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Abstract: This study delineates a novel finite element model to consider a pattern of process parameters
affecting the forward slip in micro flexible rolling, which focuses on the thickness transition area
of the rolled strip with thickness in the micrometre range. According to the strip marking method,
the forward slip is obtained by comparison between the distance of the bumped ridges on the roll
and that of the markings indented by the ridges, which not only simplifies the calculation process,
but also maintains the accuracy as compared with theoretical estimates. The simulation results
identify the qualitative and quantitative variations of forward slip with regard to the variations in the
reduction, rolling speed, estimated friction coefficient and the ratio of strip thickness to grain size,
respectively, which also locate the cases wherein the relative sliding happens between the strip and
the roll. The developed grain-based finite element model featuring 3D Voronoi tessellations allows
for the investigation of the scatter effect of forward slip, which gets strengthened by the enhanced
effect of every single grain attributed to the dispersion of fewer grains in a thinner strip with respect
to constant grain size. The multilinear regression analysis is performed to establish a statistical model
based upon the simulation results, which has been proven to be accurate in quantitatively describing
the relationship between the forward slip and the aforementioned process parameters by considering
both correlation and error analyses. The magnitudes of each process parameter affecting forward slip
are also determined by variance analysis.

Keywords: finite element analysis; forward slip prediction; strip marking method; multilinear
regression; micro flexible rolling; thickness transition area; 3D Voronoi modelling

1. Introduction

Strip rolling technology has been further developing rapidly in recent decades thanks to the
wide application of its products in a variety of fields, including manufacturing, construction and
energy, wherein higher quality and productivity have been of great interest to the researchers and
engineers in the field of metal forming [1–3]. For instance, Jiang et al. [3,4] investigated the rolling force,
intermediate force, roll edge contact force and wear condition, as well as the shape, profile and surface
roughness of the rolled strip in response to various process parameters like reduction, rolling speed,
initial strip thickness, using a combined numerical and experimental approach. Xie et al. [5] carried
out analytical and experimental investigations to identify the edge crack initiation and propagation
during cold rolling of low carbon steel strip with the aid of Atomic Force Microscopy and Scanning
Electron Microscopy, from which they found a lower friction coefficient, as well as a finer surface
finish, would not only prevent the microcracks, but delay the crack-initiation process in rolled strip.
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Jiang et al. [6] simulated the cold strip rolling process with consideration of friction variation along
the rolling and transverse directions based on finite element method, whereof the numerical results
had revealed the significant influence of friction on the rolling force, rolled strip shape and profile,
which were confirmed by the measured values that the developed approach was capable of improving
the accuracy of the conventional rolling model. Moreover, an elastic-plastic finite element model was
established by Jiang and Tieu [7] to analyse the strip deformation in the roll bite zone taking tension
into account, which was of great help to quantify the effects of tension and rolling speed on the hump
value at elastic entry zone, as well as determining the mixed lubricating film in the roll bite and the
elastic recovery of final rolled strips. Nonetheless, the forward slip is also a common phenomenon
during strip rolling, which reflects the difference between the strip speed and the roll speed at the exit
of roll bite. It is always a significant parameter that helps understand and determine the friction, and
also assists in tension control, as well as in preventing the occurrence of skidding [8].

The forward slip is normally analytically predictable or can be measured in both industrial and
experimental circumstances [9,10]. For instance, Heydari vini and Farhadipour [11] computed the
forward slip as a function of process parameters and strip geometry in cold rolling. Pawelski [12]
introduced an explicit analytical method for determining the forward slip during cold strip rolling,
which reproduced most predictions of classic strip theory, except for extreme cases, such as in the foil
rolling regime or for skin pass rolling. Bayoumi [13] developed a kinematic analytical approach to
predict the forward slip in hot strip rolling based on formulating a velocity field in the roll bite zone
that considers the effect of interfacial friction on the distribution of the axial velocity and longitudinal
stresses across the strip thickness. This method could yield accurate results, compared with those
of the finite element simulation, and was suitable for use in online control because of the drastic
reduction in computational time. On the other hand, Tieu, Jiang et al. [14] discussed two promising
experimental methods, which are the strip marking method and the laser Doppler method, respectively,
and Liu [10] applied these two methods to measure the forward slip in cold rolling of aluminium alloy
under lubricated condition, while the results successfully verified the effectiveness of both methods for
determining the forward slip in the laboratory rolling mill. Li et al. [8] analysed the uncertainty of
forward slip measurement using the laser Doppler method and proposed an improved laser Doppler
velocimetry system by mixing the Doppler signals with a reference frequency signal before feeding
them to the signal processors. Rolling tests of mild steel strips using the improved system showed a
fivefold accuracy enhancement of forward slip measurements under different rolling conditions and
surface roughness. Yuen [15] described an alternative approach to determine the forward slip in hot
strip rolling, which instead compared the distance the head end of the workpiece had travelled with
that the periphery of the work roll had travelled during the same time period.

