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Abstract: Lithium borohydride (LiBH4) and sodium borohydride (NaBH4) were synthesized via
mechanical milling of LiBO2, and NaBO2 with Mg–Al-based waste under controlled gaseous
atmosphere conditions. Following this approach, the results herein presented indicate that LiBH4 and
NaBH4 can be formed with a high conversion yield starting from the anhydrous borates under 70 bar
H2. Interestingly, NaBH4 can also be obtained with a high conversion yield by milling NaBO2·4H2O
and Mg–Al-based waste under an argon atmosphere. Under optimized molar ratios of the starting
materials and milling parameters, NaBH4 and LiBH4 were obtained with conversion ratios higher
than 99.5%. Based on the collected experimental results, the influence of the milling energy and the
correlation with the final yields were also discussed.

Keywords: alkali borohydrides; Mg–Al waste; ball milling; high conversion yield

1. Introduction

Tetrahydroborates, discovered in the 1940s, have been attracting the attention of the scientific
community in the last decades as possible energy vectors. Although tetrahydroborates, such as LiBH4

and NaBH4, are commonly used as reducing agents in organic and inorganic chemistry [1–4], their
employment as potential hydrogen storage materials have also been investigated, due to their high
gravimetric hydrogen densities. LiBH4 and NaBH4 feature very attractive gravimetric and volumetric
hydrogen storage capacities, i.e., of 18.5 wt.% H2 and 10.8 wt.% H2, and 113.1 kg H2/m3 and 121 kg
H2/m3, respectively [2–4]. In particular, their use as single hydrides [5–12] and their combination in
the so-called reactive hydride composites (RHCs) approach were intensively studied [13–28]. These
tetrahydroborates were first synthesized by Schlesinger and Brown by reacting diborane with ethyl
lithium to form LiBH4 [29] and with sodium trimethoxyborohydride to form NaBH4 [30]. Since then,
several studies attempted to improve the synthesis of these two tetrahydroborates [31–39]. Nowadays,
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LiBH4 is produced in several ways, i.e., LiBH4 is mechanically prepared via the reaction of NaBH4

and LiBr using ball milling (Reaction (1)) or via the reaction of BF3 and LiH under diethyl ether
(Reaction (2)). LiBH4 can be also synthesized through a costly process from individual elements
(Li, B) under high hydrogen pressure (up to 1000 bar, Reaction (3)), or after an extensive reactive
milling process from LiH and B under milder pressure conditions. For commercial purposes, NaBH4 is
produced through the Brown–Schlesinger process treating NaH with methyl borate–B(OCH3)3 at 225
to 275 ◦C (Reaction (4)) [40]. The drawbacks associated with the use of this method are the utilization
of expensive reducing agents on the one side, and the necessity to carry it out through a multiple-step
process on the other side; all of which significantly affects the cost of the final product. Due to the
kinetic constraints evidenced by the boron metal, the reactive milling of sodium hydride with the
respective metal boride, MgB2, has represented a valid strategy, despite the final yield not overcoming
15 wt. % of borohydride [41]. A second method used industrially for the production of NaBH4 is
referred to as the Bayer process [42,43]. In this process, Na2B4O7, Na, and SiO2 are heated up to
700 ◦C under hydrogen atmosphere (Reaction (5)). Due to the low melting point of sodium (97.8 ◦C), it
seems that Reaction (5) takes place partially in a molten state. It must be noticed that, due to the high
temperature and hydrogen pressure, this process exhibits potential explosion risks. In addition, the
disposal of Na2SiO3 is a further issue to be considered when using this process to produce NaBH4.

NaBH4 + LiBr→ NaBr + LiBH4, (1)

BF3 + 4 LiH→ LiBH4 + 3 LiF, (2)

Li + B + 2H2→ LiBH4, (3)

B(OCH3)3 + 4 NaH→ NaBH4 + 3 NaOCH3, (4)

Na2B4O7 + 16 Na + 8 H2 + 7 SiO2→ 4 NaBH4 + 7 Na2SiO3. (5)

