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Abstract: This paper presents the effect of laminated aluminium-steel panel with different
configurations in a high-speed impact test. Layering aluminium plate with high strength steel
has become an interest in reducing the overall density of armour vehicle body while improving
the ballistic resistance. Different layering configurations differ in laminated panel performance.
Two layering configurations of double-layered panel achieving 25% of existing panel weight reduction
were tested using experiment and computational method to investigate their behaviours when
impacted with 7.62-mm full metal jacket at velocity range of 800–850 m/s. The ballistic performance
of each configuration plate in terms of ballistic limit velocity, penetration process and permanent
deformation was quantified and considered. Laminated panel with aluminium as the front layer
reduced the ballistic performance of existing panel to 50% and the other panel maintained its
performance. Thus, the laminated panel with aluminium as the back layer can be used in designing a
protective structure for armoured vehicle while maintaining the performance of the existing vehicle
in achieving weight reduction.

Keywords: ballistic impact; ballistic test; double-layered plate; failure; numerical simulation

1. Introduction

Material failure characterisation can be determined using several methods and engineering
methods, such as using the finite element analysis. The finite element method is an analysis to predict
the state of a product or material when encumbered to test the strength of the material before it fails.
The penetration depth of the material, as one example of the failure of the material when subjected to a
high-speed impact, can be analysed using this method. High-speed impact, also known as ballistic
impact, is one of the measures used to determine the material resistance to prevent the projectile from
penetrating the panel [1]. Failure of a material by ballistic impact is influenced by several factors
such as the projectile nose shape, projectile materials, impact velocity, panel layering configuration
and mechanical properties of materials constituting the laminated panel [2]. The ballistic test is
often performed to test the strength of the materials used in military applications such as vehicle
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panel shield [3]. The use of a single material made of armour steel has been widely used as the main
material in designing armoured vehicle panel due to the combined features of high strength, toughness,
good formability, weldability and excellent ballistic performance [4]. However, the disadvantage of
this material is from the point of its heaviness. Weight is an important parameter in the manufacture of
armoured vehicles because higher weight leads to higher energy consumption to drive the vehicle and
more difficulty in manoeuvring the vehicle on challenging topography [5]. Therefore, many studies
have been done to reduce the weight of the materials used in these applications. One way to achieve
lighter weight is to combine two different types of materials by laminating the light weight material
with the existing steel.

According to previous studies, most researchers found that the single material of armour steel
provided better ballistic performance compared to the layered material. Børvik et al. [6] conducted
a study on the ballistic performance of the layered material and compared it with a panel of single
material using Weldox 700E. The result showed that monolithic panel of same thickness and material
has better performance compared to the layered panel as a result of reduction in the structure leading
to substantiality of bending behaviour. Restriction of vehicle manoeuvrability due to heaviness
characteristics of an armoured vehicle has directed researchers to study the performance of lightweight
materials under ballistic impact. Wei et al. [7] also concluded that achievement of ballistic impact of
monolithic lightweight materials has been found to be always better than the layered panel of similar
material and thickness. However, monolithic lightweight materials such as aluminium alloy panel
could not give a comparable ballistic performance with monolithic existing armour steel panel.

It has been suggested that the ballistic performance of an aluminium alloy can be improved by
layering the alloy with the existing armour steel as a laminated panel. Gupta et al. [8] suggested
that the performance of aluminium panel with various thicknesses and layering configurations
gave different performance. Forrestal et al. [9] reported the performance of laminated armour
steel and aluminium alloys of Al7075-T6 and Al5083-H116 can be integrated with armour steel
to serve as vehicle protective structures and demonstrated relatively good performance as existing
material. Flores-Johnson et al. [10] performed finite element analysis of the impact of a 7.62 mm APM2
projectile on multi-layered armour plates to investigate the effect of different layer configurations,
thicknesses and material properties on ballistic performance. Übeyli et al. [11] investigated the effect of
laminate configuration on the behaviour of aluminium laminated composite against 7.62 AP projectiles
and found that using hard material on the first layer and aluminium alloy on the back layer can improve
the ballistic performance of armour steel. Layering configuration is one of the important parameters
affecting the ballistic performance of a laminated dissimilar metal panel. Moreover, researchers recently
focused on implementing finite element method to study the behaviour of multi-layered panels
consisting of aluminium alloys and steels under high velocity impact.