Extensive investigations have shown variability in forward slip under different reductions, rolling
speeds, roll diameters, tensions, lubrication, etc., however, the microstructural effects still remain to be
identified, particularly with the micro-thin strips. Among most studies, the microstructural effects
have been characterised by the ratios of specimen thickness (T) to grain size (D) to find their interactive
relationship with the micro deformation behaviours. For example, according to Fang et al. [16], the
plastic deformation behaviour along with the fracture mode of the material produces an obvious
change when the value of the T/D ratio varies around 1. Lee et al. [17] revealed that both the maximum
blank holder force and the limit drawing ratio increased with increasing T/D ratio during micro
deep drawing of 304 stainless steel foils. They also recommended that the T/D ratio be greater than
10 for better formability and steady deep drawing behaviour. In addition, Anand and Kumar [18]
demonstrated the influence of T/D ratio on both yield stress and flow stress using ultra-thin brass
sheets, which emphasises on the modification in conventional constitutive equations when applied for
ultra-thin sheets. Raulea et al. [19] conducted a series of uniaxial tensile tests to identify variation in
the yield and tension strength when polycrystalline and single crystal aluminium sheets were adopted
respectively, as well as a sequence of blanking experiments to analyse the variation in product shape
and process force for both cases.
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In such an engineering problem, forward slip can be considered as a dependent variable, which
typical value changes for when any one of the independent variables, i.e., process and material
parameters, is altered. To estimate the relationships between these variables, regression analysis can be
carried out to explore the forms of these relationships, and this methodology has been applied in a
wide variety of prediction and forecasting situations [20]. For instance, Vorkov et al. [21] employed
multiple linear regression with workpiece and tooling dimensions as the independent variables to
deliver the prediction of contact points position between the punch and the workpiece in large radius
air bending using high-strength steels. Schmid et al. [22] predicted both major and minor strains based
on ultimate elongation and thickness of the material by linear regression so as to further determine the
whole forming limit curve geometry by performing the interpolation. Strano and Colosimo [23] also
conducted the empirical determination of forming limit diagram in sheet metal processes utilising
logistic regression model, which allowed the deduction of the probability of failure as a function of both
the principal planar strains by taking into account both the failed and safe experimental data points in
the analysis. Additionally, Hubbard et al. [24] established a two-parameter Weibull regression model
to estimate strain intensity in different strain modes using surface roughness data, which suggested
the critical strain localisation and/or failure, as well as the active deformation mechanisms in sheet
metal forming of aluminium alloy 5754.

Moreover, flexible rolling technology has been devised by Kopp et al. [25,26] to meet the increasing
demand for lightweight structures in the automotive industry, which alters the roll gap during the
rolling passes to obtain the part with varied thickness distribution along its length direction as per
the load requirements at respective locations. Liu et al. [27,28] also utilised finite element method to
analyse the influences of process parameters, such as reduction, friction coefficient and workpiece
horizontal velocity on the rolling force, forward slip and workpiece thickness profile so as to advance
the numerical investigation of flexible rolling. Therefore, the conventional strip marking method
cannot be simply applied to determine the forward slip in this newly developed technique as rolling
phase may change prior to one circumferential rotation of the roll; alternatively, two parallel ridges
have been conceived to ensure that two line markings fall within either thickness transition zone or
rolling phase with an invariable thickness, so that the forward slip can be evaluated effectively by
comparing the distances between the pairs of markings and ridges with respect to each rolling phase.

In this context, both analytical and numerical methods are utilised to determine the forward slip
of thin strips, which occurs within the thickness transition area during micro flexible rolling. The novel
finite element model developed based on strip marking method is capable of producing numerical
estimates of forward slip of mimicked aluminium alloy 5052 strips in an efficient and accurate manner
as compared with theoretical estimates obtained from the mathematical model. The variation of
forward slip in response to the variations in different process variables, such as reduction, rolling
speed, estimated friction coefficient and the T/D ratio is identified with a qualitative evaluation of
the scatter centred around it, which is due to the anisotropic nature of individual grains constructed
using 3D Voronoi tessellation technique. The relative slip between the strip and the roll caused by
the relocation of a neutral point outside the roll bite is also discovered during the rolling phase with
thinner thickness, together with an estimated friction coefficient of 0.08 or T/D ratio of 2. Furthermore,
the multilinear regression analysis followed by correlation and error estimations has been employed
to derive an equation model so as to generate reasonably accurate forecasts of forward slip of thin
aluminium alloy 5052 strips within the thickness transition zone in micro flexible rolling with different
process parameters. At last, analysis of variance is utilised to assess the significance of each process
parameter and quantify their respective contributions to the forward slip.
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2. Analytical Modelling of Forward Slip in Micro Flexible Rolling

2.1. Determination of Neutral Angle

Figure 1 depicts the forces acting on a unit width of the workpiece during the micro flexible
rolling phases to form transition zones with thicker and thinner thicknesses, respectively, wherein
the work rolls are assumed not to sustain any elastic deformation. This study is focusing on force
analysis within thickness transition zones, which represent the main characteristics in flexible rolling.
Therefore, Figure 1a,b just compare forces that act on the unit width of the workpiece during micro
flexible rolling phases to form the transition zones with thicker and thinner thicknesses, respectively,
while rolling phase with an invariable thickness is not considered in the current study, as it is the same
as the flat rolling process.

