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Abstract: A phenomenological constitutive model is developed to describe the uniaxial
transformation ratcheting behaviors of the superelastic shape memory alloy (SMA) by employing
a cosine–type phase transformation equation with the initial martensite evolution coefficient that can
capture the feature of the predictive residual martensite accumulation evolution and the nonlinear
hysteresis loop on a finite element (FE) analysis framework. The effect of the applied loading level on
transformation ratcheting is considered in the proposed model. The evolutions of transformation
ratcheting and transformation stresses are constructed as the function of the accumulated residual
martensite volume fraction. The FE implementation of the proposed model is carried out for
the numerical analysis of transformation ratcheting of the SMA bar element. The integration
algorithm and the expression of consistent tangent modulus are deduced in a new form for the
forward and reverse transformation. The numerical results are compared with those of existing
models; experimental results show the validity of the proposed model and its FE implementation in
transformation ratcheting. Finally, a FE modeling is established for a repeated preload analysis of
SMA bolted joint.

Keywords: SMAs; superelasticity; FE implementation; phase transformation ratcheting; preload
process analysis of bolt

1. Introduction

SMA has been widely applied in Micro-Electro-Mechanical System (MEMS), actuators, biomedical
devices, organ transplantation, transportation, aerospace, and civil engineering due to its well-known
superelasticity, shape memory effect, excellent biocompatibility, and wear resistance [1–6]. Over the
last two decades, with a deeper understanding of thermo–mechanical coupling behavior of SMA, more
and more scholars have been paying attention to the response of thermo–mechanical coupling behavior
of the alloy undergoing cyclic loading. The cyclic deformation behavior of SMA, as described in earlier
research, was followed with interested by the research group led by Miyazaki [7,8]. The group’s
research concluded that the residual irrecoverable deformation of SMA would increase gradually
with the increase of cycle times under mechanical loading cycles. The phase transformation stress
would also decrease with the increase of cycle numbers. Strnadel et al. [9,10] studied the effect of alloy
elements and components on mechanical cyclic deformation behavior of superelastic NiTi alloy by
experiments, and revealed the inhibition effect of a high nickel content on cyclic residual deformation.
Nemat-Nasser also observed the deformation features of superelastic NiTi alloy under cyclic loadings
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through experiments [11]. It was revealed that the increment of residual martensite strain and the
dissipation energy decreases with the increase of cycle numbers, and that both tend to be stable
following several cycles.

The superelasticity of NiTi SMA gradually deteriorates during the process of cyclic deformation.
This phenomenon could mainly be expressed as four aspects: the residual martensite strain
accumulation, the gradual decrease of transformation stresses, the gradual change of phase
transformation modulus, and the gradual decrease of dissipation energy with the cyclic
loadings [8,12–19]. The research done by [20–26] shows that the mechanical behavior of the alloy
is strongly dependent on the loading rate. A non–monotonic relationship can be found between the
dissipation energy and the loading rate. The mechanical dissipation and the latent heat of phase
transformation cause heat generation in the alloy. Kan et al. [27] also studied experimentally the cyclic
deformation behavior of the untrained superelastic NiTi SMA at different loading rates. The results
show that all of the phase transformation modulus, the starting stress of martensitic transformation,
the hysteresis loop, and the residual strain of NiTi SMA are strongly dependent on the loading rate.

Based on existing experimental studies, in recent years, a series of phenomenological constitutive
models have been built by different scholars [28–31] to describe the thermo–mechanical coupling
deformation characteristics of SMA. As a further work, the FE implementation of the proposed
model was carried out to calculate the accurate stress-strain responses for SMA-based devices. In the
generalized plasticity frame, the return-mapping algorithm was utilized for analysis of the superelastic
NiTi alloy [32,33]. However, it was not yet possible to describe the deterioration of the superelasticity
and shape memory effect of untrained materials during cyclic deformation. In view of the shortcomings
of the above work, some scholars have further developed the above constitutive model. Based on
the existing experimental observations with cyclic deformation, the corresponding cyclic constitutive
model was established by Lagoudas et al. [34] to describe the accumulation of interfacial defects and
residual martensite in cyclic deformation. Though Lagoudas’s model shows good capability in the
prediction of the nonlinear hysteresis loop shapes with a lot of material parameters, that model can only
give a reasonable description for the cyclic deformation characteristic of a specific loading conditions,
instead of predicting the dependence on the applied loading level. Kan and Kang et al. [35,36]
made a further expansion of the cyclic constitutive model based on the experimental observation by
Kang et al. [37] that is able to reasonably describe the applied loading level related to the superelastic
deterioration phenomenon. Furthermore, the Kan-Kang’s model accounts for the asymmetric effect of
tension and compression of the material on the phase transformation ratcheting behavior and the effect
of applied loading level with just a small number of material parameters. Nevertheless, the linear
phase transformation hardening rule employed by Kan-Kang’s model cannot predict the nonlinear
hysteresis loop shape well.

This paper thus develops a phenomenological constitutive model to describe the uniaxial
transformation ratcheting behaviors of superelastic SMA. A cosine-type phase transformation equation
with the initial martensite evolution coefficient that can capture the feature of the predictive residual
martensite accumulation evolution and the nonlinear hysteresis loop is employed in the proposed
model on a FE analysis framework. The return-mapping algorithm and the consistent tangent modulus
are deduced in a new form for the phase transformation. The validity of the proposed model and
its FE implementation in transformation ratcheting is finally examined by a comparison between the
proposed model and the existing model and experimental results. Finally, a numerical example is
given to analyze the repeated preload process of the SMA bolted joint.

2. Constitutive Modeling for NiTi SMA under Cyclic Loading

In the last decade, many researchers focused on constitutive modeling to describe the cyclic
deformation of NiTi SMA. The phenomenological constitutive model represents a good candidate
to be integrated into the structure computational methods, such as the FE method, to predict the
cyclic deformation of the SMA structure. However, these models with FE implementation seem to be
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ill-suited to efficiently analyzing the complex structure due to relatively low computation efficiency
and nonlinearity.