In the literature, several works on the conversion of borates of Na and Li using high-purity MgH2

are reported. Li et al. [32] investigated the possibility of synthesizing NaBH4 by ball milling-dehydrated
Na2B4O7 with MgH2 in the presence of Na-based compounds (e.g., NaOH, Na2CO3, and Na2O2).
Kojima and Haga. [34] published that a reaction yield equal to 98 % of NaBH4 can be obtained when
annealing a mixture of NaBO2 with Mg2Si under 7 MPa of hydrogen pressure at 550 ◦C for 2 to
4 h. Kong et al. [33], Hsueh et al. [36] and Çakanyıldırım et al. [44] independently investigated the
possibility of forming NaBH4 from a mixture of MgH2 and NaBO2 ball milled in argon atmosphere. In
their works, Kong et al., Hsueh et al., and Çakanyıldırım et al. achieved an NaBH4 yield of above 70%.
Similarly, Bilen et al. [37] achieved 90% LiBH4 purity from the reaction of LiBO2 with MgH2 by ball
milling. In addition, ball milling is known to be an extremely powerful and versatile technique for the
treatment of waste materials [45–49]. These works clearly show that ball milling is a suitable method
to produce LiBH4 and NaBH4 from mixtures of LiBO2 or NaBO2 and MgH2, respectively. However, in
view of possible large-scale production of these borohydrides, due to the production costs associated
with the use of high-purity MgH2, the above-mentioned processes are not economically feasible. In
order to tackle the production cost issue, the possibility of replacing MgH2 with cost-neutral wastes,
such as Mg–Al-based alloys, was pursued in this work. The prepared samples were characterized by
XRD, FT-IR, and MAS-NMR techniques. The results of this investigation are presented and thoroughly
discussed in the following sections.

2. Materials and Methods

Lithium metaborate (LiBO2, anhydrous ≥ 98% purity, Sigma Aldrich) and sodium metaborate
tetrahydrate (NaBO2·4H2O, 99% purity, Sigma Aldrich) were purchased in powder form. As suggested
by the differential thermal analysis (DTA) shown in Figure S1, NaBO2 was obtained by heating
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NaBO2·4H2O up to 350 ◦C. The waste Mg–Al-based alloys used in this work were obtained from the
in-house technical workshop at the Helmholtz-Zentrum Geesthacht in the form of swarf/chips of a
few millimeter sizes (Figure S2). These scrap particles were kept in air before the beginning of the
experimental activity. The composition determined via spark emission spectrum analysis is: 76.09 wt.%
Mg, 13.6 wt.% Al, 0.06 wt.% Ca, 0.13 wt.% Cu, 0.13 wt.% Mn, 0.45 wt.% Nd, 8.6 wt.% Zn, 0.24 wt.% Y,
0.7 wt.% Ag. All the specimens were prepared and handled in a glove box under continuously purified
argon atmosphere (<10 ppm O2 and H2O) to avoid any further oxidation of the starting materials.

In order to reduce the particles’ size, the as-received waste material was milled in argon atmosphere
for 2 h using a Simoloyer CM08 mill (Zoz GmbH, Wenden, Germany) in a batch of 350 g with 5 mm
100Cr6 steel balls using a ball to powder ratio (BPR) of 20:1. The material morphology was characterized
by scanning electron microscopy (EvoMA10, Zeiss, Oberkochen, Germany) at the University of Pavia
(Italy). In order to avoid moisture and/or oxygen contaminations during the sample preparation, a
small amount of material was placed on a special Al sample holder inside a dedicated argon filled
glove box (<1 ppm O2 and H2O). The sample holder was then evacuated before transporting it to the
SEM and was opened only after a high vacuum had been created inside the SEM chamber.

The mechanochemical reaction was conducted by ball milling a mixture of Mg–Al waste and
dehydrated borates under high hydrogen pressure in a planetary mill. Since Mg accounts for 76.09
wt.% in the Mg–Al-based waste, mixtures of anhydrous LiBO2 or NaBO2 and Mg–Al-based waste (as
designated in Table 1) were prepared with respect to the amount of Mg contained in the Mg-Al-based
waste; that is, the molar ratio of borate and Mg was 1:2. For example, in this experimental study,
for the synthesis of the LBOM batch, the amount of LiBO2 and Mg–Al waste was fixed at 2.430 and
3.121 g, respectively. Similarly, the calculated amount NaBO2 and Mg–Al waste was 2.697 and 2.779 g,
respectively, for NBOM synthesis. The reaction components were put into a high-pressure vial (from
Evico magnetics GmbH, Dresden, Germany). The milling process was performed under 70 bar of
hydrogen with a BPR of 20:1, using a speed of 500 rpm and milling times in the range between 1 and
36 h. An attempt to synthesize NaBH4 directly from NaBO2·4H2O and Mg–Al-based waste was made
by milling the mixture under 1 bar of argon pressure for 36 h (i.e., the amount of NaBO2.4H2O and
Mg–Al waste was fixed at 2.448 and 3.558 g, respectively). For the sake of simplicity, the description
and designation of the mixtures prepared and investigated in this work are reported as in Table 1.