The neutral angle can be determined by considering the horizontal forces acting on the workpiece
of unit width, as well as neglecting the lateral spreading in the deformation zone. This is because
according to [29], the rolling process can be treated as a two-dimensional deformation when the
workpiece has a very large width compared with its thickness; this suits our case so that we have
neglected the lateral deformation of the material.

According to [30,31], the following equations can be obtained by solving the horizontal forces on
the unit width of the workpiece in equilibrium.

For the rolling phase with thicker thickness,∑
x = −

∫ α

θ
px sinϕRdϕ−

∫ γ

θ
τ′x cosϕRdϕ+

∫ α

γ
τx cosϕRdϕ = 0, (1)

where x refers to the horizontal axis of the two-dimensional figure in Cartesian coordinates, px is
the radial pressure, τ′x and τx are the tangential pressures in the forward and backward slip zones,
respectively, R is the roll radius, ϕ is the arc at arbitrary contact point and H denotes the initial strip
thickness. As can be seen from Figure 1, point C is the intersection of the circular arc of the upper roll
and the central line of the rolls. Thus, tangential pressures are not perpendicular to OC, but directed
tangent to the circular arc at which the neutral plane meets.
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Suppose (1) stress is uniformly distributed along the arc of contact between the rolls and the rolled
workpiece, namely px is regarded as a constant, and (2) friction coefficient µ remains invariable along
the arc of contact and friction between the rolls and the workpiece obeys the Coulomb’s law given by
τx = µpx [32]. Then upon integration and rearrangement, Equation (1) yields the following,

sinγ =
sinα+ sinθ

2
−

cosθ− cosα
2µ

, (2)

where α is the angle of bite, θ is the tilt angle for thickness transition area, γ is the arc at the neutral
plane and µ defines the estimated friction coefficient along the arc of contact.

For the rolling phase with thinner thickness,∑
x =

∫ θ
0 px sinϕ′Rdϕ′ −

∫ α
0 px sinϕRdϕ−

∫ θ
0 τ′x cosϕ′Rdϕ′

−

∫ γ
0 τ′x cosϕRdϕ+

∫ α
γ
τx cosϕRdϕ = 0,

(3)

After integration and rearrangement, this equation becomes,

sinγ =
sinα− sinθ

2
−

cosθ− cosα
2µ

. (4)

2.2. Determination of Forward Slip

It is postulated that the volume rates of material flow are the same at the exit of the roll bite and
the neutral plane. Thus, there exists the relationship,

vθhθ = vγhγ, (5)

where vθ, vγ are the horizontal velocities and hθ, hγ are the thicknesses of the workpiece at the exit and
the neutral plane, respectively.

Using
vγ = v cosγ, (6)

and
hγ = hθ + D(cosθ− cosγ) , (7)

The following equation can be obtained,

vθ
v

=
vθ cosγ

vγ
=

hγ cosγ
hθ

= cosγ+
D(cosθ− cosγ) cosγ

hθ
, (8)

where D is the roll diameter, while v is the circumferential velocity of the roll.
Then the forward slip can be calculated by,

Shθ =
vθ − v

v
=

vθ
v
− 1 = cosθ− 1 +

D(cosθ− cosγ) cosγ
hθ

. (9)

3. Numerical Estimation of Forward Slip in Micro Flexible Rolling Based on Strip
Marking Method

In most finite element simulations of sheet material forming processes, constitutive modelling
plays a significant role in determining the stress and strain distributions, as well as their variation
with respect to different locations in the formed part, which includes the mechanical behaviour of the
material, yield criterion, hardening rule, flow rule and so forth [33,34]. In the current engineering
application of micro flexible rolling, the material is assumed to be elastoplastic and undergo isotropic
hardening after it yields according to von Mises criterion, the flow rule being modelled by Levy-Mises
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with normality condition. Moreover, this problem can be considered as plane-strain state as the
workpiece is assumed to be very wide compared with its thickness [29].

A half symmetry 3D finite element model has been developed in ABAQUS/CAE (also known as
Complete Abaqus Environment, which is a backronym with a root in Computer-Aided Engineering) to
numerically estimate the forward slip in micro flexible rolling in accordance with the strip marking
method, as displayed in Figure 2. The roll was simplified as a rigid cylindrical shell in order to eliminate
its elastic deflection and save computational resources, and a finer mesh was assigned to the strip than
that for the roll so that the bumped ridges on the roll would leave an image on the strip, rather than
penetrating into it after the simulation process was completed [35]. Then the average forward slip may
be worked out by Equation (10) [10],

S =
l′ − l

l
× 100%, (10)

where l’ and l are the distances between the pairs of markings and ridges, respectively.
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(b) enlarged profile view of the ridge; and (c) rolled strip with two line markings indented by the ridges.