Therefore, in this work, a one–dimensional constitutive model for phase transformation ratcheting
of superelastic SMA is proposed based on the Brinson-model, and then implemented into the FE model
of a one-dimensional bar element to describe the cyclic deformation of some mechanical structures,
such as SMA bolt joints, SMA washers, and so on.

2.1. Constitutive Equation and Internal Variables

In the proposed model, the total strain ε can be decomposed into an elastic strain tensor εe and an
inelastic strain tensor εin with infinitesimal strain assumption.

ε = εe + εin (1)

The residual deformation of SMA under cyclic loadings is considered to be attributed to the
residual martensite deformation due to the phase transformation ratcheting. In order to characterize
this deformation mechanisms, two internal variables are introduced here in Helmoltz free energy,
which is assumed to be additively decomposed into elastic and inelastic parts, as follows:

ψ = ψε(ε− εin, ξ, δ, T) +ψin(ξ, δ, T) (2)

The internal variable ξ as the martensite volume fraction depicts the stress–induced martensite
phase transformation, and is constrained by 0 ≤ ξ ≤ 1. δ characterizes the accumulative martensite
transformation, including the accumulated martensite volume fraction δc.

From the principle of thermodynamics, Clausius–Duhem inequality can be expressed as:

σ :
.
ε−

.
ψe(ε− εin, ξ, δ, T)−

.
ψin(ξ, δ, T) ≥ 0 (3)

where
.
ψe = σ : (

.
ε− .

ε
in
) =

∂ψ

∂(ε− εin)
: (

.
ε− .

ε
in
) (4a)

.
ψin =

∂ψ

∂ξ
:

.
ξ +

∂ψ

∂δ
:

.
δ =

∂ψ

∂ξ
:

.
ξ +

∂ψ

∂δc
:

.
δc (4b)

The incomplete phase transformation between martensite and austenite could be observed during
the cyclic phase transformation [35–37]. Furthermore, the amount of residual martensite would
increase with the increasing number of loading cycles. Therefore, the total induced–martensite volume
fraction ξ that represents the progressive increase of residual martensite strain is set as an internal
variable and divided into two parts, i.e., reversible martensite volume fraction ξr and an irreversible
residual one ξ ir.

ξ = ξr + ξ ir (5)

According to the experimental observations, the phase transformation deformation evolves with
the increasing number of loading cycles, and reaches a stable value after a certain cycle [35–37]. In order
to account for this evolution process, the internal variable δc is picked as the accumulated martensite
volume fraction ξc that represents the evolution process of some variables and material parameters
with the increasing number of cycles, and is written by:

ξc =
∫ t

0

∣∣∣ .
ξ

r
(τ)
∣∣∣dτ (6)

where, t is a kinematic time.
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Based on the frame of generalized plasticity, the total inelastic strain εin in Equation (1) equals to
the transformation strain εtr from stress–induced martensite phase and its reverse.

εin = εtr (7)

The SMA constitutive model used here is based on a model originally formulated by [28,29],
which is a phenomenological macro–scale one–dimensional constitutive model, and can be written as

σ− σ0 = Es(ξ)ε− Es(ξ0)ε0 + Θ(T − T0) + Ω(ξ)ξ −Ω(ξ0)ξ0 (8)

where Es is the Young’s modulus, Ω is the transformation coefficient, Θ is the thermal elastic
coefficient; T is the temperature. The subscript ‘0’ indicates the initial values. Young’s modulus
Es and transformation coefficient Ω are the function of the martensite volume fraction ξ, which are
given as:

Es(ξ) = EA + ξ(EM − EA) (9a)

Ω(ξ) = −εLEs(ξ) (9b)

It is assumed that the equivalent transformation strain and the recoverable martensite volume
fraction are in a proportional relationship (irreversible martensitic transformation does not participate
in the transformation process). Then, the following relationship can be obtained:

ξ =
εtr

εL
(10)

Equation (5) illustrates that the total induced–martensite volume fraction ξ consists of reversible
martensite volume fraction ξr and an irreversible residual one ξ ir. Since the irreversible martensitic
transformation does not take part in the phase transformation process, the stress is only the function of
reversible martensite volume fraction, which is irrelevant to the residual martensite volume fraction in
the phase transformation. The expression forms of ξr are as follows:

(i) Transformation to martensite phase:

If T > MS and σcr
s + CM(T −Ms) < σ < σcr

f + CM(T −Ms):

ξr

A→M
=

1− ξ ir
f

M→A

2
cos

{
π

σcr
s − σcr

f
[σ− σcr

f − CM(T −MS)]

}
+

1 + ξ ir
f

M→A

2
(11)

(ii) Transformation to austenite phase:

If T > AS and CA(T − A f ) < σ < CA(T − As):

ξr

M→A
=

ξr
f

A→M

− ξ ir

M→A

2

{
cos[aA(T − As −

σ

CA
)] + 1

}
(12)

where, σcr
s and σcr

f are the starting and finishing stresses of martensite transformation, CA and CM are
the slope for the relation between critical transformation stress and temperature, As and A f are the
starting and finishing temperatures of austenite transformation, Ms and M f are starting and finishing
temperature of martensite transformation, ξr

f
A→M

is the volume fraction of martensite transformation at

the end of transformation to martensite phase, and ξ ir
f

M→A

is the residual volume fraction of martensite
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transformation at the end of transformation to austenite phase. The parameters aA and aM are
expressed as:

aA =
π

A f − As
, aM =

π

M f −Ms
(13)

Now, Equation (8) can be rewritten for the no initial values case by considering the irrecoverable
feature as follows:

σ = Es(ξ)ε + Ω(ξ)ξr (14)

2.2. Evolution Law of Parameters Governed by Accumulated Martensite Volume Fraction

As described in [34–36], the evolution of transformation ratcheting and transformation stresses
with a number of loading cycles are related to the accumulated martensite volume fraction δc.
It was found by Lagoudas et al. [34] that the evolution of peak strain and valley strain was due
to transformation ratcheting, and provided an evolution equation taking the accumulated martensite
volume fraction as a governing variable. However, further research by Kan et al. [35] found that the
parameters of transformation ratcheting and transformation stress were associated with the loading
stress level. Detailed evolution equations can be referred to from previous work [35]. The evolution
equations are outlined as follows, to satisfy the integrity of the content in this work.