Table 1. Designation of the investigated materials.

No Material Designation

1 LiBO2 + Mg–Al-based waste LBOM
2 NaBO2 + Mg–Al-based waste NBOM
3 NaBO2·4H2O + Mg–Al-based waste NBOM·H2O

The hours of milling that the system underwent are indicated by the number following the sample
name (e.g., NBOM_36 is the system NaBO2 + Mg–Al-based waste milled for 36 h).

In order to evaluate the studied process from the thermodynamic point of view, equilibrium
composition calculations were performed with the HSC Chemistry software 9.7 [50]. The calculations
were done based on the thermodynamic data available for the phases involved in the syntheses. For
these calculations, a hydrogen pressure of 70 bar, a vial volume of 200 cm3, and a temperature between
25 and 40 ◦C were considered (Table 2). Since Mg accounted for 76.09 wt.% in the Mg–Al-based waste,
stoichiometric ratios were used with respect to the amount of Mg contained in the Mg–Al-based waste
as indicated in Table 2.
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Table 2. Stoichiometric compositions with respect to the amount of Mg in Mg–Al-based waste of
starting materials, milling atmosphere, and proposed products.

System Stoichiometric Mixture of Starting Materials Milling Temperature Vial Volume H2 Pressure

1 LiBO2(s) + 2Mg(s) + 2H2(g)
(Total amount of Mg–Al-based waste: 2.5 mol) 25–40 ◦C 200 cm3 70 bar

2 NaBO2(s) + 2Mg(s) + 2H2(g)
(Total amount of Mg–Al-based waste: 2.5 mol) 25–40 ◦C 200 cm3 70 bar

3 NaBO2·4H2O(s) + 6Mg(s)
(Total amount of Mg–Al-based waste: 7.25 mol) 25–40 ◦C 200 cm3 70 bar

X-ray diffraction (XRD) analyses were carried out using a Bruker D8 Discover diffractometer
(Bruker AXS GmbH, Karlsruhe, Germany) equipped with a Cu Kα radiation (λ = 1.54184 Å) X-ray
source and a VÅNTEC-500 area detector. The diffraction patterns were acquired in nine steps in the
2θ range from 10◦ to 90◦, with an exposure time of 300 s per step and a step size of 10◦. A small
amount of powder was placed onto a sample holder and sealed with an airtight dome made of
polymethylmethacrylate (PMMA), which is transparent to X-rays.

The composition of the synthesized samples was also characterized by means of the FT-IR technique
(Cary 630 FTIR spectrometer, Agilent Technologies Deutschland GmbH, Waldbronn, Germany). For
each measurement, the background was calibrated, a small amount of material was placed on the
diamond ATR top plate, and the FT-IR spectrum was acquired in the frequency range 4000–400 cm−1,
with a spectral resolution of 4 cm−1.

The composition of both the starting material containing boron and the milling products was also
investigated by means of 11B Solid State MAS-NMR using a 500-MHz (11B frequency: 160.46 MHz)
Bruker Avance III HD NMR spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) equipped
with a Bruker 4 mm BB/1H-19F probe. Rotation speeds in the range of 8 to 12 kHz were applied. To
overcome the broad 11B background of the standard bore probe, the vendor-supplied “zgbs” sequence
was employed. The repetition time of the experiments was chosen in such a way that the sample was
fully relaxed.