As this study intends to reveal the variation of forward slip in the thickness transition area when
process variables like reduction, rolling speed, friction coefficient, as well as the ratio of strip thickness
to grain size change, a frictional interface has been defined between the outer surface of the roll and
the top surface of the strip, and the 3D Voronoi tessellation has also been applied in the strip to mimic
the polycrystalline structure of the material to be rolled.

The rolling speed is a process parameter in our work, while the numerical model has been set to
contain general, static analysis steps, namely initial contact, one type of reduction, thickness transition
and another type of reduction. The boundary conditions for different analysis steps are listed in Table 1,
where RP refers to the geometric centre of the roll, s refers to the bottom surface of the workpiece, vx, vy

and vz are the velocity components in directions x, y and z, respectively, ωx, ωy and ωz are the angular
velocity components of the roll rotating around the axes x, y and z, respectively, ∆h is the reduction
amount, d is the diameter of the roll and lc is the length of the zone of contact between the roll and the
workpiece [36].



Metals 2019, 9, 1062 7 of 20

Table 1. Boundary conditions for different analysis steps.

Step Position Boundary Conditions

Initial contact
RP vx = vy = vz = ωx = ωy = 0

ωz , 0

s vy = 0
vx , 0

One type of reduction RP vx = vy = vz = ωx = ωy = 0
ωz , 0

s vy = 0

Thickness transition
RP

vx = vz = ωx = ωy = 0
vy = ±∆hωzd

2lc
ωz , 0

s vy = 0

Another type of reduction RP vx = vy = vz = ωx = ωy = 0
ωz , 0

s vy = 0

The bilinear isotropic hardening material model was selected for the workpiece in which the basic
material data were referred to Reference [37], namely aluminium alloy 5052 with Young’s modulus E
of 70 GPa, initial yield stress σs0 of 195 MPa and tangent modulus ETAN of 292 MPa; however, different
heterogeneity coefficients have been employed to alter the tangent modulus to obtain different types
of mechanical properties. Figure 3a presents seven types of mechanical properties distinguished by
dissimilar heterogeneity coefficients, which have been assigned to Voronoi polyhedrons to substantially
reflect the inhomogeneity of individual grains that constitute the strip, as exhibited in Figure 3b.
Note that ξ, ETAN and σs0 in Figure 3a denote heterogeneity coefficient, tangent modulus and initial
yield stress for the selected material, respectively.

According to [35], the concise instructions to create a Voronoi tessellated strip and subsequently
associate its internal grains with a variety of properties are as follows:

(1) The strip is divided into several unit cubes, each containing a single nucleus.
(2) The 3D Voronoi function in computational software MATLAB is in use to create Voronoi

polyhedrons that take those nuclei as their mass centres.
(3) Different types of mechanical properties are assigned to the Voronoi polyhedrons by means of

MATLAB code to reflect the grained inhomogeneity in a real material.
(4) MATLAB finally generates a Python file containing all the geometrical and topological

information of the generated Voronoi tessellation together with property attribution of each
individual polyhedron.

(5) The Python script is imported to ABAQUS/CAE to complete the setup of grain aggregate with a
range of mechanical properties.
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Figure 3. Voronoi tessellation-based 3D construction of the strip with consideration of grained
inhomogeneity: (a) Bilinear stress-strain curves with different tangent moduli governed by
corresponding heterogeneity coefficient; and (b) mimicked microstructure of the strip where grains are
equipped with various mechanical properties.

The strip was meshed with 10-node modified quadratic tetrahedron elements (C3D10M) with
a fine mesh size of 0.04 mm to ensure a good convergence, as well as improving the mesh quality
near grain boundaries, whilst the roll was coarsely meshed with 4-node 3D bilinear rigid quadrilateral
elements (R3D4) by utilising mesh size of 0.16 mm in such a way as to prevent the nodes on the roll
surface from penetrating into the workpiece [35,38].

In general, the optimised model setting includes the simplification of the roll as a rigid cylindrical
surface and the determination of mesh sizes for both roll and strip, in order to reduce the model
complexity, save the computational time and boost both computational accuracy and efficiency.