(i) Evolution equation for residual martensite volume fraction:

.
ξ

ir
= ξ ir

maxc f
AM(σ)e−bξc .

ξ
c

(15)

where ξ ir
max = εir

max/εL is the maximum irreversible residual martensite volume fraction produced in
the cyclic tension-unloading test with a peak stress equal to the finish stress of phase transformation
from austenite to martensite, i.e., at the end of the stress plateau. εir

max is the maximum irreversible
residual martensite strain corresponding to the maximum load of stable cycle phase transformation.
εL is the uniaxial maximum phase transformation strain. The material parameter b is to govern the
saturation rate of residual martensite volume fraction ξ ir. The revised function cAM(σ) is introduced
in the evolution law associated with the loading stress level to determine the correlation between that
level and the residual martensite fraction, and is written as:

cAM(σ) = (
< QAM

f −QAM
s − < QAM

f − σ >>

QAM
f −QAM

s
)n (16a)

c f
AM(σ) = max(c f

AM(σ)) (16b)

where QAM
f = σAM

f , < x >= 1
2 (x + |x|), c f

AM is the value of cAM at the endpoint of the forward
transformation. The material parameter n is to describe the nonlinear relationship between the residual
martensite volume fraction and the loading stress level. It can be found according to Equation (16a)
that, in the forward phase, the value of cAM increases with the increase of the loading stress level in
the interval of QAM

s ≤ σ ≤ QAM
f , and reaches its maximum at the endpoint of forward transformation.

(ii) Evolution law of transformation stress

Due to incomplete phase transformation during loading cycles, the superelastic NiTi SMA
shows the mixture state of the austenite phase and residual martensite phase. The transformation
stresses decrease with the increasing number of loading cycles. Thus, based on the experimental
observations [37], the evolution equations with an exponential formulation were proposed by [35] to
describe the progressive evolution of the transformation stresses with an increasing number of loading
cycles from their initial values to stable ones, and are introduced here as:

σAM
s = σAM

s0
− (σAM

s0
− σAM

s1
)(1− e−cAM

s ξc
) (17a)
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σAM
f = σAM

f0
− (σAM

f0
− σAM

f1
)(1− e−cMA

f ξc
) (17b)

σMA
s = σMA

s0
− (σMA

s0
− σMA

s1
)(1− e−cMA

s ξc
) (17c)

σMA
f = σMA

f0
− (σMA

f0
− σMA

f1
)(1− e−cMA

f ξc
) (17d)

where σAM
s0

, σAM
f0

, σMA
s0

and σMA
f0

are the transformation stresses of initial cyclic loading, and σAM
s1

,

σAM
f1

, σMA
s1

and σMA
f1

are the transformation stresses of stable phase transformation. cAM
s , cAM

f , cMA
s

and cMA
f are the parameters to govern the saturated rates of the transformation stresses.

3. FE Modeling for One-Dimensional Bar Element of SMA Ratcheting Behavior

3.1. Numerical Integration Algorithm

Based on the infinitesimal strain assumption, the increment of substep n + 1 of total strain ∆εn+1

can be defined as the summation of the increments of elastic strain, and transformation strain,

∆εn+1 = ∆εe
n+1 + ∆εtr

n+1 (18)

According to Equation (10), the increment formulation of transformation strain can be written as:

∆εtr
n+1 = εL∆ξr

(n+1) (19)

Based on Equation (14), the stress in the incremental calculation can be obtained as:

σn+1 = Es
n+1(ξn+1)

(
εn+1 − εL∆ξr

(n+1)

)
(20)

in which, εn+1 = εn + ∆εn+1 is the strain in the current increment step, and εn is the strain in the
substep n.

In this research, the total martensite volume fraction is divided into two parts, i.e., reversible
martensite volume fraction ξr and irreversible residual one ξ ir. Hence, the increment of the reversible
martensite volume fraction can be written as:

∆ξr
(n+1) = ∆ξ

(n+1)
− ∆ξ ir

(n+1) (21)

According to Equations (7), (11), and (12), the phase transformation conditions can be introduced
as:

FAM(σ, ξ) = σ− σAM
s (ξ) = 0, forward phase transformation (22a)

FMA(σ, ξ) = σ− σMA
s (ξ) = 0, reverse phase transformation (22b)

Substituting Equation (20) into Equation (22) gives:

Es
n+1(ξn+1)

(
εn+1 − εL∆ξr

(n+1)

)
− σs(ξ) = 0 (23)

in which, σs(ξ) = σAM
s (ξ) for forward phase transformation, and σs(ξ) = σMA

s (ξ) for reverse
phase transformation.

Solving Equation (23) by the Newton-Raphson method yields:

ctr =
Es

n+1(ξn+1)
(

εn+1 − εL∆ξr
(n+1)

)
− σs(ξ)

εn+1
(
dEs

n+1/dξn+1
)
− εL

(
dEs

n+1/dξn+1
)
∆ξr

(n+1) − εLλtr
(n+1)E

s
n+1(ξn+1)− Htr

(24)

in which, Htr = H f or for forward transformation, Htr = Hrev for reverse transformation.
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The increment of total martensite volume fraction can be updated in substep k + 1 of Newton iteration
by Equation (20) until the convergence conditions is reached, i.e.,

∣∣∣ctr|k+1 /∆ξ
(n+1)
|k+1

∣∣∣ < Toler.

∆ξ
(n+1)
|k+1 = ∆ξ

(n+1)
|k − ctr|k+1 (25)

Derived from Equations (5), (9) and (15), the incremental formulation of some variables in
Equation (24) can be obtained as:

dEs

dξ
= EM − EA (26)

λtr =


λtr

A→M
=

dξr

A→M
dξ

A→M

= 1

λtr
M→A

dξr

M→A
dξ

M→A

= 1
1+ξirmaxc f

AMbe−bξc

(27)

After ∆ξ
(n+1)

and ∆ξr
(n+1) are obtained, the increment of transformation strain and the stress and

can be updated by Equations (19) and (20).