The literature shows that the penetration effects of multi-layered panels are categorised as a
complex problem. For the design of a ballistic resistant panel, the factors such as layer configurations
and thickness should be well considered to obtain optimum protective structures. Since different
layering configuration would give different ballistic performance, the study for different layering
configuration has become necessary to find the best configuration as an option for an armoured
vehicle application. Therefore, the aim of this study is to analyse the effect of different layering
configuration to the failure of the laminated panel in terms of permanent deformation and penetration
process using both experiment and simulation approaches. The study performed on a double-layered
panel consisting two different materials, aluminium alloy Al7075-T6 and steel Ar500 which has
similar total weights and initial impact velocities but different layering configuration. Double-layered
panels were subjected to the ballistic tests using powdered gun and the tests then were simulated
using an explicit non-linear finite element program against a 7.62-mm FMJ projectile at a velocity of
800–850 m/s. The ballistic performance of laminated layered plates made of combination of Ar500
steel and Al7075-T6 was evaluated based on the perforation mechanism, the depth of penetration and
the crater diameter.
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2. Materials and Method

The methodology framework used in this study is given in Figure 1. Combination of Ar500 steel
and Al7075-T6 aluminium is an interesting option leading to weight-saving and ballistic performance
improvement based on their material properties in terms of tensile strength, bending strength and
hardness. At first, the mechanical tests by means of the tensile, bending and hardness tests were
conducted to find the respective material properties. Two types of layering configuration panels were
then prepared. Ballistic test was carried out using both experimental and simulation works.
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Figure 1. Flow diagram of a methodology used for this work.

2.1. Material Characterisation

In this study, a series of mechanical tests such as tensile test, hardness test and three-point bending
test was performed to determine the mechanical properties of material constituting the laminated
panel, aluminium alloy Al7075-T6 and steel Ar500, and the original armour steel, Rolled Homogeneous
Armour (RHA). The specimen used in the tensile test was prepared according to the size of
6 mm × 140 mm × 6 mm in compliance with the ASTM E8. The strain rate and the crosshead speed
were set at 0.001 s−1 and 1.8 mm/min, respectively [12]. This test was carried out to determine
the material properties such as Young’s modulus, yield strength and ultimate tensile strength.
In measuring the hardness of the tested materials, Rockwell hardness tester was used for B scale
hardness measurement. The Rockwell scale B is a hardness scale based on indentation hardness of a
material. The specimen was prepared according to ASTM E18 with a size of 10 mm × 10 mm × 10 mm
to test the materials resistance against penetration [13]. The three-point bending test was also
performed to determine the mechanical properties of materials when subjected to the impact on
the front of panel and to identify energy absorption capability of each material [8]. In this test,
the specimen was cut to a size of 5 mm × 50 mm × 10 mm in accordance with ASTM E290 and was
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tested by the universal testing machine at a speed of 5 mm/min which is commonly used to test metal
bending behaviour [14]. The machines used for all above tests are shown in Figure 2.
Metals 2018, 8, x FOR PEER REVIEW  4 of 16 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Machines for mechanical test performed for: (a) tensile test; (b) hardness test; and (c) three-

point bending test. 

2.2. Experimental Ballistic Test 

The dimensions of ballistic test plates of double-layered for both configurations were in 100 × 

100 mm2 following the NATO Stanag 4569 standard. This dimension is adequate to ensure there is 

no force induced on the bullet from the reflected wave by the edge of plate during the impact. All 

layered plates were in direct contact with each other and plate spacing effect or adhesion effect on 

ballistic resistive performance were not considered in this study. The target plates were mounted on 

a stiff frame in the ballistic test set-up as in Figure 3 and subjected to three shoots each. The ballistic 

tests were performed using NATO Stanag 4569 standard level threat two threat. The ammunition for 

the level threat two is named as 7.62 mm full metal jacket (FMJ) which is composed of a copper jacket 

and a lead core. The velocity of the bullet was kept around 830 m/s as stated in Stanag 4569. The 

velocity measurement system and test were placed at 3.5 m away and 5.0 m away from the target. 