Energy Transfer during the Milling

Ball milling (BM) is a well-recognized technique to promote physical and chemical transformations
into solid and liquid systems [51–53]. Among all top-down approaches, BM can be considered as one
of today’s most used techniques for the production of hydrogen storage materials by using different
apparatuses, namely, the attritor mill, vibration mill, and planetary mill. Basically, BM consists of
repeated collision events, which involve solid materials trapped between the balls and reactor vial
walls. The microscopic transformations are accompanied by macroscopic evidences, which can be
estimated by characterization techniques, such as powder XRD. The handling of the milling parameters
and the mechanisms behind the process can lead to improvements in the performance in the synthesis
of new materials. In this context, the estimation of the mechanical energy transferred to the powders
during milling represents one of the most important parameters for monitoring the efficiency of the
milling and defining the reproducibility of the synthesis.

The energy, P*, from the mill transferred to the powders per mass unit during the milling process
in a planetary ball mill was then estimated using the model proposed by Burgio et al. [54], based on
Equation (1):

P∗ = − ϕb·Nb·mb·t·
(
Ωp −ωv

)
·

ω3
v·
(
rv −

db
2

)
Ωp

+ Ωp·ωv·Rp

·
(
rv −

db
2

)
2·π·mp

, (1)

where ϕ is the degree of milling, Nb is the number of balls, mb is the mass of balls (kg), t is the milling
time (s), Ωp is the rotation speed of the plate (rad/s),ωv is the rotation velocity of vial (rad/s), rv is the vial
radius (m), Rp is the plate radius (m), db is the ball diameter (m), and mp is the mass of the material (kg).
The results of this calculation correlated to the results of the experimental techniques allow the energy
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that is transferred to the system in order to reach the maximum yield to be obtained. The influence
of every different process parameter on the energy transferred during the milling processes was also
recently studied in a methodical analysis based on Equation (1) for hydrogen storage materials [55].

3. Results and Discussions

The morphology of the Mg–Al-based waste after milling was characterized by means of the SEM
technique (Figure 1). Compared to the starting material (ESI, Figure S2), the shape and size of the
milled product were considerably changed. The ribbon-like structure of several hundred micrometers,
which characterized the material received from the workshop, is not visible any longer; in its place,
slightly elongated particles, with an average size between 10 and 70 µm, are observed. More details
about the evolution of this waste alloy as a hydrogen storage material can be found in the literature [46].
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The equilibrium composition calculations (refer to SI Figures S3–S6 and Tables S1–S6) performed
for the stoichiometric mixtures LiBO2 + 2Mg and NaBO2 + 2Mg (total amount of Mg–Al-based
waste: 2.5 mol) under 70 bar H2, and NaBO2·4H2O + 6Mg (total amount of Mg–Al-based waste: 7.25
mol) under 1 bar Ar, show that the calculated values for the Gibbs free energy (∆G◦) associated to
Reactions (6) to (8) are largely negative, in agreement with a previously published work [56]. The
mechanochemical synthesis then leads to the formation of the respective borohydrides and MgO (s).

LiBO2(s) + 2Mg(s) + 2H2(g)→ LiBH4(s) + 2MgO(s) ∆G
◦

= −299.7 kJ, (6)

NaBO2(s) + 2Mg(s) + 2H2(g)→ NaBH4(s) + 2MgO(s) ∆G
◦

= −343.2 kJ, (7)

NaBO2·4H2O(s) + 6Mg(s)→ NaBH4(s) + 6MgO(s) +2H2(g) ∆G
◦

= −1651 kJ. (8)

It is noteworthy that the formation of borohydrides did not occur (Reaction (9)) when ball milling
a mixture of Al and borates under the same hydrogen pressure and milling conditions applied in the
previous synthesis:

4Al + 3NaBO2 + 6H2→ 3NaBH4 + 2Al2O3. (9)