3.2. Solving for Incremental Stiffness Matrix

In order to construct the FE model of a one–dimensional bar element of superelastic NiTi SMA
ratcheting behavior, the constitutive equation as Equation (14) should be expressed as the incremental
formulation. The increment stiffness matrix of bar element should be further derived. Therefore,
Equation (14) needs first to be expressed as the relationship of the change in nodal force and the
elemental deformation in length. Then it is carried through a resolution of nonlinear equation by the
variational method to obtain the stiffness matrix. The relationship between of force and deformation is
expressed as:

Fs = Es(ξ)As ln
(

Ls

Ls
0

)
x
Ls + Ω(ξ)ξr As x

Ls (28)

where, Fs = σs As = σs As x
Ls is the force vector of bar element, σs is the axial stress of SMA bolt bar, As

is the cross sectional area of bar element, Ls
0 is the unstressed initial length of bar element, Ls is the

real–time length of bar element after deformation; x is the nodal coordinates of bar element, and x/Ls

is the nodal position vectors of bar element, and σs = σs Asx/Ls is the vector formula of axial stress.
Since the phase transformation strain is a relatively large value, the total strain is calculated in the

logarithmic formulation ε = ln
(

Ls/Ls
0
)

to approximate the real one.
The variation formula of Fs can be expressed as:

∆Fs =
dF
dξr

dξr

dx
∆x = Ksma

U ∆x (29)

in which,
dF
dξr = As dσ

dξr = As dσ

dξr
x
Ls (30)

According to the variation formula of Equation (28), the following expression can be obtained as:

dξr

dx
=
β

α
(31)

and

α =

[
dσ

dξr −
ξr

λtr ln
(

Ls

Ls
0

)
dEs

dξ
− ξr

λtr
dΩ
dEs

dEs

dξ
−Ω

]
x
Ls

β =

{[
1 + ln

(
Ls

Ls
0

)]
Es

Ls I3×3 − ln
(

Ls

Ls
0

)
Es

Ls
xxT

Ls2

}
+ (Ωξr − σ)

(
1
Ls I3×3 −

xxT

Ls3

)



Metals 2018, 8, 730 8 of 24

From Equation (9), it can be derived:{
dEs

dξ = Em − Ea
dΩ
dEs = −εL

(32)

Now, the stiffness matrix Ksma
U cannot be obtained yet unless the increment of the phase transition

dσ/dξr is given. The derivation process of the increment of the phase transition will be discussed
as follow.

(i) Transition to martensite phase

According to the model discussed in [28], the forward transition stresses can be expressed as:

σAM
s = σcr

s + CM(T −Ms) (33a)

σAM
f = σcr

f + CM(T −Ms) (33b)

Equation (11) can be rewritten as:

σ = σAM
f +

[(
σAM

s − σAM
f

)
/π
]
arccos

{
2

[
ξr

A→M
−
(

1 + ξ ir
f

M→A

)/
2

]/(
1− ξ ir

f
M→A

)}
(34)

The differential formulation of Equation (34) can be further expressed as:

dσ

dξr

A→M

=
ΓAM

2(
1− ΓAM

0 − ΓAM
1

) (35)

in which,
ΓAM

0 = −ce−cξc
(

σAM
f0
− σAM

f1

)

ΓAM
1 =

−ce−cξc
[(

σAM
s0
− σAM

s1

)
−
(

σAM
f0
− σAM

f1

)]
arccos

{[
2 ξr

A→M
−
(

1 + ξ ir
f

M→A

)]/(
1− ξ ir

f
M→A

)}
π

and

ΓAM
2 =

−
(

σAM
s −σAM

f

) ξ ir
f max

M→A

c f
AMe−bξc

ξc

2ξr−1− ξ ir
f

M→A


/1− ξ ir

f
M→A

+

2−ξ ir
f max

M→A

c f
AMe−bξc

ξc



π

1− ξ ir
f

M→A


1−

2 ξr

A→M
−

1+ ξ ir
f

M→A


/1− ξ ir

f
M→A

2
(1/2)

(ii) Transition to austenite phase

For reverse transition, Equation (12) can be rewritten as:

σ = CA(T − As)− (CA/aA)arccos

[
2 ξr

M→A
/

(
ξr

f
A→M

− ξ ir

M→A

)
− 1

]
(36)

With the description in [28], the reverse transition stresses can be expressed as:

σMA
s = CA(T − As) (37a)

σMA
f = CA(T − A f ) (37b)
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Another expression can be written as:

As = T − σMA
s /CA (38a)

A f = T − σMA
f /CA (38b)

Therefore, Equation (13) can be expressed as:

aA =
π

A f − As
=

πCA

σMA
s − σMA

f
(39)

Therefore, the differential formulation of Equation (36) can be derived as:

dσ

dξr

M→A

=
ΓMA

2(
1− ΓMA

0 − ΓMA
1

) (40)

in which,
ΓMA

0 = −ce−cξc
(

σMA
s0
− σMA

s1

)

ΓMA
1 =

ce−cξc
[(

σMA
s0
− σMA

s1

)
−
(

σMA
f0
− σMA

f1

)]
arccos

[
2 ξr

M→A

/(
ξr

f
A→M

− ξ ir

M→A

)
− 1

]
π

and

ΓMA
2 =

2
(

σMA
s − σMA

f

)(
ξr

f
A→M

− ξ ir

M→A
+ ξr

M→A
ξ ir

maxc f
AMe−bξc

ξc

)

π

(
ξr

f
A→M

− ξ ir

M→A

)2
1−

[
2 ξr

M→A

/(
ξr

f
A→M

− ξ ir

M→A

)
− 1

]2


(1/2)

Combined with Equations (29)–(32), (35), and (40), the stiffness matrix Ksma
U of single bar element

of SMA can be obtained. The return mapping algorithm is described in Algorithm 1, and calculated by
MATLAB (Matlab 2015, Produced by MathWorks Company, Natick, MA, USA).