 

Figure 3. The schematic of the ballistic test system used. 

The ballistic tests were carried out to investigate the behaviour of two different configurations 

of double-layered panel which have same areal density and thickness of each constituting material 

subjected to high velocity impact. The geometric model of the layered plates is shown in Figure 4a,b. 

The first double layered panel designated as Configuration A (Figure 4a) consists of a 15-mm thick 

Ar500 as the front layer and a 10-mm thick Al7075-T6 as the back layer. Meanwhile, second double 

layered panel (Figure 4b) is presented as Configuration B consisting of a 10-mm thick Al7075-T6 as 

the front layer and a 15-mm thick Ar500 as the back layer. These panels were designed to be for 

armoured vehicle application to achieve the NATO Stanag 4569 ballistic application of level threat 2 

[14]. 

Figure 2. Machines for mechanical test performed for: (a) tensile test; (b) hardness test; and (c)
three-point bending test.

2.2. Experimental Ballistic Test

The dimensions of ballistic test plates of double-layered for both configurations were in
100 × 100 mm2 following the NATO Stanag 4569 standard. This dimension is adequate to ensure
there is no force induced on the bullet from the reflected wave by the edge of plate during the impact.
All layered plates were in direct contact with each other and plate spacing effect or adhesion effect on
ballistic resistive performance were not considered in this study. The target plates were mounted on a
stiff frame in the ballistic test set-up as in Figure 3 and subjected to three shoots each. The ballistic tests
were performed using NATO Stanag 4569 standard level threat two threat. The ammunition for the
level threat two is named as 7.62 mm full metal jacket (FMJ) which is composed of a copper jacket and
a lead core. The velocity of the bullet was kept around 830 m/s as stated in Stanag 4569. The velocity
measurement system and test were placed at 3.5 m away and 5.0 m away from the target.
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Figure 3. The schematic of the ballistic test system used.

The ballistic tests were carried out to investigate the behaviour of two different configurations
of double-layered panel which have same areal density and thickness of each constituting material
subjected to high velocity impact. The geometric model of the layered plates is shown in Figure 4a,b.
The first double layered panel designated as Configuration A (Figure 4a) consists of a 15-mm thick
Ar500 as the front layer and a 10-mm thick Al7075-T6 as the back layer. Meanwhile, second double
layered panel (Figure 4b) is presented as Configuration B consisting of a 10-mm thick Al7075-T6 as the
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front layer and a 15-mm thick Ar500 as the back layer. These panels were designed to be for armoured
vehicle application to achieve the NATO Stanag 4569 ballistic application of level threat 2 [14].Metals 2018, 8, x FOR PEER REVIEW  5 of 16
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2.3. Computational Ballistic Test

Computational ballistic test was performed using the explicit dynamic finite element method
(FEM). In solving the problem modelled in FEM, there are four established methods that can be
utilised: Eulerian method, Lagrangian method, arbitrary-Lagrangian–Eulerian (ALE) method and
smooth-particle hydrodynamics (SPH) method. Eulerian method involves volume constraint to solve
problem equations through the conservation of mass, momentum and energy. ALE method is extended
from the Lagrangian method, in which some computation steps have been added to solve grid
movement problem using simulation. It can give stability during computation distortion but lengthy
computational time and space is needed. SPH method is an extension of Lagrangian method and
suitable for complex behaviour during simulation. However, it is difficult to determine the boundary
condition of this method as there is no geometry defined. Lagrangian on the other hand can solve
complex problem with minimum requirement for computational time and space. The problem of
element distortion arisen from this method can be solved by introducing the geometry erosion model
during finite element modelling.