Given the fact that the use of a 1:2 metaborate:magnesium stoichiometric ratio only leads to
the formation of the respective borohydride plus MgO, this ratio was used for the experimental
investigations. After 36 h of mechanical treatment in hydrogen atmosphere, the samples were
characterized via the SEM technique and the results are displayed in Figure 2. The system NBOM_36
(Figure 2a) appears to be constituted of particles, which occasionally agglomerate in a wide size range,
whereas the sample LBOM_36 (Figure 2b) seems to form some flakes. In both cases, the particle sizes
of the powders after milling are much finer in comparison to the starting materials.
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Figure 3 shows the XRD patterns acquired for the systems NBOM and LBOM for different milling
times (Figure 3a,b, respectively). For comparison, the diffraction patterns of the starting materials, as
well as those of the expected borohydrides, are also shown. In the diffraction patterns of NBOM_1, it is
clearly possible to see the reflections of magnesium, in addition to the weak diffraction peaks attributed
to the presence of NaBO2. After 12 h of milling (NBOM_12), the diffraction peaks of MgO are detected.
In the diffraction patterns acquired after 24 h of milling (NBOM_24), the peaks of MgO are clearly
visible. In addition, small peaks belonging to a yet unknown phase (2θ = 28.39◦, 32.04◦, 38.33◦, and
47.24◦) are also present. Interestingly, in the diffraction patterns of NBOM_36, the diffraction peaks of
NaBH4 are observed together with those of MgO. In the diffraction patterns of LBOM_1, the diffraction
peaks of the starting materials (Mg and LiBO2) are still visible. The patterns of LBOM_12, LBOM_24,
and LBOM_36 (Figure 3B(e)–(g)) are characterized by the presence of the diffraction peaks of MgO only.
For these systems, even after 36 h of milling, it is not possible to observe the formation of crystalline
LiBH4 by XRD.

The specimens were characterized by the FT-IR technique to detect the possible presence of
non-crystalline species. Figure 4, and Tables 3 and 4 show the infrared vibration bands observed in the
starting and ball-milled materials. The vibrational spectra of borates are constantly complicated due to
the capability of coordinating the three and four oxygen atoms of boron atoms to formulate either a
monomer or a polymer form. The IR spectrum of the NaBO2 sample was characterized as shown in
Figure 4A(a). The band, which appeared at around 1225 cm−1, can be assigned to the B-O stretching
vibrations of BO4 units. Another band at 1395 cm-1 is attributed to the asymmetric stretching of the B-O
bond of trigonal BO3. These values were similarly found in [57,58]. For pure NaBH4 (Figure 4A(b)),
the measured absorption band for the B-H bending mode is 1108 cm−1, whereas the bands of the B-H
stretching mode are found at 2208 and 2278 cm−1. In the FT-IR spectrum acquired for the sample
NBOM_1, only the absorption bands of NaBO2 are visible. The spectra of the samples NBOM_12,
NBOM_24, and NBOM_36 show the characteristic absorption bands of B-H bending modes at 1118 and
1113 cm−1, respectively, whereas the absorption bands of B-H stretching modes are observed at 2286,
2294, and 2288 cm−1, respectively. The NaBH4 stretching band at 2214 cm−1 is only observed in the
spectrum of NBOM_36. All the NaBH4 FT-IR absorption bands in the ball-milled NBOM are slightly
shifted to a higher frequency compared to the values of pure NaBH4. This effect eventually originates
from the presence of other compounds intimately mixed with NaBH4. Similarly to NaBO2, the IR
spectrum of LiBO2 was recorded as in Figure 4B(a): In this case, two distinguished bands emerge due to
the B-O stretching vibrations of the BO4 groups (1140 cm−1) and of the trigonal BO3 groups (1420 cm−1).
In Figure 4B(b), the B-H bending bands measured for pure LiBH4 are found at 1089 and 1232 cm−1,
whereas the stretching bands are observed at 2270 and 2298 cm−1. Those results are in accordance with
a previous report [59]. The spectrum of LBOM_1 does not show features associated with the presence
of LiBH4. However, the spectra of the material milled for 12, 24, and 36 h (LBOM_12, LBOM_24, and
LBOM_36, respectively) clearly show the characteristic bending and stretching absorption bands of
LiBH4 at about 1090 and 2300 cm−1, respectively. In addition to the absorption bands at 1091 and
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2301 cm−1, in the spectrum of LBOM_36, bands at 1232 and 2272 cm−1 are also visible. This finding
indicates that the amount of LiBH4 present in the sample increases between 24 and 36 h of milling.
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Table 3. Infrared vibration bands of NaBH4, NaBO2, and ball-milled materials at different milling time
durations at room temperature.

Frequencies (cm−1) NaBH4 NaBO2 NBOM_1 NBOM_12 NBOM_24 NBOM_36

B-H Bending Modes 1108 - - 1118 1118 1113
- - - - - -

B-H Stretching Modes 2208 1225 - - - 2214
2278 1423 - 2286 2294 2288

Table 4. Infrared vibration bands of LiBH4, LiBO2, and ball-milled materials at different milling time
durations at room temperature.