Algorithm 1: Iteration procedure

Begin
Step 1 Initialize variables, assumed ξ = 0 at the beginning
Step 2 Given Ksma

U and ∆x, calculate ∆Fs = Ksma
U ∆x, σ, Es and ξ

if ξ = 1, goto Step 5
else if T > MS and σcr

s + CM(T −Ms) < σ < σcr
f + CM(T −Ms) goto Step 3

else goto Step 5
endif
Step 3 Calculate ∆ξr

(n+1)

if
∣∣∣ctr|k+1 /∆ξ

(n+1)
|k+1

∣∣∣ < toler
obtaining ∆ξ, and calculating dσ/dξr, ξr

A→M
, ξc, goto Step 4

endif
Step 4 Calculate stiffness matrix Ksma

U and force increment ∆Fs, goto Step 5
Step 5 Calculate σ, Es and ξ

if ξ = 0, goto Step8
elseif T > AS and CA(T − A f ) < σ < CA(T − As) goto Step 6
else goto Step 8

endif
Step 6 Calculate ∆ξr

(n+1)

if
∣∣∣ctr|k+1 /∆ξ

(n+1)
|k+1

∣∣∣ < toler
obtaining ∆ξ, and calculating dσ/dξr, ξr

M→A
, ξc

endif
Step 7 Calculate stiffness matrix Ksma

U and force increment ∆Fs, goto Step 8
Step 8 Updating status variables
End
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4. Numerical Simulation and Model Verification

In this section, the cyclic responses for ratcheting associated with the one dimensional cyclic
behavior of SMA by the current FE model are verified by some typical experimental results [37]
which are outlined in this section, and additional experimental observations made in the current
work to describe the transformation ratcheting during the stress–controlled cyclic loading at room
temperature. The typical tensile-unloading stress–strain curve of superelastic SMA is shown in Figure 1.
An apparent superelastic feature of SMA is shown. However, its curve presents a slight difference from
the description in the referred literature for the NiTi SMA manufactured by other companies (e.g., SMA,
San Jose, CA, USA). It exhibits an apparent hardening behavior during the stress–induced martensite
transformation. After unloading, a relative high residual strain (εr = 4.5%) could be seen to remain. The
high residual strain implies that there is an incomplete phase transformation from the stress–induced
martensite to original austenite after unloading, which leads to some remaining amount of martensite.
It was further found that the amount of remaining martensite increases progressively with the cyclic
loadings. It is different from the ratcheting of ordinary metals without phase transformation; this
phenomenon of accumulation deformation has been named as “phase transformation ratcheting”,
and is discussed in more detail in [34–37]. It illustrates that the pure austenite replaced by the mixture
of austenite and remained martensite in the metal after the cycle loadings. Certainly, the stresses are
no longer the phase transformation stresses of the pure austenite and martensite.
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Figure 1. Typical cyclic tension-unloading stress-strain curve of materials.

Some parameters should be defined prior to discussing the ratcheting deformation of superelastic
SMA, as shown in Figure 1. Those parameters include the elastic modulus of austenite EA and
martensite EM, the start stresses of austenite to martensite σAM

s and martensite to austenite σMA
s , and

the finish stress austenite to martensite σAM
f and martensite to austenite σAM

f . The subscript ‘0’ here
indicates the first phase transformation cycle of cyclic tension–unloading. It should be noted that the
parameters of elastic modulus and transformation stress are nominal variables due to the existence
of residual martensite and its change during cyclic loadings. Moreover, the dissipation energy Wd is
defined as the area around by the stress–strain curve in each loading–unloading cycle, Wd =

∮
σdε.

This parameter reflects the damping feature of NiTi SMA, which is a unique property of the metals,
and has been extensively applied in the engineering applications.

The capacity of the proposed model to describe the uniaxial transformation ratcheting of NiTi
SMA at the temperature with pure austenite phase is firstly verified by comparing the predicted
results with the corresponding experimental ones by Kang et al. [37] and the simulated ones by
Kan et al. [35,36]. The material parameters of the used NiTi SMA cited from Kan et al. [35].

The results obtained with various peak stresses, e.g., 450, 500, and 550 MPa are shown in
Figures 2–4. It is seen from the figures that the proposed model provides reasonable predictions
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to the uniaxial transformation ratcheting of superelastic NiTi SMA compared with the experiments
observed by Kang et al. [37], as shown in Figures 2a, 3a and 4a. The simulated results obtained
from simulated results with various peak stresses are shown in Figures 2b, 3b and 4b. The figures
show the effectiveness of the current FE model at predicting the uniaxial transformation ratcheting of
superelastic SMA, including the hysteresis loop curve, and the predicted peak and valley strain. The
peak and residual strains of superelastic SMA increase progressively during the initial several loading
cycles, and then reach a stable value. The near-totally closed hysteresis loop means that the strain
increment happens in the tension loading is completely recoverable under the following unloading.
The closed hysteresis loop that still becomes smaller and smaller during the further cyclic loading
means that the dissipation energy decreases with the increase number of loading cycles. Compared
with the Kan-Kang’s model and with linear hardening law, as described in [35], the introduction of the
cosine-type nonlinear function in the constitutive model enables the predicted hysteresis loop with
an apparent nonlinear feature that is closer to the experimental results.
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(a) experimental result; (b) simulated result by proposed model.