A specific commercial simulation software package was used to develop a two-dimensional
model for ballistic tests. A 7.62 mm FMJ projectile was used at initial velocities ranging from 810 m/s
to 850 m/s. Initial velocity was chosen according to NATO Stanag 4569 ballistic protection level 2
which is 830 ± 20 m/s, for both layout configurations. The target plate was modelled as 50 mm
diameter circular plate and fully clamped at the edge boundaries as in Figure 5a,b. The projectile
was modelled in two independent parts: metal jacket and lead core, which has outer diameter of
7.7 mm, inner diameter of 6.2 mm and length of 35 mm. The target plate was modelled as 50 mm
diameter circular plate and fully clamped at the edge boundaries. The target plate for computational
method was designed as circular plate which differs from that of experimental method, because the
computational method requires asymmetrical model for the two-dimensional simulation modelling.
This is important to save computational time and computer memory required for simulation. However,
based on Forrestal et al. [9] and Flores-Johnson et al. [10], ballistic results for a 50-mm diameter circular
plate and a 100-mm × 100-mm square plate did not vary because the deformation caused by high
speed impact happens locally.
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A; and (b) Configuration B.

In finite element analysis, the problem was considered as axisymmetric model as the bullet
rotation is not considered because, in this study, the main interest is the behaviour of impacted
panel. A constant mesh size of 0.5 mm was selected to finely resolve each problem and make the
through thickness elements for the penetration process to be 50 elements. This size was found to
adequately produce good results based on previous work by Rahman et al. (2016) [15]. The plates were
modelled using node-to-node connectivity using pure langrage algorithm with implementation of
geometric erosion strain to avoid failure. The penetration mechanics at very high velocity does involve
in temperature effects. Therefore, the Johnson–Cook material constitutive models were suitable to
represent the target plate and projectile in the finite element analysis.

Besides, the contact condition used between plates and projectile was defined as trajectory
contact. Node-to-node connectivity was applied using pure langrage algorithm with implementation
of geometric erosion. This technique was able to remove the elements experiencing large distortion
and, consequently, simulation failure can be avoided [10,15]. Developing glue or bonding model in
finite element modelling is another issue occurred frequently in obtaining accurate result [16]. At this
stage, no bonding material was included to avoid large error during analysis. Therefore, to imitate
closely finite element model behaviour, the panels were simply clamped without any joining material
in between during the experiment.

All panels have same total thickness of 25 mm. The important factor in the sample size is
its thickness because the selected thickness of 25 mm is the standard thickness of existing armour
panel [15]. Each layer thickness was set accordingly to the 25% weight reduction of original armour
panel to ensure the body maintaining on the ground during extreme conditions such as blasting and
explosion. Both projectile and target panels used the Johnson–cook (JC) constitutive material model
which has been commonly used for high velocity impact simulation [9,17,18]. The JC model is applied
to determine the strain rate and temperature dependence of viscous-plastic material models and is
expressed as [18] in Equation (1)

σeq =
(

A + Bεn
eq

)(
1 +

.
ε
∗
eq

)C
(1 − T∗m) (1)

where σeq is the equivalent stress; εeq is the equivalent plastic strain; A, B, n, C and m are the
material constants; and

.
ε
∗
eq =

.
εeq/

.
ε0 is the dimensionless strain rate where it is a ratio of the

strain rate and a user-defined strain rate. T∗m is the homologous temperature and is given by
T∗m = (T − Tr)(Tm − Tr), where Tr and Tm represent the room temperature and the melting
temperature, respectively. This modified JC material model has been successfully implemented
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to model impact on steel [16] and aluminium targets [9]. The JC parameters used in this study are
shown in Table 1. JC material constitutive models were utilised to avoid the stresses transmitted to the
steel core were limited by the flow stress of the lead and brass jacket material during high velocity
impact [19].

Table 1. Material properties and modified Johnson–Cook model parameters, adopted from [9,16] with
permission from Springer Nature, 2010 and Elservier, 2009.

Material Properties RHA Ar500 Al7075-T6 Copper Jacket Lead Core

Density, ρ (kg/m3) 7800 7860 2804 8520 10600
Young’s Modulus E (GPa) 7.690 7.69 2.69 3.7 0.56

Poisson’s ratio, ν 0.33 0.33 0.3 0.31 0.42
Yield Strength, A (MPa) 780 1250 480 206 24

Strain Hardening, B (MPa) 780 362 520 206 24
Strain Hardening exponent, n 0.106 1 0.52 0.42 1

Strain rate constant, c 0.004 0.0108 0.001 0.01 0.1
Thermal softening constant, m 1 1 1 1 1
Melting temperature, Tm (K) 1800 1800 893 1189 760

Failure is modelled using a criterion proposed by Johnson and Cook. It depends on the effect of
stress triaxiality, temperature and strain rate. The model was defined as in Equation (2) assuming that
the damage accumulates in the material element during plastic straining and it breaks immediately
when damage reaches a critical value.