4. Results and Discussion

Figure 4 presents the micro flexible rolled strip with a reduction of 20% to 50%, wherein red
dots indicate the locations of the marks transferred from the roll within the thickness transition area.
Furthermore, the strip was rolled at a speed of 20 cm/min and under dry friction (with an equivalent
friction coefficient of 0.13 [38]), and both initial strip thickness and average grain size were set as
250 µm, which gives the T/D ratio of 1 for this case. In the current study grain size of 250 µm has been
used, due to two main reasons, whereof one is that three types of T/D ratio can be considered, which
means the scattering effect resulted from the difference between properties of single grains can be
evaluated and compared when approximately one (T/D ratio is less than or equal to 1) or two layers of
grains (T/D ratio is equal to 2) constitute the strip; and the other is that a bigger grain size is helpful to
lessen the computation time for creating the Voronoi tessellation and performing the simulation tasks,
while the grained inhomogeneity which is a key factor leading to scattering effect can still be reflected
in spite of a large grain size.

It is clear from Figure 4 that the effective stress distribution on the profile exhibits a highly
non-uniform pattern because of the coexistence of both elastic and plastic states of stress in the
inhomogeneous granular material subjected to the applied rolling force [39].

Based on Equations (4) and (9), the theoretical value of the forward slip in this case is equal to
2.94%, whereas the numerical estimate turns out to be 3.16% (averaged result from three repeated trials
to improve the accuracy of length measurement after rolling) in accordance with Equation (10), which
error is 7.48% with respect to the theoretical estimate and can be calculated as follows:

Error =
|Theoretical Estimate−Numerical Estimate|

Theoretical Estimate
× 100%. (11)
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As the developed finite element model is capable of evaluating the forward slip by simple
calculations with measurements which produce a reasonable level of accuracy, it is utilised to identify
how different process parameters affect the forward slip within the thickness transition area in micro
flexible rolling.
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4.1. Effect of Reduction

Reduction combinations of 20% to 40%, 20% to 45%, and 20% to 50% have been selected for the
rolling phase with thinner thickness, and likewise, 50% to 30%, 50% to 25%, and 50% to 20% for the
rolling phase with thicker thickness by maintaining the length of thickness transition area, but altering
the tilt angle θ. Figure 5 represents the relationship between the forward slip and the reduction for
the rolling phase with thinner thickness. It is evident that the forward slip increases as the reduction
increases, due to the fact that the increasing reduction gives rise to the increase in the displacement
volume in the thickness direction, which consequently leads to the growth of material flow in the
rolling direction, and thus, the increase in forward slip [40].

In Figure 6, the reduction combination is located on the abscissa, while the forward slip is given
on the ordinate for the rolling phase with thicker thickness. As can be seen, the forward slip undergoes
a decline because of progressively reduced material flow in the rolling direction with the decreasing
reduction. Compared with Figure 5, forward slip in this stage presents generally higher values probably
because the reduction starts with a greater value of 50%, which introduces a larger amount of forward
slip at the beginning of this stage. Moreover, the scatter of average forward slip has been noted for each
reduction combination in Figures 5 and 6. This being the case the strip comprises of approximately a
single layer of grains; consequently, the property of each individual grain has a prominent effect on the
overall deformation of the whole strip, which results in the scatter effect of forward slip with respect to
different grain compositions.



Metals 2019, 9, 1062 10 of 20

Metals 2019, 9, x FOR PEER REVIEW 9 of 18 

 

undergoes a decline because of progressively reduced material flow in the rolling direction with the 

decreasing reduction. Compared with Figure 5, forward slip in this stage presents generally higher 

values probably because the reduction starts with a greater value of 50%, which introduces a larger 

amount of forward slip at the beginning of this stage. Moreover, the scatter of average forward slip 

has been noted for each reduction combination in Figures 5 and 6. This being the case the strip 

comprises of approximately a single layer of grains; consequently, the property of each individual 

grain has a prominent effect on the overall deformation of the whole strip, which results in the scatter 

effect of forward slip with respect to different grain compositions. 

 

Figure 5. Forward slip versus reduction for the rolling phase with thinner thickness. 

 

Figure 6. Forward slip versus reduction for the rolling phase with thicker thickness. 

4.2. Effect of Rolling Speed 

The effects of rolling speed on forward slip are depicted in Figures 7 and 8 for the rolling phases 

with reduction combinations of 20% to 50% and 50% to 20%, respectively, wherein the friction 

coefficient is 0.13 and T/D ratio remains 1 for all cases. 

As can be noticed in both figures that the increase in rolling speed can lead to the increase in 

forward slip, regardless of the rolling phase with thinner or thicker thickness, which is primarily due 

to the fact that a higher rolling speed results in a larger residual friction force regarding a constant 

friction coefficient in the stable rolling stage, which, therefore, speeds up the plastic flow of the 

material in the rolling direction, causing an increase in forward slip eventually [40]. Furthermore, the 

1.55

2.15

3.16

1.00

1.50

2.00

2.50

3.00

3.50

20 to 40 20 to 45 20 to 50

F
o
rw

ar
d
 s

li
p
 (

%
)

Reduction combination (%)

8.65

6.81

6.11
5.80

6.40

7.00

7.60

8.20

8.80

50 to 30 50 to 25 50 to 20

F
o
rw

ar
d
 s

li
p
 (

%
)

Reduction combination (%)

Figure 5. Forward slip versus reduction for the rolling phase with thinner thickness.
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4.2. Effect of Rolling Speed

The effects of rolling speed on forward slip are depicted in Figures 7 and 8 for the rolling phases
with reduction combinations of 20% to 50% and 50% to 20%, respectively, wherein the friction coefficient
is 0.13 and T/D ratio remains 1 for all cases.