Due to the introduced power function c f
AM(σ) that is associated with the applied loading level

in the phase transformation ratcheting simulation, the model can reasonably predict the variation of
peak and valley strain with different applied loading levels. It should be noted that the introduction of
the power equation with the coefficient of n, as described by Equation (16a), can reasonably improve
the prediction of peak strain and valley residual strain changing with different applied loading level,
though differences exist between the simulated and experimental results, especially for larger loading
levels. This indicates that the power equation introduced in the proposed model dose still does not
fully reflect the highly nonlinear relationship between the transformation ratcheting and the applied
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loading level. To achieve better prediction results, a more complex function formulation with added
more material parameters should be introduced.
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To evaluate the current FE model, some experiments under the uniaxial cyclic loading conditions
are carried out, and then used to verify the validity of the proposed model in the following discussions.
The materials used in the new experiments are the superelastic NiTi SMA bars (Ni, 55.89%, Ti, 44.11%
at mass, Xi’an Saite Metal Materials Development Co., Ltd., Xi’an, China). The heat treatment process
is different from the SMA used in Kang et al. [37], and then the start temperature of martensite
transformation Af is 280 K (7 ◦C for celsius temperature scale), tested by Differential Scanning
Calorimetry (DSC, Mettler-Toledo Ltd., Melbourne, Australia) with 5 ◦C/min for heating and cooling
as show in Figure 5, lower than the test temperature 298 K, and the original phase of the alloy is
the pure austenite phase. Three different kinds of the uniaxial nominal are controlled by axial load
under cyclic tension–unloading with positive mean loads, including cyclic tension–unloading tests
with various applied peak stresses, e.g., 325, 365, and 405 at room temperature. The number of cycles
is prescribed as 50, and the stress rate is prescribed as 20 MPa/s. The material parameters used in
the current FE model are determined by a trial and error method from the test data, as described in
Section 2.2; the parameters are listed in Table 1 for the current FE simulation.
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Table 1. Material parameters determined by tests of current work.

Material Parameters

EA = 48 GPa; EM = 35 GPa; νA = 0.3; νM =0.3; εL = 0.063; T = 295 K;
σAM

s0,T = 285 MPa; σAM
f 0,T = 458 MPa; σMA

s0,T = 345 MPa; σMA
f 0,T = 164 MPa;

σAM
s1,T = 225 MPa; σAM

f 1,T = 458 MPa; σMA
s1,T = 310 MPa; σMA

f 1,T = 125 MPa;

cAM
s = 0.05; cAM

f = 0.05; cMA
s = 0.05; cMA

f = 0.05; n = 3; ξ ir
max = 0.84; b = 0.5.

Figures 6a, 7a and 8a show the experimental results of the uniaxial tension-unloading, which is
used to understand the basic performance of the NiTi SMA. It can be found from Figure 7 that the
start and finish stresses of forward transformation show a decrease from 285 MPa to 225 MPa with the
increase number of loading cycles, whereas the start and finish stresses of reverse transformation are
from 345 MPa to 320 MPa, respectively. After the unloading, a small residual strain is observed; this is
mainly caused by the martensite residual during phase transformation.Metals 2018, 8, x FOR PEER REVIEW  14 of 25 
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It is seen from the Figures 6b, 7b and 8b, that the proposed model provides reasonable predictions
to the uniaxial transformation ratcheting of superelastic NiTi SMA. The predicted peak and residual
strains, and their evolution characteristics, are in fairly good agreement with the experimental
results obtained in the cyclic tension-unloading tests by current tests. Also, the dependence of
transformation ratcheting on the applied peak stress was reasonably well predicted by the model due
to the employment of stress-dependent power function.

From Figures 6c,d, 7c,d and 8c,d, it was found that the peak and valley accumulation strains
increase with an exponential function law during the loading cycles, whereas the dissipation energy Wd
decreases. The proposed model also provides a reasonable prediction of the evolution of transformation
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stresses during the cyclic tension-unloading, as shown in Figure 7e. The relatively high degree of
uniformity illustrates that the proposed model could reasonably simulate the transformation ratcheting
of SMA. After a certain number of cycles, the accumulation strains, transformation stresses, and
dissipation energy show apparent changes, and quickly reach a stable value. These findings also agree
with the conclusions simulated by Kan-Kang’s model [35].
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To further demonstrate the reasonability of the proposed constitutive model to predict the
transformation ratcheting of superelastic NiTi alloy, two representative constitutive models developed
by [34,35] are discussed in terms of their capability of predicting the transformation ratcheting in
Figure 9, respectively. The experimental data is obtained from [10]. The proposed model shows the
capability of predicting the nonlinear feature of a hysteresis loop by comparing it with Kan-Kang’s
model with linear hardening features and an identical number of material parameters. Compared with
the Lagoudas’s model, the proposed model can also predict the nonlinear feature of hysteresis loop
with the smaller number of material parameters. In addition, the proposed model can further give
a reasonable description for the cyclic deformation characteristic on a specific applied loading level.

It should be noted that the exponential function introduced in the proposed model correlated the
phase transformation ratcheting to the loading stress level still cannot fully reflect the high nonlinear
correlation between this ratcheting behavior and the loading stress level (e.g., Figures 3 and 8). In order
to achieve better prediction results, it is necessary to consider the introduction of more complex
functional forms, and increase more material parameters. The evolution of the phase transformation
ratcheting strain is the focus of this paper. Therefore, this paper adopts a simpler exponential function
which can describe its general rule.

For some cases with unsatisfactory simulation results, the following are explained:
(1) In the phase transformation process, the mismatch of the internal strain of austenite and

martensite produces large levels of local stress between the interface of austenite and martensite.
The local stress promotes the dislocation slip of austenite to reach the starting critical stress, that is,
the induced plasticity due to phase transformation is produced. However, because the grain size of
the selected material for experiment is relatively large, only the austenite near the interface between
austenite and martensite can induce plasticity due to phase transformation at certain stress levels.
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When the outer stress level reaches the starting critical stress of austenite dislocation slip, that slip of
the whole grain can be motivated. Therefore, by the comparison between the experimental results
of Figures 2a, 3a and 4a, it is known that the valley value strain of the first circle shows significant
nonlinear growth; the same phenomenon can be observed from the experimental results of Figures 6–8.
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(2) The phenomenological constitutive model proposed in this paper is reasonable, as the amount
of the induced plasticity is small. However, it does not consider the critical motivation conditions of the
starting stress of the dislocation slip of austenite. Therefore, when the stress level of the external load
reaches a certain value—for example, more than 500 MPa—a certain difference between the proposed
model and the experimental value in the prediction of the hysteresis loop exists.

(3) Because of the above reasons, the prediction of ratcheting strain has a certain deviation in the
initial cycles when the external load is larger, and a better prediction result is obtained. Although the
proposed model has a certain numerical difference from the experimental results in the prediction
of individual conditions, the main characteristics of the described phase transformation ratcheting
behavior are in accordance with the experimental results. For this kind of cyclic deformation with such
strong nonlinearity, the accurate description of the hysteresis loop should increase a lot of material
parameters, which is not conducive to the application of the engineering for the constitutive model.