Frequencies (cm−1) LiBH4 LiBO2 LBOM_1 LBOM_12 LBOM_24 LBOM_36

B-H Bending Modes 1089 - - 1093 1092 1091
1232 - - - - 1232

B-H Stretching Modes 2270 1140 - - - 2272
2298 1420 - 2311 2301 2302
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To better understand the nature of the obtained products and to quantify the reaction yields, the 
samples were also investigated via 11B MAS-NMR. Figure 5 shows the acquired 11B MAS-NMR 
spectra for the reference and ball-milled materials. In Figure 5A, the NMR spectra of pure NaBH4 and 
NaBO2 and those of the milled NBOM system are shown. The spectra of all the NBOM specimens 

Figure 4. FT-IR spectra of materials: (A) (a) NaBO2.; (b) NaBH4; (c) MgO; (d) NBOM_1; (e) NBOM_12;
(f) NBOM_24; and (g) NBOM_36; (B) (a) LiBO2; (b) LiBH4; (c) MgO; (d) LBOM_1; (e) LBOM_12; (f)
LBOM_24; and (g) LBOM_36.

To better understand the nature of the obtained products and to quantify the reaction yields,
the samples were also investigated via 11B MAS-NMR. Figure 5 shows the acquired 11B MAS-NMR
spectra for the reference and ball-milled materials. In Figure 5A, the NMR spectra of pure NaBH4 and
NaBO2 and those of the milled NBOM system are shown. The spectra of all the NBOM specimens
(Figure 5A(d)–(f)) are dominated by the resonance of NaBH4 at −42.2 ppm. Additionally, the resonance
of small quantities of boron oxide around 1 ppm are visible (SI, Figure S9). Upon integration of the
spectra, boron oxide accounts for the 2.8%, 1.8%, and 0.3%, of the spectra-integrated intensity of
NBOM_12, NBOM_24, and NBOM_36, respectively. The determination of the NaBH4 yield followed
the procedure described in reference [32]. The conversion ratio of NaBO2 into NaBH4, which was
calculated based on the integration of the MAS-NMR signals, is approximately 97.2%, 98.2%, and 99.7%
for NBOM_12, NBOM_24, and NBOM_36, respectively. No formation of NaBH4 was observed for
NBOM_1, in agreement with the XRD and FT-IR results. Similarly, in the 11B MAS-NMR spectrum
of LBOM specimens (Figure 5B (c)–(f)), the sharp resonance of LiBH4 is observed at –41.4 ppm. The
analysis of the signals of the MAS-NMR spectra shows that boron oxide contributes to 1.6%, 1.1%,
and 0.4% of the total 11B MAS-NMR-integrated intensity for LBOM_12, LBOM_24, and LBOM_36,
respectively. This implies that the conversion yield of LiBO2 into LiBH4 is approximately 98.4%, 98.9%,
and 99.6% for LBOM_12, LBOM_24, and LBOM_36, respectively. The 11B MAS-NMR spectrum of
LBOM_1 does not show the presence of LiBH4.
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Although the use of ball mills for carrying out mechanochemical driven processes is often 
advantageous from the point of view of the time necessary to complete the process and from the 
perspective of its scalability, the need to apply high gas pressure within the drum of the mill is a 
technical challenge that is difficult to overcome. Recently, Felderhoff et al. [60] reported the possibility 
of partially reversing the hydrolysis of NaBH4 by ball milling from the hydrolysis by-product 
NaBO2·2H2O with high-purity Mg in an argon atmosphere. As a result of their investigation, they 
achieved a maximum conversion yield of 68.55%.  

Figure 5. 11B MAS-NMR spectra of materials: (A) (a) NaBO2, (b) NaBH4, (c) NBOM_1, (d) NBOM_12,
(e) NBOM_24 and (f) NBOM_36; (B) (a) LiBO2, (b) LiBH4, (c) LBOM_1, (d) LBOM_12, (e) LBOM_24,
and (f) LBOM_36. Spinning sideband resonances from NaBH4 and LiBH4 are indicated by asterisks (∗)
and solid circles (�), respectively.