D =

{
0, when εp ≤ εp,d

Dc/
(

ε f − εp,d

)
, when ε > εp,d

(2)

where Dc is the critical damage, εp,d is the damage threshold and ε f is the fracture strain given by the
Johnson–Cook, as presented in Equation (3), whereby D1–D5 are the material constants given in Table 2.
These parameters were adopted from previous research works that possess similar material properties.

ε f = [D1 + D2 exp(D3σ)]
[
1 + D4 ln

.
ε
]
[1 + D5T] (3)

Table 2. Johnson–Cook fracture model constants for target materials.

Damage Constant Ar500 [18] Al7075-T6 [9]

D1 0.05 −0.068
D2 0.8 0.451
D3 −0.44 −0.952
D4 −0.046 0.036
D5 −2.9 0.697

3. Results and Discussion

3.1. Determination of Material Properties

Tensile testing was performed three times for each material and the average value of the results
obtained were taken as the reference for identifying the mechanical properties of the material. It can
be observed from the condition of specimens resulted in Figure 6 that these three materials possess the
elastic properties due to the necking process taken place before the material fracture. These materials
have elastic to plastic deformation prior to failure and fracture at the same place that is 1/3 of the
length gauge as a result of consistent pull off action to cause similar spot of stress concentration [20].
The results from experimental tensile tests are provided in Figure 7 where the ultimate strength of
Ar500 and Al7075-T6 are 1687 MPa and 545 MPa, respectively. A slight difference in elongation of
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these materials where Ar500 exhibits 12.07% and Al7075-T6 is at 11.71%. The summary of mechanical
properties of the high strength steel and aluminium alloy are tabulated in Table 3. Based on the
stress–strain curve in Figure 6, steel Ar500 shows similar mechanical properties to RHA and is stronger
than aluminium alloy Al7075-T6 due to the higher carbon content in the material.
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Table 3. The mechanical properties of RHA, Ar500 and Al7075-T6.

Material
Modulus
Elasticity

(GPa)

Yield
Strength, σy

(MPa)

Ultimate Tensile
Strength, σuts

(MPa)

Stress at
Break, σf

(MPa)

Elongation at
Break

(%)

RHA 213 1230 1737 1257 12.70
Ar500 150 1410 1687 1293 12.07

Al7075-T6 70 472 545 516 11.71
Weldox 400E [9] 145 1250 1680 1200 12.00
Al7075-T651 [16] 70 477 485 500 11.00

Rockwell hardness values obtained from the hardness test for Al7075-T6 alloy, Ar500 and RHA
are 87, 105, and 114 HRB, respectively are summarised in Table 4. The RHA hardness value is higher
than other materials because of its material composition, RHA containing Molybdenum. Molybdenum
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is a material often used in alloying materials for high strength characteristics. Figure 8 shows the
condition of specimen after five punching points for hardness test and Figure 9 represent the Rockwell
hardness value against each punching point. The strength or hardness of the material at any point
depends on the material capability to resist the penetration of the projectile. Each point represents a
different value for the material microstructure changes occurred during cutting process. Through this
test, it can be observed that RHA has the best penetration resistance compared to Ar500 and Al7075-T6
and the hardness feature is important to prevent the projectile from penetrating the plate.

Table 4. Summary of average hardness for each material.

Material Rockwell Hardness Value (HRB)

RHA 114
Ar500 105

Al7075-T6 87
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Characterisation test was also performed by comparing the material properties of materials
studied with similar materials of Forrestal et al. (2010) and Flores-Johnson et al. (2011) to adopt
JC properties from these research works to be used in this study. The yield strength and ultimate
strength of Ar500 steel and Al7075-T6 obtained were compared with those of Weldox 400E steel and
Al7075-T651, respectively. The similarities between these materials are quite high, between 94.6% and
95.8%. Thus, the JC properties of Weldox 400E and Al7075-T651 can be used to represent the materials
used in this study.

