduced as
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ξ
p
en = β∗g (25)

In addition, Gurtin and Anand [4] also assumed that

τ
p
dis = Y(ep) and ξ

p
dis = 0 (26)

where Y(ep) is the coarse grain flow resistance. Substituting Equations (25) and (26) into Equation (23),
we obtain the Aifantis flow rule

τ = Y(ep)− β∗∆ep (27)

The nonlocal term β∗∆ep is energetic, since it is related to the defect free energy. It is obvious that
the Aifantis model is thermodynamically consistent.

5. Mathematical Nature of the Nix–Gao Flow Rule

In what follows, we discuss the mathematical nature of Nix–Gao flow rule based on the
Gurtin–Anand general flow rule, Equation (23), and the quadratic defect energy, Equation (24). As we
mentioned earlier, the Nix–Gao flow rule has the form

τ =
√

Y2(ep) + β|∇ep| (28)

We have raised the following questions:

1. Is the Nix–Gao flow rule, Equation (28), a constitutive relation, a balance law, or a combination
of both?

2. Whether the nonlocal term β|∇ep| is energetic or dissipative, or even whether or not the theory is
consistent with the laws of thermodynamics?

In view of Gurtin and Anand [34], we take the same assumptions as in Section 4. Comparing
the general flow rule Equation (23) and the flow rule Equation (28), one can deduce that Divξ

p
en has

the form
Divξ

p
en = Y(ep)−

√
Y2(ep) + β|∇ep| for ep 6= 0 (29)

here, we have already assumed that τ
p
en = 0 and ξ

p
dis = 0. Note that the solution Divξ

p
en = Y(ep) +√

Y2(ep) + β|∇ep| is not considered, since from τ =
√

Y2(ep) + β|∇ep|, we have Divξ
p
en = τ

p
dis − τ =

Y(ep)−
√

Y2(ep) + β|∇ep|. We recall the following equations [4]:

(i) Microforce balance
τ − τ

p
dis = −Divξ

p
en (30)

(ii) Constitutive relations for the microscopic stresses

τ
p
dis = Y(ep), ξ

p
en =

βl
Yo
∇ep (31)

where β = Y2
o l, and a comparison with Equation (25) implies that β∗ has the specific form

β∗ = Yol2 (32)

(iii) Flow rule of Aifantis (i.e., Equation (27))

τ = Y(ep)− βl
Yo

∆ep (33)

substituting Equation (31) into Equation (28), we arrive at

τ2 − (τ
p
dis)

2
= β|∇ep| (34)
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and making use of Equations (30) and (31), we have

(τ − τ
p
dis)(τ + τ

p
dis) = −(τ + τ

p
dis)

βl
Yo

∆ep (35)

Thus,

τ + τ
p
dis = −

Yo

l
|∇ep|
∆ep (36)

It seems that Equation (36) is a constraint and not a constitutive law, since the constitutive
relations and the balance law for the system of microforces are known, a priori. Clearly, we show
that the Nix–Gao flow rule Equation (28) is compatible with thermodynamics, if the constraint
Equation (36) is satisfied. Actually, we are unaware of any discussion of the thermodynamic aspects of
the Nix–Gao flow rule in the literature, although a common viewpoint seems to be that the gradient
term is dissipative. However, our analysis, based on the laws of thermodynamics, as expressed in
the free-energy imbalance, indicates that the gradient term involved is energetic, which provides a
definitive answer to the question.

6. Conclusions

The thermodynamic admissibility of the flow rule due to Nix and Gao [1] has been examined
within the paradigm set out by Gurtin and Anand [34]. It has been shown that the Nix–Gao theory—in
the light of Gurtin and Anand [34]—is a combination of (i) constitutive relations (see Equation (31)) for
the microstresses, (ii) balance law given by Equation (30), and (iii) an additional constraint given by
Equation (36). This constraint establishes the difference between the Nix–Gao theory and the Aifantis
theory. What is important, the material length scale l is associated with energetic microstress vector
ξ

p
en (see Equation (31)). It is concluded that the term β|∇ep| is energetic, and is consistent with the law

of thermodynamics provided the constraint condition and the assumptions leading to the Aifantis
theory are always satisfied. It should be noted that, for deriving the constraint condition, we take a
specific form of defect energy that corresponds to the Aifantis model. If we alter the form of the defect
energy, the resultant constraint may change. However, the physical feature of the Nix–Gao flow rule
remains. In summary, fundamental issues which are raised by Gurtin and Anand [4], for Aifantis-type
strain gradient plasticity theories, are extended to the Nix–Gao theory. The issues will be interesting
and important in the field of small scale plasticity.
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