Although the use of ball mills for carrying out mechanochemical driven processes is often
advantageous from the point of view of the time necessary to complete the process and from the
perspective of its scalability, the need to apply high gas pressure within the drum of the mill is a technical
challenge that is difficult to overcome. Recently, Felderhoff et al. [60] reported the possibility of partially
reversing the hydrolysis of NaBH4 by ball milling from the hydrolysis by-product NaBO2·2H2O with
high-purity Mg in an argon atmosphere. As a result of their investigation, they achieved a maximum
conversion yield of 68.55%.

Inspired by this work, an attempt was made to synthesize NaBH4 starting from a mixture of
NaBO2·4H2O and Mg–Al-based waste. The molar ratio between metaborate and Mg contained in the
waste was 1:6, as shown in Table 2. The milling process was carried out in Ar atmosphere instead of
H2 gas. Figure 6 shows the XRD diffraction patterns and FT-IR spectra of the reference materials and
of the ball-milled material. In Figure 6A(d), for the sample NBOM·H2O_36, besides the diffraction
peaks of MgO, in agreement with the diffraction patterns of pure NaBH4 (Figure 6A(c)), the reflections
belonging to NaBH4 at 2θ = 25.15◦, 29.01◦, and 41.45◦ are visible. In Figure 6B, the FT-IR spectra of
NaBO2·4H2O, NaBH4, MgO, and NBOM·H2O_36 are shown. The FT-IR spectrum of NBOM·H2O_36
(Figure 6B(d)), similarly to that of pure NaBH4, shows absorption bands of the bending mode of NaBH4

at 1114 cm−1 and of the stretching modes at 2225 and 2289 cm−1. Therefore, the presence of NaBH4

was confirmed by both XRD and FT-IR techniques.
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resonance of pure NaBH4 (Figure 7a) at −42.2 ppm is also observed for the sample NBOM·H2O_36 
(Figure 7b). Less intense signals around 1 ppm, belonging to boron oxide, are also observed. Based 
on the integrated signals of the NaBH4 and boron oxide, it is possible to claim that the conversion 
ratio of NaBO2·4H2O to NaBH4 is >99.5%.  

The synthesized borohydrides (LiBH4 and NaBH4) can be completely separated from the by-
products (mainly MgO) by an extraction process with isopropylamine and ethylenediamine (EDA) 
followed by a purification process [36,37], as described in SI. This further step is the object of ongoing 
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Figure 6. (A) XRD diffractions of: (a) Mg–Al-based alloy, (b) NaBO2·4H2O, (c) NaBH4, (d) ball-milled
NBOM·H2O at 36 h under 1 bar Ar, (B) FT-IR spectra of materials: (a) NaBO2·4H2O; (b) NaBH4; (c)
MgO and ball-milled NBOM·H2O at 36 h under 1 bar Ar.

Figure 7 shows the 11B MAS-NMR spectra of pure NaBH4 and NBOM·H2O_36. The NaBH4

resonance of pure NaBH4 (Figure 7a) at −42.2 ppm is also observed for the sample NBOM·H2O_36
(Figure 7b). Less intense signals around 1 ppm, belonging to boron oxide, are also observed. Based on
the integrated signals of the NaBH4 and boron oxide, it is possible to claim that the conversion ratio of
NaBO2·4H2O to NaBH4 is >99.5%.
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The synthesized borohydrides (LiBH4 and NaBH4) can be completely separated from the
by-products (mainly MgO) by an extraction process with isopropylamine and ethylenediamine
(EDA) followed by a purification process [36,37], as described in SI. This further step is the object of
ongoing research.