Bending test was performed on each material, Al7075-T6 and Ar500, to study the effect of the
maximum force exerted on the material before it stopped and the deformation of these materials when
subjected to bending tests. Each material was deformed as in Figure 10 producing maximum bending
stress, bending strain and bending modulus as tabulated in Table 5. Results show that Ar500 steel
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shows better bending performance than Al7075-T6 which can be observed from its lower deformation
compared to Al7075-T6 alloy. The bending test was conducted to study the mechanical properties
and the ability of each material constituting laminated panel when subjected to the impact from the
front. Tensile testing is inadequate to represent the resistivity characteristics of a material to the impact
effect because the tensile test was conducted on a uniaxial direction and at different direction of the
normal impact direction. In addition, bending test results can provide indication of the appropriate
material to be placed in the front part of the layered material. Material with high elastic modulus is
not suitable to be placed on the front panel because it will cause damage to the back material structure
and consequently it can be easily penetrated by projectiles [21].
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Table 5. Summary of three-point bending test results for each material.

Material Maximum Bending Stress, σB
(MPa)

Bending Strain,
εB

Bending Modulus, EB
(MPa)

Ar500 1818 0.07 54
Al7075-T6 624 0.1 34

3.2. Effect of Ballistic Impact on Different Layering Configuration

The final conditions of the double layered panels with Configuration A and Configuration B
resulting from the ballistic test conducted are shown in Figure 11a,b and Figure 12a,b, respectively.
Ballistic test results show that the projectile partially penetrated both panels with depth of penetrations
between 1.3 and 1.7 mm for Configuration A, and between 10 and 11 mm for Configuration B.
The average after three shoots was calculated as 1.5 mm and 10.3 mm for Configuration A and
Configuration B, respectively. Double-layered panels with Configuration A and Configuration B
possess similar areal density and weight. Only layering configuration differs and significantly affected
the panel behaviour during the high velocity impact. At high velocity, maximum stress occurred at the
early stage of penetration process because the panel had to withstand the high pressure and kinetic
energy from this projectile and then it slowly degraded as the plate distributed the stress all over the
panel [22]. Both configuration panels have caused the projectile to completely shatter. Deformation
occurred on the projectile nose during penetration led to an immense heat generation and the material
of the panel locally melts and loses all mechanical strength [23]. The Configuration A panel which has
front panel with 20% higher hardness than the front panel of Configuration B successfully stopped
the projectile from penetrating the panel at 1.3 mm depth. This phenomenon is related with energy
absorption capability and the strength of the material. The Configuration B panel allowed projectile
penetrating the front layer panel and then successfully stopped the penetration at the back layer.
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The results from simulation were compared with ballistic test results in terms of depth of
penetration and crater diameter tabulated in Table 6. The percentage differences of the depth of
penetration and crater diameter range between 10.7% and 20%, and between 9% and 20%, respectively.
Although the differences seem to be high in term of percentage for Configuration A, the differences in
term of real value were quite small: 0.3 mm for depth of penetration and 2 mm for crater diameter.
The cause of this big mismatch is due to lack of symmetry of the crater diameter. The fracture caused
in the front layer is due to reflected tensile wave which is called spallation and usually is circular
shape [24]. The projectile during the ballistic test is not in normal direction to the target panel and is
usually subjected to a degree of obliquity. Thus, it has affected the penetration process by which the
obliquity reduces the depth of penetration but increases the crater diameter.
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Table 6. Comparison between ballistic test and simulation results for depth of penetration and
crater diameter.