As can be noticed in both figures that the increase in rolling speed can lead to the increase in
forward slip, regardless of the rolling phase with thinner or thicker thickness, which is primarily due
to the fact that a higher rolling speed results in a larger residual friction force regarding a constant
friction coefficient in the stable rolling stage, which, therefore, speeds up the plastic flow of the
material in the rolling direction, causing an increase in forward slip eventually [40]. Furthermore, the
scatter effect of forward slip resulted from the inhomogeneous microstructure throughout the strip
has also been observed, whereof the average value varies from 6.11% to 8.02% for the rolling phase
starting with a bigger reduction of 50% as the rolling speed increases from 20 to 30 cm/min (Figure 8).
This change is generally greater than that of 3.16% to 4.32% for the rolling phase starting with a smaller
reduction of 20% (Figure 7), which indicates once again that the reduction affects the forward slip in a
significant manner.
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4.3. Effect of Estimated Friction Coefficient

To examine how lubrication condition affects the forward slip in micro flexible rolling four types
of estimated friction coefficients have been selected to represent dry friction (with estimated friction
coefficients of 0.13, 0.18, and 0.23, respectively) and rolling with lubrication (with estimated friction
coefficient of 0.08) in accordance with previous investigations conducted by Qu et al. [36,38]. In this
section, all cases were performed with rolling speed of 20 cm/min and T/D ratio of 1.

As can be seen in Figure 9, the average value of forward slip has undergone an overall decline
from 7.86% to −3.42% as the estimated friction coefficient decreases from 0.23 to 0.08, and where
this fact can be explained by the reduced residual friction force owing to the decrease in estimated
friction coefficient, which brings a continued drop in forward slip, provided all other variables remain
unchanged [40]. It is also quite noticeable that the forward slip experiences a significant decrease or
can even be thought of as reversing from positive value of 3.16% to negative value of −3.42% when the
mimicked condition varies from dry rolling to that with the presence of lubricant; this phenomenon
occurs because the neutral point has taken relocation outside the roll bite, which means the strip sliding
takes place to a certain extent even though it succeeds to feed in the roll bite.
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For the rolling phase with reduction of 50% to 20% (Figure 10), the forward slip displays an almost
identical downward trend, but stays positive, indicating that the strip sliding no longer exists during
the rolling phase with thicker thickness in spite of the low friction coefficient of 0.08 reached. As is also
found through comparison of Figures 9 and 10, the forward slip starts to decline from similarly high
levels of 7.86% and 9.01%, respectively, which reveals that the contribution of high friction coefficient
to forward slip overwhelms that of increased reduction.
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thinner thickness.
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4.4. Effect of Initial Strip Thickness (or T/D Ratio)

Figures 11 and 12 exhibits the tendency of forward slip to decrease with increasing initial strip
thickness, but with a constant rolling speed of 20 cm/min and friction coefficient of 0.13 for the rolling
phases with thinner (reduction of 20% to 50%) and thicker (reduction of 50% to 20%) thicknesses,
respectively. Firstly, as is clearly seen in Figure 11 that the increasing initial strip thickness has driven a
drastic decline in the forward slip of 3.16% to −6.89%, wherein the negative value indicates that the
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neutral point has moved outside the roll bite again for a larger initial strip thickness of 500 µm during
the rolling phase with thinner thickness; the strip keeps feeding in the roll bite, along with a certain
amount of sliding though.

While in the case with thicker thickness, as illustrated in Figure 12, there is a progressive and
approximate linear decrease in forward slip from 8.99% to 3.46% as initial strip thickness increases
from 100 to 500 µm during this rolling phase without strip sliding; the primary reason for the observed
trends is that the elongation of the material in the rolling direction decreases with increasing strip
thickness, which is equivalent to decreasing the reduction that reduces the material flow along rolling
direction, and the forward slip is then declined as a result [41]. In addition, a smaller initial strip
thickness exerts a greater influence on the forward slip than that of the reduction, since it reaches quite
close values of 8.87 and 8.99 for the rolling phases with thinner and thicker thickness, respectively, no
matter whether the reduction starts at 20% or 50% in relation to the initial strip thickness of 100 µm.