The model developed by Burgio et al. was used (Equation (1)) to quantify the energy required for
the almost full conversion of the starting materials into borohydrides and to assure the reproducibility
of the production processes, mainly at the time used when scaling up the reaction. These calculations
were performed for the first two systems (refer to Table 1) as evidence that the milling process can be
completely characterized to avoid the cost and time required by a trial-and-error procedure with large
amounts of materials. Figure 8 presents the correlation between the milling time, the total transferred
energy, and the conversion ratio for NBOM and LBOM materials. All parameters, including the
BPR, velocity, and mass of powders, were the same for all the samples, thus the energy dissipated
at each impact was the same for the entire milling time (SI, Table S7). The milling energy per gram
of powder changes with the milling time varying from 1 to 36 h. According to Equation (1), the
transferred energy depends on the filling vial coefficient, which is related to the number of balls and
reactor volume, as well as to the volume of powder [54]. In this study, the number of balls and reactor
volume were the same for all experiments; therefore, the energy transferred was mainly related to the
volume occupied by each powder sample [55]. Taking into account that the densities of the initial
reagents were not so different, the energy transferred for NBOM and LBOM materials was almost the
same (Figure 8). The experimental results (XRD and FT-IR) show that increasing milling time leads to
higher yields of borohydrides. Therefore, according to the above-described calculations, 228 Wh/g
corresponding to 36 h of milling process is required for NaBH4 and LiBH4 conversion ratios over 99.7%
and 99.6%, respectively.
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According to the results shown in Figure 8, it would also be possible to reduce the milling time to
12 h with the same conversion ratio. In this experimental study, however, the test was prolonged to 36
h to assess the effects of the milling time on the powder morphology, pureness, and nanostructure. A
lower energy consumption, without compromising the yield, is nevertheless fundamental in order
to estimate the parameters for scaling up the process. According to Equation (1), it is theoretically
possible to increase the mass of the powder milled if all the other factors are increased accordingly, to
transfer the same amount of energy in the process.

In practice, however, the size of synthesis is limited by the milling apparatus available. The
problem of industrial production of hydride materials has already been considered [61]. The limit
to the use of larger industrial devices (where geometries and sizes are larger, masses and forces are
higher, but the nature of the process is the same [62]) are controlled by the atmosphere. Non-reactive
materials can easily be considered for processing in industrial machines, but when an inert or a reactive
atmosphere is required, the batch size is limited by the possibility of properly sealing the milling
environment in such dynamic apparatuses [53,63]. Recently, more sophisticated milling processes
were developed using larger machines (up to a 100-L milling volume), where the vial is static and the
atmosphere is monitored [64]. This would allow for semi-industrial synthesis of borohydrides from a
mechanochemical reduction of borates, as well.

The kinetics of LiBH4 formation, determined by quantitative analysis of its solid-state NMR
patterns, was obtained by plotting the LiBH4 fraction, α, as a function of the milling time (Figure 9).
The kinetic curve has a sigmoidal shape that is well represented by the empirical Equation (2) [65]:

α = 1− (1 + kt) exp(−kt), (2)

where α represents the mass fraction of LiBH4 formed during the mechanochemical reaction and k is
the apparent rate constant. The best-fitted line (dark full line) allows an estimate of the k value for
the LiBH4 formation process, which is equal to 5.68 10−3 min−1, one order of magnitude higher, for
example, than the one estimated in the mechanically-induced metathesis reaction of Mg(NH2)2 (8.39
10−4 min−1) [66]. In contrast, NaBH4 was not identified for the sample after 5 h of ball milling. There
might be an induction period for the NaBH4 conversion under the given conditions. It is claimed that



Metals 2019, 9, 1061 13 of 17

a different mechanism seems to occur in NaBH4 formation during BM, with respect to those shown by
LiBH4. For this reason, further experiments are now in progress to clarify this interesting point.
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4. Conclusions

This work demonstrated that the synthesis of NaBH4 and LiBH4 from low-cost starting materials,
such as metaborate compounds and Mg-Al waste, employing a common industrial method, such as
ball milling, is efficiently possible. The mechanochemical synthesis allows for the use of different
conditions, such as hydrogen and argon atmosphere under room temperature, both leading to high
yields of conversions in the case of NaBH4. The advantage of using NaBO2·4H2O as a starting material,
without any need for water elimination, improves the efficiency of the synthesis method. Experimental
results (XRD, FT-IR and NMR results) confirmed that NaBH4 and LiBH4 were successfully synthesized
under 70 bar H2 and room temperature by ball milling, achieving conversion efficiencies of NaBH4

and LiBH4 over 99.5%. It is interesting to emphasize that NaBH4 can be directly produced from
NaBO2·4H2O plus Mg-Al-based waste under 1 bar Ar and room temperature by ball milling, and the
conversion ratio of NaBO2 to NaBH4 can be as high as 99.5%.
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