5. Numerical Examples for the Analyses of Preload Force of SMA Bolted Joint

The preload force of SMA bolted joint is an important factor for the service properties of bolted
joint, which also plays a crucial role in protecting the static and dynamic characteristics and the locking
and sealing properties of the whole SMA joint. However, in some conditions, it is inevitable that the
preload force of the SMA bolt must be reloaded. This repeated process might decay the excellent
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superelasticity of SMA bolt due to its phase transformation ratcheting of materials, especially for large
applied preload force. In this paper, based on the one-dimensional FE model of the superelastic SMA,
a simplified FE model to analyze the repeated preloading process of SMA bolt is derived and used to
calculate the repeated preloading process of SMA bolted joint as a numerical example. The member
stiffness and the repeated preloading numbers are the influence factors considered in this research.

A preset interference method is adopted in this research to simulate the bolt preloading, which
has successfully been used to simulate the preloading process of bolt in [38–40]. The preset interference
amount of ∆u is built by shortening the distance of the bolt head and the nut in model, as shown in
Figure 10. That means the preload force will be produced between the bearing surfaces of the bolt
head or nut and the member that will be integrated into one surface after bolt preloading.Metals 2018, 8, x FOR PEER REVIEW  18 of 25 
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5.1. FE Modeling for the Preload Process of SMA Bolted Joint

For simplicity, the FE model is only established by a half of the whole bolted joint structure in this
research due to its symmetrical characteristic on the whole structure size and load–bearing feature
of bolted joint along the contact surface of the contacted members. The nodes (e.g., node numbers of
2 and 4) close to the side of bearing surface of one member are fixed at the restrained end. For the
specific preloading process, the initial parameters for simulation should be inputted into model first,
i.e., the elastic modulus of material, cross sectional area, and effective length of bolt bar, to calculate
the tensile stiffness of bolt, and the compression stiffness of members. The FE model with bar element
is setup based on the preset interference value ∆u0, which is the initial value of ∆u. The target of the
iterative calculation is to reach the force equilibrium conditions, i.e., Fb = Fm = Fp0 from initial force
conditions Fb = Fm = 0. For each sub-step of iterative calculation, a sub tension force is applied to
the bolt, and the sub compression force is used on the member. The amount of deformation for each
iterative sub-step is set as ∆ub and ∆um for bolt and member, respectively. For the absolute coordinate
values of nodes 2 and 4 for each iterative sub–step calculation, the following deformation equation is
used: 

ub
n = ub

n + ∆ub
n−1

um
n = um

n + ∆um
n−1

∆un = ub
n − um

n

(41)

in which, n is number of iterative sub-step.
The amount of interference ∆u decreases gradually with iterative calculation in progress. For the

case of ∆u = 0, the amount of penetration between the bearing surfaces of the bolt or nut and the
member is zero, and the iteration is terminated. It should be noted that the target preloading force
Fp0 should continuously adjust the amount of initial interference ∆u0 by trial and error. The specific
implementation process is shown in the flow chart of Figure 11.
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It should be noted that the SMA bolt element and the member element are independent of each
other in FE modeling. This means that the force increments of iteration for ∆Fm

n and ∆Fe
n are applied

on the SMA bolt element and the member element, respectively, in spite of ∆Fm
n = ∆Fe

n. Then, the
deformations for each element are calculated independently until the condition of convergence, ∆u = 0,
is satisfied.

The equilibrium equation of SMA bolt or member can be expressed using the standard FE
assembly operation:

∆F = KU∆u (42)

where ∆F indicates the increment of nodal force vectors of bar elements of the FE model, ∆u is the
nodal displacement vectors, and KU is the stiffness matrices.

The FE model of a member is shown in Figure 10. It can be seen that the member elements consist
of the nodes 1 and 2. The node 2 is the restrained end, and the node 1 is the force applied end of the
member element. Thus, Equation (42) can be further decomposed into:[

∆F1

∆F2

]
=

[
K11

u
K21

u

K12
u

K22
u

][
∆u1

∆u2

]
(43)

where, u1, u2 and F1, F2 are the displacements and the forces of the nodes 1 and 2, respectively. F1

and F2 are a pair of equilibrium forces with equal magnitude in opposite directions. K11
u , K12

u , K13
u , K21

u
and K22

u are the partitioned matrices of matrix Km
U.

Since the member is equivalent to a bar element in the FE model, the relationship between force
vector and displacement vector of the node i can be written as:

Fm =
Em Am

Lm0
(Lm − Lm0)

x
Lm

= km(Lm − Lm0)
x

Lm
(44)
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where, Am is the equivalent cross section area of the member element. Lm0 is the initial unstressed
length of member element, Em is the elastic modulus of member element, km is the compression
stiffness of member element. Fm is the force vector of member element, x = xi − xj depicts the relative
nodal position denoted by xi and xj in the global frame. i, j = 1 or 2 are the node numbers of member

element. Lm =
[(

xi − xj
)T(xi − xj

)]1/2
is the stressed length of the member element after deformed.

With the first order Taylor expansion of Equation (45), it can be derived as:

∆Fm =
∂Fm

∂x
∆x (45)

Since ∆Fj = −∆Fi, the incremental relationship between nodal force and element length can be
expressed as:

∆Fm = Km∆um

where, ∆Fm =

[
∆Fi
∆Fj

]
, ∆um =

[
∆ui
∆uj

]
=

[
∆xi
∆xj

]
, and Km =

[
km

−km

−km

km

]
The stiffness matrix of one node can be obtained by the differential calculation as:

km =
∆Fm

∆x
=

Em Am

Lm

xxT

L2
m

+
Em Am

Lm

Lm − Lm0
Lm0

I3×3 =
kmLm0

Lm

xxT

L2
m

+ km
Lm − Lm0

Lm
I3×3 (46)

where, I3×3 is 3 × 3 is identity matrix.
The equilibrium equation of member structure can be achieved using the standard FE assembly

operation as:
∆F = Km∆um = Km

U∆u (47)

The boundary condition of member element during the preloading of bolt is ∆u4 = 0. Thus,{
K33

u ∆u3 = ∆F3

∆F4 = −∆F3
(48)

The further derivation gives:

∆u3 =
[
K33

u

]−1
∆F3 (49)

According to the above calculation, the deformation of each element of member and the
relationship of stress and strain are obtained.