Another noticeable finding observed from both Figures 11 and 12 is that the scatter of average
forward slip is smaller at the initial strip thickness of 500 µm than that for both smaller strip thicknesses
of 100 and 250 µm, which is attributable to approximately two layers of grains dispersed in the thicker
strip of 500 µm (with respect to the average grain size of 250 µm, namely the T/D ratio reaches 2),
weakening the effect of each single grain and leading to a more uniform deformation within the
material, as compared with the other two types of thinner strips (with T/D ratio less than or equal to 1)
that produce larger discrepancies across simulation results.
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4.5. Development of Prediction Model for forward Slip in Micro Flexible Rolling Based on Regression Analysis

The multilinear regression analysis is a powerful technique for establishing a statistical model to
predict the unknown value of a dependent variable from the known values of a set of independent
variables in a quantitative manner [35]. In the present study, the forward slip is taken as the dependent
variable y that is influenced by four types of process parameters taken as the independent variables
x1–x4, to wit, reduction, rolling speed, estimated friction coefficient and the ratio of initial strip thickness
to average grain size, respectively.

According to [35,42], the multilinear regression prediction model can be constructed as follows:

ŷi = a0 + a1xi1 + a2xi2 + a3xi3 + a4xi4 + ei, for i = 1, 2, . . . , n, (12)

where n is the number of observations, a0 is the intercept term, namely the predicted value of the
dependent variable ŷi when all of the independent variables xi1–xi4 is equal to zero, a1–a4 are the
regression coefficients estimated by least-squares method and ei is the difference between the observed
value yi and predicted value ŷi, which is normally distributed with mean 0 and variance σ, i.e.,
ei ∼ N

(
0, σ2

)
, and where σ can be calculated as,

σ =

√ ∑
e2

i
n− p− 1

, (13)

where p is used for the number of independent variables.
In a regression model, the effects of lower-order terms become conditional ones, not main effects

by adding interaction terms, which means that the effect of one variable is conditional on the value of
the other and it goes into full effect only when the other term in the interaction equals 0. Therefore,
the interaction terms have not been taken into account in the current regression prediction model so
as to make quantitative estimation of the main effects of reduction, rolling speed, estimated friction
coefficient and T/D ratio on forward slip, respectively, since the value changes of these process
parameters are independent of each other.



Metals 2019, 9, 1062 15 of 20

In order to maintain the integrity of data, simulation results from both cases with thinner and
thicker thicknesses have been utilised jointly to establish one single model, wherein input variable x1,
viz. reduction, takes positive sign for the case with thinner thickness and negative for the other one.
Thus, based upon 60 groups of values of independent and dependent variables, the regression model
can be written in the following form,{

ŷi = 0.489503− 7.0693xi1 + 0.179244xi2 + 51.06542xi3 − 6.45104xi4 + ei, f or i = 1, 2, . . . , 60
ei ∼ N(0, 3.29633).

(14)

Equation (14) gives the quantitative definition of the prediction model of forward slip as a function
of independent variables. For instance, the first observation of values of x11–x14 is 0.2, 20, 0.13 and 1,
respectively, and the difference ε1 is −1.328 obtained from the prediction model. By substituting the
values of x11–x14 and ε1 into Equation (14), the predicted forward slip ŷ1 is calculated to be 2.848%.
This procedure can be applied to predict the forward slip for the other observations of values of x11–x14.

Moreover, the fitted regression model has also been validated by evaluating the strength of the
relationship between the simulated and predicted values of forward slip under different process
conditions, as well as assessing its prediction reliability in terms of Pearson correlation coefficient (r)
and root mean square error (RMSE), which are defined according to [43,44], as,

r =

∑N
i=1(yi − y)

(
ŷi − ŷ

)
√∑N

i=1(yi − y)2
√∑N

i=1

(
ŷi − ŷ

)2
, (15)

RMSE =

√√√
1
N

N∑
i=1

(yi − ŷi)
2 , (16)

where N is the number of paired data, y is the simulated forward slip, ŷ is the predicted forward slip,
y and ŷ are the mean values of y and ŷ, respectively. In accordance with Ref. [45], the relationship
between two groups of data can be considered strong, provided that their r value is greater than
0.7; therefore, as is noted from Figure 13 that a good correlation with r of 0.9106 exists between the
simulated and predicted data. Furthermore, the equation between simulated and predicted forward
slip can be written based on the fitting of the data plotted in Figure 13, as follows:

y = 0.8205x + 0.8586. (17)

In addition, the root mean square error was calculated to be 1.7383, which indicates that the
developed regression model has reasonable capability and accuracy in predicting the forward slip
during micro flexible rolling of aluminium alloy 5052 strips with regard to a range of reduction
combinations, rolling speeds, friction coefficients and T/D ratios.
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Figure 13. Correlation between the simulated and predicted values of forward slip under different
process conditions.

Finally, in order to investigate the magnitudes of each process parameter affecting forward slip,
variance analysis has been carried out in accordance with [38], and the results are listed in Table 2.

Table 2. Variance analysis for identification of significance of each variable.