Plate
Ballistic Test Simulation Percentage Difference

Depth of
Penetration

(mm)

Crater
Diameter

(mm)

Depth of
Penetration

(mm)

Crater
Diameter

(mm)

Depth of
Penetration

(%)

Crater
Diameter

(%)

Configuration A 1.5 10 1.8 12 20 20
Configuration B 10.3 11 11.4 12 10.7 9

Simulation results in Figure 13a,b show that the 7.62-mm FMJ projectile was deformed and
shattered completely when striking each configuration panel at a velocity of 800 m/s. However,
penetration process taking place differed by which it completely penetrated front layer of Al7075-T6
in Configuration B panel and failed to penetrate through the front layer of Ar500 in Configuration A
panel. Nevertheless, the projectile has also stopped at the back layer of Ar500 in Configuration B which
is caused by the high tensile strength and high hardness properties of Ar500 material. Time taken by
the Configuration A panel to stop the projectile was 16.7% shorter than time taken by the Configuration
B panel (Figure 14). Both panels caused the projectile to shatter after the impact and the projectiles
debris moved from the panel at opposite of initial direction, as shown in Figure 14, after 0.05 ms and
0.06 ms for Configurations A and B, respectively. The duration time of penetration process is associated
with the amount of energy being absorbed during the impact occurred. Figure 15 shows the energy
being absorbed by the front and back layer for each configuration panel at projectile initial velocity of
800 m/s. A large amount of energy, about 1400 J, was absorbed by the Configuration B panel due to
the perforation process that occurred on the front layer. Meanwhile, Configuration A panel absorbed
58.6% less energy, about 580 J, to stop the projectile.
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Numerical studies of the ballistic impact with penetration show that the absorption capabilities
are increased at higher impact velocities, and energy absorption has its limit at higher velocities
regardless of which laminated panel is used as the target. These phenomena are related to an elastic
response of the panel because of essential role played by the deformation of the laminated panel.
Figure 16 shows that double-layered panel with Configuration A exhibits lesser energy absorption than
Configuration B panel, and RHA panel absorbed the least energy compared to double-layered panels
with Configuration A or B. This happens due to the effectiveness of ballistic resistance properties
of monolithic panel which is higher than that of multi-layered panels [25]. These double-layered
panels which have similar areal density with only different layering configuration however performed
differently. High strength steel when placed at the front layer as in Configuration A prevented any
penetration happening to the layered panel because of the ability of the front layer to absorb most
of the kinetic energy from the projectile. Besides, material hardness also plays an important role in
increasing the ballistic resistance. Configuration A panel has shattered the projectile completely with
6% less and 24% more energy needed to be absorbed by the panel compared to Configuration B panel
and existing RHA panel, respectively.
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Figure 16. Total energy absorbed by the laminated panel at different initial projectile velocity.

Figures 17 and 18 illustrate the stress distribution pattern for each panel at time from 10 µs to
70 µs for an initial velocity of 800 m/s. The concentration of stress for each time observed was around
the tip of projectile. The projectile retained its shape when penetrating the plate and the tip of the
projectile was progressively deformed at the same time as the material in the panel was displaced and
a hole was formed. Large amount of energy absorbed in front panel of Configuration A associated
with large stress was distributed on the front panel. This front panel is can withstand the projectile
penetration. A different phenomenon occurred on the front panel of Configuration B. The front panel
made of aluminium failed to absorb and distribute the stress throughout its volume, as shown in
Figure 18. The back layer played the role of withstanding the projectile penetration, and stopped the
projectile at its surface.
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Figure 17. Stress distribution patterns of Configuration A panel at time between 10 µs and 70 µs at
initial projectile velocity of 800 m/s.
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4. Conclusions

Numerical and experimental results show that lightweight material Al7075-T6 alloy when placed
at back layer of double-layered panel has a better ballistic performance than when it is placed at
the front layer for a similar areal density panel. The difference in terms of the depth of penetration
is quite significant (600%), while in terms of energy absorption, the difference is marginal (6%).
However, the performance of the double-layered panel is 20% less than that of existing RHA panel.
Considering the 25% weight reduction achieved, the armour shield made of these two materials
with Configuration A, whereby Ar500 steel and Al7075-T6 alloy are placed at front and back layer,
respectively, could potentially perform better than the equivalent areal density monolithic steel plate.
However, the results in this study are limited and further research has to be carried out to fully
understand this type of target configuration. It is concluded that layering configuration does matter
in improving the ballistic performance of laminated panel consisting different types of materials.
This study could be further performed to investigate the behaviour of stress distribution on the plates
during the projectile impact and penetration.
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