As for the SMA bolt, the FE model of bolt is established simplistically as a bar element. As shown
in Figure 10, the SMA bolt element consists of nodes 3 and 4. Therefore, Equation (42) can be
divided into: [

∆F3

∆F4

]
=

[
K33

u
K43

u

K34
u

K44
u

][
∆u3

∆u4

]
(50)

where, u3, u4 and F3, F4 are the displacements and the forces of the nodes 3 and 4, respectively. F3 and
F4 are a pair of equilibrium forces with equal magnitude in opposite directions. K33

u , K34
u , K43

u and K44
u

are the partitioned matrices of matrix Kb
U.

The boundary condition of SMA bolt element during the preloading of bolt is ∆u4 = 0. Thus,{
K33

u ∆u3 = ∆F3

∆F4 = −∆F3
(51)

The further derivation gives:

∆u3 =
[
K33

u

]−1
∆F3 (52)
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Since the FE model of SMA bolt is established as just one bar element, it is no need to carry out
the assembly calculation of FE modeling. Therefore,

∆F = Kb∆ub = Kb
U∆u (53)

where, Kb =

[
kb
−kb

−kb
kb

]
is the stiffness matrix of node in SMA bolt element, and can be seen in

Equation (47). It is given by comparing Equations (50) and (53).

∆Fb =

[
∆F3

∆F4

]
, ∆ub =

[
∆u3

∆u4

]
, Kb

U =

[
K33

u
K43

u

K34
u

K44
u

]
(54)

5.2. Simulations and Results

In this section, a numerical example about the repeated preload process of SMA bolted joint
based on the above FE model is given; the M6 NiTi SMA bolt is selected in this research. Upper and
lower members are identical, including in dimensional size and materials. The calculation approach
of the member stiffness can be cited from the references in Motosh and Nassar et al. [41,42] who had
developed the analytical model to describe the accurate member stiffness relatively. The stiffness value
is calculated as km = 4 × 108 N·m−1 as a reference with the dimensional sizes of height 50 mm and
diameter 30 mm, and the elastic modulus 70 × 109 Pa and Poisson ratio 0.28 of selected aluminum.

FE simulations are conducted for ten transverse loading cycles. Figure 12 shows the
stress–strain hysteresis loops obtained from the bolt bar for different amount of preset interference,
i.e., ∆u0 = 0.5 mm, ∆u0 = 0.55 mm, ∆u0 = 0.6 mm, ∆u0 = 0.65 mm and ∆u0 = 0.7 mm, that correspond to
the initial preload forces of SMA bolt as Fp0 = 8.65 kN, Fp0 = 8.86 kN, Fp0 = 9.04 kN, Fp0 = 9.19 kN and
Fp0 = 9.32 kN. It can be found that the SMA material of the bolt experienced cyclic ratcheting with an
increasing number of repeated preloading cycles. The repeated cyclic preloading will produce a lower
clamping force of the bolt with the same amount of preset interference, until the tension stress value of
the bolt is close to the martensite start stress. Similar to the material’s ratcheting behavior, the clamping
force of SMA bolt experiences great attenuation during the initial several loading cycles, and tends
to be stable with a very small value thereafter. It should be noted that although the attenuation rate
of the clamping force of bolt increases with the increase of initial preload force of bolt, the larger
initial preload force of bolt shows higher residual clamping force after experiencing cycle preloading.
After experiencing nearly five loading cycles, the martensite phase produced in initial preload will be
close to nonexistent. It can also be seen in Figure 13 that a higher member stiffness would improve the
reduction of preload force under repeated preloading cycles, that may help the engineer improvements
in this design. However, as the member stiffness in this research is higher than km = 7 × 108 N·m–1,
the initial preload and its attenuation rate are not obviously changed. This means that the effectiveness
of the optimum design from the standpoint of adjustment of km will not be too obvious.
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Figure 12. Curves of stress-strain responses on bolt bar under different load cases. (a) ∆u0 = 0.5 mm,
km = 4 × 108 N·m−1; (b) ∆u0 = 0.55 mm, km = 4 × 108 N·m–1; (c) ∆u0 = 0.6 mm, km = 4 × 108 N·m−1;
(d) ∆u0 = 0.65 mm, km = 4 × 108 N·m–1; (e) ∆u0 = 0.7 mm, km = 4 × 108 N·m–1; (f) ∆u0 = 0.7 mm, km = 7
× 108 N·m–1; (g) ∆u0 = 0.7 mm, km = 1 × 109 N·m–1.
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6. Conclusions

In this work, a phenomenological constitutive modeling and its FE implementation of superelastic
SMAs is carried out to simulate the transformation ratcheting behaviors of the superelastic SMA
undergoing cyclic loading. The conclusions are as follows:

(1) The assumed cosine-type phase transformation function considering the initial martensite
evolution is verified to be a candidate for predicting the contributions of cyclic accumulation of residual
martensite caused by incomplete reverse transformation, and the nonlinear behavior of hysteresis loop
undergoing cyclic loading. The evolutions of transformation ratcheting and transformation stresses
can be controlled by an accumulated martensite volume fraction as a internal variable. The correlation
between the applied loading level and the transformation ratcheting is also able to be captured by the
proposed model.

(2) A FE model derived by a return-mapping method is then used to analyze the attenuation
law of the clamping force of SMA bolt experiences as numerical example. It was found that a great
attenuation of the clamping force of the SMA bolt occurs during the initial several loading cycles, and
tends to be stable with a very small value thereafter. The conclusions that the larger initial preload
force of the bolt shows a higher residual clamping force after experiencing cycle preloading, and that
the higher member stiffness would improve the reduction of preload force under repeated preloading
cycles, will help the engineer to improve his design.
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