Source S df V F Contribution Rank

x1 279.737 5 55.947 16.974 25.82% 2
x2 13.453 2 6.727 2.041 1.24% 4
x3 248.439 3 82.813 25.125 22.93% 3
x4 360.338 2 180.169 54.663 33.26% 1
e 181.298 55 3.296 16.74%

Total 1083.265 67 100.00%

S, df and V in Table 2 denote the sum of squared deviation, degree of freedom and variance,
respectively, and F value is the ratio of variance of each variable to that of the error (e) between the
simulated and predicted forward slip which is 3.296 in the present study. According to the size of F
value, the ratio of strip thickness to grain size is believed to be the factor that has the most significant
influence on forward slip.

Based on the value of Contribution in Table 2 which is defined as the ratio of sum of squared
deviation for each factor to the total sum of squared deviation, the ratio of strip thickness to grain size
is ranked first among the four process parameters, with most contribution of 33.26% to the forward
slip, which is followed by the reduction with its contribution of 25.82%. The next influential parameter
is the estimated friction coefficient with the contribution of 22.93%, while the rolling speed has little
significant influence on the forward slip with the contribution of only 1.24%.

5. Conclusions

This study aims to identify the influence of process parameters on forward slip within thickness
transition zone in micro flexible rolling of submillimetre thick strips based on the finite element method,
through which numerical estimations of forward slip for a range of process conditions can be obtained
in an intuitive and accurate manner as compared with theoretical calculations. A summary of the main
points in the present study is presented as follows:
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1. In view of the force equilibrium condition, as well as the material flow characteristics within the
roll bite, the 2D analytical models are established to determine the neutral angle and consequently
the forward slip of the thin workpiece during micro flexible rolling phases with thicker and
thinner thicknesses, respectively; the theoretical results obtained from mathematical models
indicate that an increase of reduction, rolling speed or estimated friction coefficient leads to an
increase of the forward slip, while a larger initial strip thickness suggests a smaller value of it.

2. In order to provide a more intuitive and practical evaluation of forward slip, a novel 3D finite
element model with bumped ridges on the roll is created based upon strip marking method
to mimic the rolled strip with two line markings indented by the ridges within the thickness
transition zone; meantime, the 3D Voronoi tessellation polyhedrons equipped with different
mechanical properties are employed to represent the inhomogeneous grain structure in the
material, through which the qualitative and quantitative estimation of the microstructural effect
on the forward slip can be conducted in terms of the ratio of strip thickness to grain size, namely
that the forward slip decreases as the initial strip thickness increases with regard to a constant
average grain size within thickness transition zones; however, for the rolling phase with thinner
thickness, the forward slip shows a negative value of −6.89% when the T/D ratio is 2, which
suggests a relative sliding between the strip and the roll.

3. Numerical simulations are performed with regard to the mechanical properties of aluminium
alloy 5052, whereof the results are found to have reasonable accuracy by comparison with the
theoretical estimates, viz. that the difference between the numerical and theoretical results ranges
from 5.95% to 10.92% among all cases, which reveals that the newly developed finite element
model is suitable to analyse the forward slip and its influential factors respecting the thickness
transition area in micro flexible rolling.

4. The variation of simulated forward slip in response to the variations in process parameters is in
reasonable agreement with theoretical results, to wit, that for either rolling phase with thinner or
thicker thickness, the forward slip generally exhibits an increasing trend along with increased
reduction, rolling speed or estimated friction coefficient, whereas it shows a decrease in response
to rising T/D ratio; nevertheless, negative values of forward slip are observed for cases with
estimated friction coefficient of 0.08 and T/D ratio of 2, respectively, during the rolling phase with
thinner thickness, namely that the neutral point no longer resides within the roll bite, and the
relative sliding between the strip and roll is incurred under these conditions.

5. The scatter effect of forward slip is qualitatively assessed taking advantage of 3D Voronoi
modelling which highlights the heterogeneous nature of the material, viz. that each individual
grain contributes more to the macro deformation of a thinner strip consisting of fewer grains,
leading to a larger scatter of material flow in the rolling direction and consequently a bigger
difference during determination of forward slip in the thickness transition zone, and vice versa.

6. A multilinear regression prediction model is constructed based on simulation results obtained
from both cases with thinner and thicker thicknesses, which is afterwards validated through
both correlation and error analyses, since a good correlation with r of 0.9106 exists between the
simulated and predicted data, and the root mean square error is estimated to be 1.7383; the
developed statistical model displays reasonable capability and accuracy, and can, therefore, be
utilised to reasonably predict the forward slip of thin aluminium alloy 5052 strips under various
process conditions during micro flexible rolling phase with a variable strip thickness.

7. According to the analysis of variance, the ratio of strip thickness to grain size is regarded to be
the most significant factor with its contribution of 33.26% to the forward slip, which is followed
by the reduction with the contribution of 25.82% and the estimated friction coefficient with
that of 22.93%, whilst the rolling speed hardly significantly influences the forward slip with the
contribution of only 1.24%.
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